Skip to main content
Log in

Automatic procedural model generation for 3D object variation

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

3D objects are used for numerous applications. In many cases not only single objects but also variations of objects are needed. Procedural models can be represented in many different forms, but generally excel in content generation. Therefore this representation is well suited for variation generation of 3D objects. However, the creation of a procedural model can be time-consuming on its own. We propose an automatic generation of a procedural model from a single exemplary 3D object. The procedural model consists of a sequence of parameterizable procedures and represents the object construction process. Changing the parameters of the procedures changes the surface of the 3D object. By linking the surface of the procedural model to the original object surface, we can transfer the changes and enable the possibility of generating variations of the original 3D object. The user can adapt the derived procedural model to easily and intuitively generate variations of the original object. We allow the user to define variation parameters within the procedures to guide a process of generating random variations. We evaluate our approach by computing procedural models for various object types, and we generate variations of all objects using the automatically generated procedural model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006)

    Article  Google Scholar 

  2. Averkiou, M., Kim, V.G., Zheng, Y., Mitra, N.J.: Shapesynth: parameterizing model collections for coupled shape exploration and synthesis. In: Computer Graphics Forum, vol. 33, pp. 125–134. Wiley Online Library (2014)

  3. Bærentzen, J.A., Abdrashitov, R., Singh, K.: Interactive shape modeling using a skeleton-mesh co-representation. ACM Trans. Graph. (TOG) 33(4), 132 (2014)

    Article  Google Scholar 

  4. Bene, B., t’ava, O., Mch, R., Miller, G.: Guided procedural modeling. Comput. Graph. Forum 30(2), 325–334 (2011)

    Article  Google Scholar 

  5. Bokeloh, M., Wand, M., Seidel, H.P.: A connection between partial symmetry and inverse procedural modeling. ACM Trans. Graph. (TOG) 29, 104 (2010)

    Article  Google Scholar 

  6. Bokeloh, M., Wand, M., Seidel, H.P., Koltun, V.: An algebraic model for parameterized shape editing. ACM Trans. Graph. 31(4), 1–10 (2012)

    Article  Google Scholar 

  7. Chao, I., Pinkall, U., Sanan, P., Schröder, P.: A simple geometric model for elastic deformations. ACM Trans. Graph. (TOG) 29, 38 (2010)

    Article  Google Scholar 

  8. Corsini, M., Cignoni, P., Scopigno, R.: Efficient and flexible sampling with blue noise properties of triangular meshes. IEEE Trans. Vis. Comput. Graph. 18(6), 914–924 (2012)

    Article  Google Scholar 

  9. Fish, N., Averkiou, M., Van Kaick, O., Sorkine-Hornung, O., Cohen-Or, D., Mitra, N.J.: Meta-representation of shape families. ACM Trans. Graph. (TOG) 33(4), 34 (2014)

    Article  MATH  Google Scholar 

  10. Getto, R., Merz, J., Kuijper, A., Fellner, D.W.: 3D meta model generation with application in 3D object retrieval. In: Proceedings of the Computer Graphics International Conference, p. 6. ACM (2017)

  11. Guo, X., Lin, J., Xu, K., Jin, X.: Creature grammar for creative modeling of 3D monsters. Graph. Models 76(5), 376–389 (2014)

    Article  Google Scholar 

  12. Havemann, S., Fellner, D.: Generative parametric design of Gothic window tracery. In: Shape Modeling Applications, Proceedings, pp. 350–353. IEEE (2004)

  13. Jain, A., Thormählen, T., Ritschel, T., Seidel, H.P.: Exploring shape variations by 3D-model decomposition and part-based recombination. In: Computer Graphics Forum, vol. 31, pp. 631–640. Wiley Online Library (2012)

  14. Kim, V.G., Li, W., Mitra, N.J., Chaudhuri, S., DiVerdi, S., Funkhouser, T.: Learning part-based templates from large collections of 3D shapes. ACM Trans. Graph. (TOG) 32(4), 70 (2013)

    MATH  Google Scholar 

  15. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3D models. ACM Trans. Graph. (TOG) 23, 861–869 (2004)

    Article  Google Scholar 

  16. Levi, Z., Gotsman, C.: Smooth rotation enhanced as-rigid-as-possible mesh animation. IEEE Trans. Vis. Comput. Graph. 21(2), 264–277 (2015)

    Article  Google Scholar 

  17. Longay, S., Runions, A., Boudon, F., Prusinkiewicz, P.: Treesketch: interactive procedural modeling of trees on a tablet. In: Proceedings of the International Symposium on Sketch-Based Interfaces and Modeling, pp. 107–120. Eurographics Association (2012)

  18. Marini, S., Spagnuolo, M., Falcidieno, B.: Structural shape prototypes for the automatic classification of 3D objects. IEEE Comput. Graph. Appl. 27(4), 28–37 (2007)

    Article  Google Scholar 

  19. Marvie, J.E., Perret, J., Bouatouch, K.: The FL-system: a functional L-system for procedural geometric modeling. Vis. Comput. 21(5), 329–339 (2005)

    Article  Google Scholar 

  20. Mendez, E., Schall, G., Havemann, S., Fellner, D., Schmalstieg, D., Junghanns, S.: Generating semantic 3D models of underground infrastructure. IEEE Comput. Graph. Appl. 28(3), 48–57 (2008)

    Article  Google Scholar 

  21. Mitra, N., Wand, M., Zhang, H.R., Cohen-Or, D., Kim, V., Huang, Q.X.: Structure-aware shape processing. In: SIGGRAPH Asia 2013 Courses, pp. 1–20. ACM Press (2013)

  22. Mller, P., Wonka, P., Haegler, S., Ulmer, A., Van Gool, L.: Procedural modeling of buildings. ACM Trans. Graph. (TOG) 25(3), 614–623 (2006)

    Article  Google Scholar 

  23. Müller, P., Zeng, G., Wonka, P., Van Gool, L.: Image-based procedural modeling of facades. ACM Trans. Graph. 26(99), 85 (2007)

    Article  Google Scholar 

  24. Nishida, G., Garcia-Dorado, I., Aliaga, D.G., Benes, B., Bousseau, A.: Interactive sketching of urban procedural models. ACM Trans. Graph. (TOG) 35(4), 130 (2016)

    Article  Google Scholar 

  25. Ovsjanikov, M., Li, W., Guibas, L., Mitra, N.J.: Exploration of continuous variability in collections of 3D shapes. ACM Trans. Graph. (TOG) 30(4), 33 (2011)

    Article  Google Scholar 

  26. Raab, R., Gotsman, C., Sheffer, A.: Virtual woodwork: making toys from geometric models. Int. J. Shape Model. 10(01), 1–29 (2004)

    Article  MATH  Google Scholar 

  27. Ramamoorthi, R., Arvo, J.: Creating generative models from range images. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 195–204. ACM Press/Addison-Wesley Publishing Co. (1999)

  28. Schinko, C., Strobl, M., Ullrich, T., Fellner, D.W.: Modeling procedural knowledge: a generative modeler for cultural heritage. In: Digital Heritage, pp. 153–165. Springer (2010)

  29. Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural modelling for virtual worlds. Comput. Graph. Forum 33(6), 31–50 (2014)

    Article  Google Scholar 

  30. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Symposium on Geometry Processing, vol. 4, pp. 109–116 (2007)

  31. Stava, O., Pirk, S., Kratt, J., Chen, B., Mch, R., Deussen, O., Benes, B.: Inverse procedural modelling of trees: inverse procedural modeling of trees. Comput. Graph. Forum 33(6), 118–131 (2014)

    Article  Google Scholar 

  32. Tagliasacchi, A., Alhashim, I., Olson, M., Zhang, H.: Mean curvature skeletons. In: Computer Graphics Forum, vol. 31, pp. 1735–1744. Wiley Online Library (2012)

  33. Talton, J.O., Lou, Y., Lesser, S., Duke, J., Mch, R., Koltun, V.: Metropolis procedural modeling. ACM Trans. Graph. 30(2), 1–14 (2011)

    Article  Google Scholar 

  34. Thiery, J.M., Guy, M., Boubekeur, T.: Sphere-meshes: shape approximation using spherical quadric error metrics. ACM Trans. Graph. 32(6), 1–12 (2013)

    Article  Google Scholar 

  35. Ullrich, T., Fellner, D.W.: Generative object definition and semantic recognition. In: Proceedings of the 4th Eurographics Conference on 3D Object Retrieval, pp. 1–8. Eurographics Association (2011)

  36. Vanegas, C.A., Garcia-Dorado, I., Aliaga, D.G., Benes, B., Waddell, P.: Inverse design of urban procedural models. ACM Trans. Graph. (TOG) 31(6), 168 (2012)

    Article  Google Scholar 

  37. Wang, Y., Xu, K., Li, J., Zhang, H., Shamir, A., Liu, L., Cheng, Z., Xiong, Y.: Symmetry hierarchy of man-made objects. In: Computer Graphics Forum, vol. 30, pp. 287–296. Wiley Online Library (2011)

  38. Xu, K., Li, H., Zhang, H., Cohen-Or, D., Xiong, Y., Cheng, Z.Q.: Style-content separation by anisotropic part scales. ACM Trans. Graph. (TOG) 29(6), 184 (2010)

    Article  Google Scholar 

  39. Yumer, M.E., Chaudhuri, S., Hodgins, J.K., Kara, L.B.: Semantic shape editing using deformation handles. ACM Trans. Graph. 34(4), 86:1–86:12 (2015)

    Article  Google Scholar 

  40. Yumer, M.E., Kara, L.B.: Co-abstraction of shape collections. ACM Trans. Graph. (TOG) 31(6), 166 (2012)

    Article  Google Scholar 

  41. Zhou, Y., Yin, K., Huang, H., Zhang, H., Gong, M., Cohen-Or, D.: Generalized cylinder decomposition. ACM Trans. Graph. 34(6), 171 (2015). (Special Issue of SIGGRAPH Asia)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Getto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getto, R., Kuijper, A. & Fellner, D.W. Automatic procedural model generation for 3D object variation. Vis Comput 36, 53–70 (2020). https://doi.org/10.1007/s00371-018-1589-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1589-4

Keywords

Navigation