Skip to main content
Log in

Optimal mass transport based brain morphometry for patients with congenital hand deformities

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Congenital hand deformities (CHD) have attracted increasing research attention in the past few decades. The impacts of CHD on the brain structure, however, are not fully studied to date. In this work, we propose a novel framework to study brain morphometry in CHD patients using Wasserstein distance based on optimal mass transport (OMT) theory. We first employ conformal mapping to map the left and right surface-based functional brain areas to planar rectangles, which pushes the area element on the brain surface to the planar rectangle and incurs the area distortion. A measure is then determined by this area distortion. We further propose a new rectangle domain-based OMT map algorithm. Given two measures on two surfaces, we employ the proposed algorithm to compute a unique OMT map between the two measures encoding the geometric information of left and right surface-based functional brain areas. The transportation cost of this OMT map gives the Wasserstein distance between two surfaces, which intrinsically measures the dissimilarities between two surface-based shapes. Our method is theoretically rigorous and computationally efficient and stable. We finally evaluate the proposed Wasserstein distance-based method on the left and right post-central gyri from the CHD patients and healthy control subjects for analyzing brain cortical morphometry. Experimental results demonstrate the efficiency and efficacy of our method, and shed insightful lights on the study of the brain morphometry for those subjects with CHD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Data and statistics. http://www.cdc.gov/ncbddd/birthdefects/data.html (2016)

  2. Iacono, N.L., Mantero, S., Chiarelli, A., Garcia, E., Mills, A.A., Morasso, M.I., Costanzo, A., Levi, G., Guerrini, L., Merlo, G.R.: Regulation of Dlx5 and Dlx6 gene expression by p63 is involved in EEC and SHFM congenital limb defects. Development 135(7), 1377–1388 (2008)

    Article  Google Scholar 

  3. Goldfarb, C.A.: Congenital hand differences. J. Hand Surg. 34(7), 1351–1356 (2009)

    Article  Google Scholar 

  4. Manske, P.R., Goldfarb, C.A.: Congenital failure of formation of the upper limb. Hand Clin. 25(2), 157–170 (2009)

    Article  Google Scholar 

  5. Oberg, K.C., Feenstra, J.M., Manske, P.R., Tonkin, M.A.: Developmental biology and classification of congenital anomalies of the hand and upper extremity. J. Hand Surg. 35(12), 2066–2076 (2010)

    Article  Google Scholar 

  6. Andersson, G.-B., Gillberg, C., Fernell, E., Johansson, M., Nachemson, A.: Children with surgically corrected hand deformities and upper limb deficiencies: self-concept and psychological well-being. J. Hand Surg. (Eur. Vol.) 36(9), 795–801 (2011)

    Article  Google Scholar 

  7. Gold, N.B., Westgate, M.-N., Holmes, L.B.: Anatomic and etiological classification of congenital limb deficiencies. Am. J. Med. Genet. Part A 155(6), 1225–1235 (2011)

    Article  Google Scholar 

  8. Corsello, G., Giuffrè, M.: Congenital malformations. J. Matern Fet Neonatal Med 25(sup1), 25–29 (2012)

    Article  Google Scholar 

  9. Tonkin, M.A., Tolerton, S.K., Quick, T.J., Harvey, I., Lawson, R.D., Smith, N.C., Oberg, K.C.: Classification of congenital anomalies of the hand and upper limb: development and assessment of a new system. J. Hand Surg. 38(9), 1845–1853 (2013)

    Article  Google Scholar 

  10. Pizer, S.M., Fritsch, D.S., Yushkevich, P.A., Johnson, V.E., Chaney, E.L.: Segmentation, registration, and measurement of shape variation via image object shape. IEEE Tran. Med. Imaging 18(10), 851–865 (1999)

    Article  Google Scholar 

  11. Chung, M.K., Dalton, K.M., Davidson, R.J.: Tensor-based cortical surface morphometry via weighted spherical harmonic representation. IEEE Trans. Med. Imaging 27(8), 1143–1151 (2008)

    Article  Google Scholar 

  12. Im, K., Lee, J.-M., Lyttelton, O., Kim, S.H., Evans, A.C., Kim, S.I.: Brain size and cortical structure in the adult human brain. Cereb. Cortex 18(9), 2181–2191 (2008)

    Article  Google Scholar 

  13. Wang, Y., Gu, X., Chan, T.F., Thompson, P.M..: Shape analysis with conformal invariants for multiply connected domains and its application to analyzing brain morphology. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 202–209. IEEE (2009)

  14. Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., Friston, K., et al.: Identifying global anatomical differences: deformation-based morphometry. Hum. Brain Mapp. 6(5–6), 348–357 (1998)

    Article  Google Scholar 

  15. Davies, R.H., Twining, C.J., Allen, P.D., Cootes, T.F., Taylor, C.J.: Shape discrimination in the hippocampus using an MDL model. In: Thalmann, D., Musse, S.R. (eds.) Information Processing in Medical Imaging, pp. 38–50. Springer, Berlin (2003)

    Chapter  Google Scholar 

  16. Specht, M., Lebrun, R., Zollikofer, C.P.E.: Visualizing shape transformation between chimpanzee and human braincases. Vis. Comput. 23(9), 743–751 (2007)

    Article  Google Scholar 

  17. Liu, X., Shi, Y., Dinov, I., Mio, W.: A computational model of multidimensional shape. Int. J. Comput. Vis. 89(1), 69–83 (2010)

    Article  MathSciNet  Google Scholar 

  18. Zeng, W., Shi, R., Wang, Y., Yau, S.-T., Xianfeng, G., Alzheimers Disease Neuroimaging Initiative: Teichmüller shape descriptor and its application to alzheimers disease study. Int. J. Comput. Vis. 105(2), 155–170 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wade, B.S.C., Valcour, V.G., Wendelken-Riegelhaupt, L., Esmaeili-Firidouni, P., Joshi, S.H., Gutman, B.A., Thompson, P.M.: Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort. NeuroImage Clin. 9, 564–573 (2015)

    Article  Google Scholar 

  20. Tremblay, P., Deschamps, I.: Structural brain aging and speech production: a surface-based brain morphometry study. Brain Struct. Funct. 221(6), 3275–3299 (2016)

    Article  Google Scholar 

  21. Landin-Romero, R., Canales-Rodríguez, E.J., Kumfor, F., Moreno-Alcázar, A., Madre, M., Maristany, T., Pomarol-Clotet, E., Amann, B.L.: Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder. Aust. N. Z. J. Psychiatry 51(1), 42–54 (2017)

    Article  Google Scholar 

  22. Zhu, L., Haker, S., Tannenbaum, A.: Area-Preserving Mappings for the Visualization of Medical Structures. Springer, Berlin (2003)

    Book  Google Scholar 

  23. Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60(3), 225–240 (2004)

    Article  Google Scholar 

  24. Dominitz, A., Tannenbaum, A.: Texture mapping via optimal mass transport. IEEE Trans. Vis. Comput. Graph. 16(3), 419–433 (2010)

    Article  Google Scholar 

  25. Rehman, T., Haber, E., Pryor, G., Melonakos, J., Tannenbaum, A.: 3D nonrigid registration via optimal mass transport on the GPU. Med. Image Anal. 13(6), 931–940 (2009)

    Article  Google Scholar 

  26. Su, Z., Zeng, W., Shi, R., Wang, Y., Sun, J., Gu, X.: Area preserving brain mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235–2242 (2013)

  27. Zhao, X., Su, Z., Gu, X.D., Kaufman, A., Sun, J., Gao, J., Luo, F.: Area-preservation mapping using optimal mass transport. IEEE Trans. Vis. Comput. Graph. 19(12), 2838–2847 (2013)

    Article  Google Scholar 

  28. Mérigot, Q.: A multiscale approach to optimal transport. Comput. Graph. Forum 30, 1583–1592 (2011)

    Article  Google Scholar 

  29. De Goes, F., Cohen-Steiner, D., Alliez, P., Desbrun, M.: An optimal transport approach to robust reconstruction and simplification of 2D shapes. Computer Graph. Forum 30, 1593–1602 (2011)

    Article  Google Scholar 

  30. de Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal transport. ACM Trans. Graph. 31(6), 171 (2012)

    Google Scholar 

  31. Gu, X., Yau, S.-T.: Computational Conformal Geometry. International Press, Vienna (2008)

    MATH  Google Scholar 

  32. Kantorovich, L.V.: On a problem of Monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)

    Google Scholar 

  33. Gu, X., Luo, F., Sun, J., Yau, S.-T.: Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge-Amperé equations. arXiv:1302.5472 (2013)

  34. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Meals, R.A. (ed.) Visualization and Mathematics III, pp. 35–57. Springer, Berlin (2003)

    Chapter  Google Scholar 

  35. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008)

    Article  Google Scholar 

  36. Ben-Chen, M., Gotsman, C., Bunin, G.: Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum 27, 449–458 (2008)

    Article  Google Scholar 

  37. Taimouri, V., Hua, J.: Deformation similarity measurement in quasi-conformal shape space. Graph. Models 76(2), 57–69 (2014)

    Article  Google Scholar 

  38. Cohen-Steiner, D., Morvan, J.-M.: Restricted delaunay triangulations and normal cycle. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 312–321. ACM (2003)

  39. Nicolas B.: From Knothe’s rearrangement to Brenier’s optimal transport map. arXiv:1205.1099, pp. 1–29 (2012)

  40. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  41. He, Q., Karsch, K., Duan, Y.: Semi-automatic 3D segmentation of brain structures from MRI. Int. J. Data Min. Bioinform. 5(2), 158–173 (2011)

    Article  Google Scholar 

  42. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: ACM Siggraph Computer Graphics, vol. 21, pp. 163–169. ACM (1987)

  43. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer, Berlin (2009)

    MATH  Google Scholar 

  44. Gardner, A., Kanno, J., Duncan, C.A., Selmic, R.: Measuring distance between unordered sets of different sizes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 137–143 (2014)

  45. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Manske, P.R. (ed.) Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International Society for Optics and Photonics, Bellingham (1992)

    Chapter  Google Scholar 

Download references

Acknowledgements

This paper has been partially supported by NSF DMS-1418255, AFOSR FA9550-14-1-0193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, M., Wang, X., Duan, Y. et al. Optimal mass transport based brain morphometry for patients with congenital hand deformities. Vis Comput 35, 1311–1325 (2019). https://doi.org/10.1007/s00371-018-1543-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1543-5

Keywords

Navigation