Skip to main content
Log in

Tight lower bound on transmission for single image dehazing

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Effective functioning of outdoor vision systems depends upon the quality of input. Varying effects of light create different weather conditions (like raining, snowfall, haze, mist, fog, and cloud) due to optical properties of light and physical existence of different size particles in the atmosphere. Thus, outdoor images and videos captured in adverse environmental conditions have poor visibility due to scattering of light by atmospheric particles. Visibility restoration (dehazing) of degraded (hazy) images is critical for the useful performance of outdoor vision systems. Most of the existing methods of image dehazing considered atmospheric scattering model (ASM) to improve the visibility of hazy images or videos. According to ASM, the visual quality of dehazed image depends upon accurate estimation of transmission. Existing methods presented different priors with strong assumptions to estimate transmission. The proposed method introduces a tight lower bound on transmission. However, the accuracy of the proposed tight lower bound depends upon minimum color channel of haze-free image. Therefore, a prior is proposed to estimate the minimum color channel of the haze-free image. Furthermore, a blind assessment metric is proposed to evaluate the dehazing methods. Restored and matching corner points of the hazy and haze-free image are used to compute the proposed blind assessment metric. Obtained results are compared with renowned dehazing methods by qualitative and quantitative analysis to prove the efficacy of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Lu, H., Li, Y., Nakashima, S., Serikawa, S.: Single image dehazing through improved atmospheric light estimation. Multimed. Tools Appl. 75(24), 17081–17096 (2016)

    Article  Google Scholar 

  2. Raikwar, S.C., Tapaswi, S.: An improved linear depth model for single image fog removal. Multimed. Tools Appl. 77(15), 19719–19744 (2018). https://doi.org/10.1007/s11042-017-5398-y

    Article  Google Scholar 

  3. Huimin, L., Li, Y., Chen, M., Kim, H., Serikawa, S.: Brain intelligence: go beyond artificial intelligence. Mob. Netw. Appl. 23(2), 368–375 (2018)

    Article  Google Scholar 

  4. Narasimhan, Srinivasa G.: Models and Algorithms for Vision Through the Atmosphere. PhD thesis, New York, NY, USA (2004). AAI3115363

  5. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  6. Zhang, Y.-Q., Ding, Y., Xiao, J.-S., Liu, J., Guo, Z.: Visibility enhancement using an image filtering approach. EURASIP J. Adv. Signal Process. 2012(1), 220–225 (2012)

    Article  Google Scholar 

  7. Ling, Z., Fan, G., Gong, J., Wang, Y., Xiao, L.: Perception oriented transmission estimation for high quality image dehazing. Neurocomputing 224, 82–95 (2017)

    Article  Google Scholar 

  8. Kim, T.K., Paik, J.K., Kang, B.S.: Contrast enhancement system using spatially adaptive histogram equalization with temporal fltering. IEEE Trans. Consum. Electron. 44(1), 82–87 (1998)

    Article  Google Scholar 

  9. Alex Stark, J.: Adaptive image contrast enhancement using generalizations of histogram equalization. IEEE Trans. Image Process. 9(5), 889–896 (2000)

    Article  Google Scholar 

  10. Kim, J.-Y., Kim, L.-S., Hwang, S.-H.: An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 11(4), 475–484 (2001)

    Article  Google Scholar 

  11. Li, Y., Huimin, L., Li, J., Li, X., Li, Y., Serikawa, S.: Underwater image de-scattering and classification by deep neural network. Comput. Electr. Eng. 54(C), 68–77 (2016)

    Article  Google Scholar 

  12. Tan, K., Oakley, J.P.: Enhancement of color images in poor visibility conditions. In: Proceedings of IEEE Conference on Image Processing, vol. 2, pp. 788–791 (September 2000)

  13. Nayar, S.K., Narasimhan, S.G.: Interactive deweathering of an image using physical models. In: Proceedings of IEEE Workshop on Color and Photometric Methods in Computer Vision in cnjunction with IEEE Conference on Computer Vision (October 2003)

  14. Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: Proceedings of IEEE Conference on Computer Vision, vol. 2, 820–827 (September 1999)

  15. Schechner, Y.Y., Narasimhan, S.G., Nayar, S.K.: Instant dehazing of images using polarization. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 325–332 (February 2001)

  16. Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 713–724 (2003)

    Article  Google Scholar 

  17. Narasimhan, S.G., Nayar, S.K.: Chromatic framework for vision in bad weather. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 598–605 (June 2000)

  18. Shwartz, S., Namer, E., Schechner, Y.Y.: Blind haze separation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1984–1991 (February 2006)

  19. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2012)

    Article  Google Scholar 

  20. Meng, G., Wang, Y., Duan, J., Xiang, S., Pan, C.: Efficient image dehazing with boundary constraint and contextual regularization. In: Proceedings of IEEE International Conference on Computer Vision, pp. 617 – 624 (2013)

  21. Tan, R.: Visibility in bad weather from a single image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 24–26 (June 2008)

  22. Tarel, J.P., Hautière, N.: Fast visibility restoration from a single color or gray level image. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2201–2208 (September 2009)

  23. Xiao, C., Gan, J.: Fast image dehazing using guided joint bilateral filter. Vis. Comput. Int. J. Comput. Graph. 28(6–8), 713–721 (2012)

    Google Scholar 

  24. Jha, D.K., Gupta, B., Lamba, S.S.: l2-norm-based prior for haze-removal from single image. IET Comput. Vis. 10(5), 331–341 (2016)

    Article  Google Scholar 

  25. Kim, J.-H., Jang, W.-D., Sim, J.-Y., Kim, C.-S.: Optimized contrast enhancement for real-time image and video dehazing. J. Vis. Commun. Image Represent. 24(3), 410–425 (2013)

    Article  Google Scholar 

  26. Liu, S., Rahman, M.A., Liu, S.C., Wong, C.Y., Lin, C.-F., Wu, H., Kwok, N.: Image de-hazing from the perspective of noise filtering. Comput. Electr. Eng. 62(August 2017), 345–359 (2016)

    Google Scholar 

  27. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

  28. Wang, W., Yuan, X., Xiaojin, W., Liu, Y.: Dehazing for images with large sky region. Neurocomputing 238(Supplement C), 365–376 (2017)

    Article  Google Scholar 

  29. Tang, K., Yang, J., Wang, J.: Investigating haze-relevant features in a learning framework for image dehazing. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2995–3002 (2014)

  30. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE TRans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  Google Scholar 

  31. Wang, W., Yuan, X., Xiaojin, W., Liu, Y.: Fast image dehazing method based on linear transformation. IEEE Trans. Multimed. 19(6), 1142–1155 (2017)

    Article  Google Scholar 

  32. Li, Y., Miao, Q., Song, J., Quan, Y., Li, W.: Single image haze removal based on haze physical characteristics and adaptive sky region detection. Neurocomputing 182, 221–234 (2016)

    Article  Google Scholar 

  33. Yuan, H., Liu, C., Guo, Z., Sun, Z.: A region-wised medium transmission based image dehazing method. IEEE Access 5, 1735–1742 (2017)

    Article  Google Scholar 

  34. Silberman, N., Kohli, P., Hoiem, D., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV (2012)

  35. Hautiére, N., Tarel, J.-P., Lavenant, J., Aubert, D.: Automatic fog detection and estimation of visibility distance through use of an onboard camera. Mach. Vis. Appl. 17(1), 8–20 (2006)

    Article  Google Scholar 

  36. Choi, K.Y., Jeong, K.M., Song, B.C.: Fog detection for de-fogging of road driving images. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 1–6 (Oct 2017)

  37. Ma, K., Liu, W., Wang, Z.: Perceptual evaluation of single image dehazing algorithms. In: Proceedings of IEEE International Conference on Image Processing (September 2015)

  38. Tarel, J.-P., Hautière, N., Cord, A., Gruyer, D., Halmaoui, H.: Improved visibility of road scene images under heterogeneous fog. In: Proceedings of IEEE Intelligent Vehicle Symposium(IV’2010), San Diego, California, USA, pp. 478–485 (2010). http://perso.lcpc.frtarel.jean-philippe/publis/iv10.html

  39. Bui, T.M., Kim, W.: Single image dehazing using color ellipsoid prior. IEEE Trans. Image Process. 27(2), 999–1009 (2018)

    Article  MathSciNet  Google Scholar 

  40. Khmag, A., Al-Haddad, S.A.R., Ramli, A.R., Kalantar, B.: Single image dehazing using second-generation wavelet transforms and the mean vector l2-norm. Vis. Comput. 34(5), 675–688 (2018)

    Article  Google Scholar 

  41. Yong, X., Wen, J., Fei, L., Zhang, Z.: Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 4, 165–188 (2015)

    Google Scholar 

  42. Wang, R., Li, R., sun, H.: Haze removal based on multiple scattering model with superpixel algorithm. J. Signal Process. 127(C), 24–36 (2016)

    Article  Google Scholar 

  43. Lu, H., Li, Y., Xu, X., He, L., Li, Y., Dansereau, D., Serikawa, S.: Underwater image descattering and quality assessment. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1998–2002 (Sept 2016)

  44. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image qualifty assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  45. Wang, Z.: The SSIM index for image quality assessment (2003). https://ece.uwaterloo.ca/~z70wang/research/ssim/. Accessed 9 Nov 2014

  46. Huimin, L., Li, Y., Zhang, L., Serikawa, S.: Contrast enhancement for images in turbid water. J. Opt. Soc. Am. A 32(5), 886–893 (2015)

    Article  Google Scholar 

  47. Serikawa, S., Huimin, L.: Underwater image dehazing using joint trilateral filter. Comput. Electr. Eng. 40(1), 41–50 (2014). 40th-year commemorative issue

    Article  Google Scholar 

  48. Ling, Z., Li, S., Wang, Y., Shen, H., Xiao, L.: Adaptive transmission compensation via human visual system for efficient single image dehazing. Vis. Comput. 32(5), 653–662 (2016)

    Article  Google Scholar 

  49. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: Hdr-vdp-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30(4), 40:1–40:14 (2011)

    Article  Google Scholar 

  50. Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: Hdr-vdp-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH’11, New York, NY, USA. ACM, pp. 40:1–40:14 (2011)

  51. Dawn, D.D.Â., Shaikh, S.H.: A comprehensive survey of human action recognition with sspatio-temporal interest point (stip) detector. Vis. Comput. 32(3), 289–306 (2016)

    Article  Google Scholar 

  52. Li, Y., Lu, H., Li, K.-C., Kim, Y., Serikawa, S.: Non-uniform de-scattering and de-blurring of underwater images. Mobile Netw. Appl. 23(2), 352–362 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suresh Chandra Raikwar.

Ethics declarations

Conflict of interest

Authors Suresh Chandra Raikwar and Shashikala Tapaswi declare that they do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raikwar, S.C., Tapaswi, S. Tight lower bound on transmission for single image dehazing. Vis Comput 36, 191–209 (2020). https://doi.org/10.1007/s00371-018-1596-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-018-1596-5

Keywords

Navigation