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ABSTRACT

3D INDIRECT SHAPE RETRIEVAL BASED ON HAND INTERACTION

Irmak, Erdem Can
M.S., Department of Game Technologies

Supervisor : Assoc. Prof. Dr. Yusuf Sahillioğlu

June 2017, 75 pages

In this thesis, a novel 3D indirect shape analysis method is presented which
successfully retrieves 3D shapes based on the hand-object interaction. In the
first part of the study, the human hand information is processed and trans-
ferred to the virtual environment by Leap Motion Controller. Position and
rotation of the hand, the angle of the finger joints are used for this part in our
method. Also, in this approach, a new type of feature, which we call inter-
action point, is introduced. These interaction points are placed on the digital
hand model and indicate whether the hand touches the 3D shape or not. In
the second part, every 3D shape is represented by feeding hand features to the
Support Vector Machine. Experiments validate that Support Vector Machine
results are usable for retrieval of 3D shapes. Moreover, we compared the re-
trieval performance of our method with an interaction based indirect method
based on Data Glove as well as a direct method based on 3D shape distri-
bution histograms. These comparison revealed different advantages of our
method, which are i) being lower-cost compared to Data Glove, and ii) being
more discriminative compared to a direct approach. The main contribution
of this thesis is threefold: i) Noisy and/or deficient 3d shapes can be retrieved
ii) The retrieval is not affected by the alignment of shape iii) Performance of
the method is independent of the polygon count of the shape.

Keywords: Indirect shape analysis, 3d shape retrieval, Leap Motion, interac-
tion based shape analysis
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ÖZ

EL ETKİLEŞİMİNE DAYALI 3B ŞEKİL ERİŞİMİ

Irmak, Erdem Can
Yüksek Lisans, Oyun Teknolojileri Bölümü

Tez Yöneticisi : Doç. Dr. Yusuf Sahillioğlu

Haziran 2017 , 75 sayfa

Bu tezde, elle nesne etkileşimine dayalı, üç boyutlu şekilleri anlamlı biçimde
elde eden yeni bir dolaylı 3B şekil analizi yöntemi sunulmaktadır. Çalışma-
mızın ilk bölümünde insan eli bilgileri Leap Motion cihazı ile işlenmekte ve
sanal ortama aktarılmaktadır. Yöntemin bu adımında, elin pozisyonu ve ro-
tasyonu, parmak eklemlerinin açısı kullanılır. Ayrıca, bu yöntemde etkileşim
noktası adı verilen yeni bir özellik türü uygulanmaktadır. Bu etkileşim nokta-
ları, el modelinde konumlandırılır ve elin 3B şekle değip değmediğini belirler.
İkinci bölümde, bu el özelliklerinin Destekçi Vektör Makinesine uygulanması
ile her 3B şekil analiz edilir. Elde edilen veriler, Destekçi Vektör Makinesi so-
nuçlarının 3B şekillerin analizi için kullanılabileceğini kanıtlamaktadır. Ay-
rıca, yöntemin sonuçlarını karşılaştırmak için Data Gloves cihazı kullanılarak
başka bir etkileşim tabanlı analiz yöntemi uygulanmistir. Bu iki yontem, 3B
şekillerin analizi için hangi özelliklerin önemli olduğunu gostermektedir. Bu
tezin 3B sekil analizine katkısı üç şekilde olmaktadır: i) Pürüzlü ya da eksik
objeler analiz edilebilir ii) Analiz şeklin hizalanmasından etkilenmez iii) Me-
todun performansı poligon sayısından bağımsızdır.

Anahtar Kelimeler: Dolaylı şekil analizi, 3B şekil analizi, Leap Motion, etkile-
şimli şekil analizi
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CHAPTER 1

INTRODUCTION

Over the last few years, there is a growing demand for analysis and retrieval
of 3D shapes in computer-aided design(CAD), molecular biology, medicine,
geometry modeling and computer animation including video games and 3D
modeling industry. Searching 3D shapes in huge model databases are be-
coming an essential task to enhance design and discovery processes in a time
efficient way. To achieve 3D shape searching easily, efficiently and flexible
way, novel shape retrieval, and analysis approaches need to be developed.
Although text-based searching methods can be used if text queries of the 3D
shape are well linked with models, searching 3D shapes using only text query
is not very practical in a large database. Descriptors that extracted from the
form of the 3D object can be preferred for defining the 3D shape better. Fur-
thermore, unlike 2D images, 3D shapes are free from light sources, reflections,
or occlusions. Accordingly, we can analyze 3D shapes quickly and free from
these parameters. For these reasons, novel topology and interaction based
shape analysis and retrieval approaches have been developing in recent years.

According to Funkhouser [14], 3D model analysis and retrieval tools on the
web are becoming popular because of the following reasons;

• Constructing 3D shapes using 3D scanners and modeling tools are be-
coming practical and cost efficient.

• Graphics hardware is inexpensive and faster than before.

• Demand for 3D models is increased because of the fast-growing indus-
tries like video game and simulation.

• The Web is the best domain for distributing 3D models and other inter-
active media.

Many real life scenarios that are different from each other for 3D shape anal-
ysis and retrieval methods can be given as an example. For instance, 3D
shape analysis and retrieval methods can be used in archeology. A 3D shape
search application can be developed for archaeologists to help their scientific
researches. To use that program, firstly, scientists scan historical artifacts and
build a 3D model of this object in the virtual environment. After this oper-
ation, scanned 3D shapes are imported into our application. In this applica-
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tion, all features and descriptors can be extracted from the 3D shape. These
features might be size, volume, shape segments or surface texture. Finally, the
application gets all detailed information about this artifact from its databases
using similar 3D shapes, and even it might find its built period. With this
type of implementation, the archaeologist can analyze the ancient artifacts
efficiently and reduce their research period.

Figure 1.1: Scanning Process Example of the Historical Artifact (Ashley Mc-
Cuistion 2013 [1])

Another scenario is about creating a level design for video games. A stage
in a video game contains a lot of different 3D models, and these models are
needed to be matched in an aesthetic manner. In the level design process, a
level designer may want to enrich the environment of the game level with
new 3D models, but finding a 3D model that matches with already placed 3D
models is hard work. For this reason, having a 3D search engine simplifies
the level designer’s job. Using this search engine, which analyzes 3D shape
features, the designer can look for similar models with different filters such
as scale, color, detail, and texture. With a 3D model search engine, the level
designer can also filter the models regarding polygon count, animation, file
type and licensing options. This approach helps the developer to increase the
quality of the game level.

There are many constructed examples for 3D analysis and retrieval on the
web. Princeton University has developed a visual search engine that contains
about 36,000 3D models [14]. It is available on the internet (shape.cs.princeton.
edu). Users can search intended 3D shapes easily using text, 2D sketch, 3D
sketch and 3D shape comparing methods. Moreover, National design repos-
itory [15] is developed by Drexel University to help evaluation of retrieval
and classification approaches to computer-aided design (CAD) and 3D mod-
els and can be accessed from edge.cs.drexel.edu/repository. These models
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Figure 1.2: Yobi 3D - 3D Model Search Engine
are available in ACIS SAT, STEP and VRML formats. Protein data bank is
another type of 3D shape repository. It has 3D structural data of the major
biological molecules, such as proteins and nucleic acids. It contains approxi-
mately 29000 different 3D molecule models [16].

3D shape analysis approaches have many different challenges. The main dif-
ficulty in shape analysis and retrieval approaches is finding right 3D shape
features to classify objects completely. People can easily classify objects from
their surroundings according to their functionality, but for computers, it is un-
clear how much information is needed to detect their functionality. Without
observing its complete functionality of the object, there will be a problem to
classify 3D objects clearly. Therefore, a supervised learning approach is used
to analyze and retrieve 3D shapes using Support Vector Machine classifier.

We can see that every object that can be can found on the web has many
deficient parts. These objects also have a different translation, 3D model type,
and size. For this reason, we can say that analysis of this objects is much
harder than 3D shapes without defective parts. For resolving these problems,
We need to satisfy some properties. According to Osada [17], to solve these
problems, it is important to satisfy several properties for achieving desired
results:

• Invariance: 3D shape features are not affected by translation, rotation,
and scale.

• Robustness: 3D shape features are insensitive to small noise and defi-
ciencies.

• Efficiency: Computing 3D shapes features is needed to be fast and effi-
cient. Different polygon count does not affect process complexity.

• Generality: 3D shape features are extracted from all types of formats
such as polygon soup, polygon mesh, CAD objects, and voxels.
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Figure 1.3: Princeton University - 3D Model Search Engine

In this thesis, we can afford invariance, robustness, and efficiency properties.
On the other hand, we can not satisfy generality property, because we can use
fbx types of 3d models in our algorithm.

As shown in Figure 1.4, the analysis process of our work consists of eight
steps. These steps are as described in the following lines:

1. Capturing Hand Data: We capture the hand data from Leap Motion
Controller. Data contains scalar hand features, 3D vector positions, ro-
tations, and hand-object interaction results.

2. Processing Scalar Hand Data: We process the scalar data according to
their base values. For example, we take the minimum distance between
two fingertips and normalize the other distance values according to base
distance.

3. Processing Vector Hand Data: We process the vector data according to
their base values. For example, the relative positions of the fingers are
calculated by subtracting finger positions from 3D shape origin.

4. Processing Interaction Information: We calculate this interaction points
using every predefined position of the virtual hand based on the dis-
tance between the hand and object points.

5. Creating the Features: We gather the all processed data and convert
these data compatible with Support Vector Machine.

6. Training: We train the Support Vector Machine for 3D shape analysis
using virtual hand features.
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7. Testing: We test Support Vector Machine based on Cross-Validation ap-
proach for analysis results.

Figure 1.4: Block Diagram of the Proposed 3D Shape Analysis Process for
Both Application

1.1 Motivation and Contributions

Text-based search engines work depend on trying to match search query within
all text database. On the other hand, in audio search engines, text-based
search works well also. The other way to search audio in huge databases
is matching sound patterns between audio files.

The image can be retrieved using their meta-data or computer vision ap-
proaches. 3D shapes can be explored using metadata or full-text search, but
these type of searches need to have well-defined tags and query texts. Similar
approaches can be employed for searching 3D shapes; nevertheless, we can
not use the methods fully efficient. Because of that, new comparable feature
analysis and retrieval methods are developed for 3D shapes.

We present a robust method for categorizing 3D shapes using their interaction
with hand. Contributions towards this goal are as follows:

1. We develop an interaction based analysis method using novel interac-
tion features. This work is based on how people are holding a shape
that can be used to extract functionality of the 3D shape.

2. Our approach is not affected by shape noise and vertex count. It can
be classified 3D shapes, even if shapes are not watertight. Rotation and
translation differences do not influence the analysis method.

3. In this work, we classify rigid based 3D shapes using non-rigid based
shape interaction. With Leap Motion Controller, it is possible to extract
the non-rigid shape features completely.
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Figure 1.5: Examples of Capture Process Using Leap Motion Controller and
Hand Glove

4. We implemented two different analysis tool for this thesis. The first tool
captures the hand features using hand gloves. We obtained the hand
data using the real-world objects. This tool is used to compare accuracy
with the main software.

5. Our main tool is implemented using Leap Motion controller. Leap Mo-
tion controller captures the hand data, and we obtained the hand-object
interaction data using virtual objects.

6. We estimate the analysis performance of our work using 10-fold cross-
validation. Our training set consists of 9 categorized object that has dif-
ferent shapes and functionality. Every object can be held by only one
hand. This study shows that our method classifies well and success-
fully predict objects groups with 80% accuracy.

7. In this thesis, our algorithm coupled with a cheap device like Leap Mo-
tion achieved more accurate results than a comparative algorithm run
on the expensive Data Glove equipment.

8. In this thesis, our indirect approach to the retrieval problem distinguished
certain objects classes much better than a comparative direct approach.

9. A thorough summary of the findings in this thesis is submitted to the
TVCJ (The Visual Computer Journal).

Although this work has achieved its purpose, there are some limitations.
Firstly, because of time constraints, experiments were conducted with a small
group of participants. For this reason, to generalize the results of tests, this
study should be done with more participants. Secondly, for each object class,
one type of object was used during the experiment. A better accuracy re-
sult could be obtained by adding objects that have different sizes and types.
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Finally, if virtual objects were used in both applications, more accurate com-
parison results could be obtained.

1.2 Organization

This thesis is organized as follows. In the next section, some of the substan-
tial topics such as basic information about Shape Analysis, Leap Motion Con-
troller, Data Glove, Support Vector Machine and Human Hand Anatomy are
described. In Section 3, the relevant previous works which are categorized
as Rigid Shape Retrieval, Non-rigid Shape Retrieval, and Interaction based
shape retrieval methods are reviewed. In Section 4, a method that analyzes
and categorizes 3D shapes using Leap Motion controller and Data Glove de-
vice is presented. In Section 5, images and figures based on these methods are
discussed. Detailed figures for the test results of these methods are shown in
Section 7.
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CHAPTER 2

BACKGROUND

Human-computer interaction is a research method on how people interact
with computers and shows how successfully applications are developed for
computers that provide interaction with people. This section provides de-
tailed information on the human-computer interaction devices, especially man-
ufactured to capture hand movements, such as Google Soli chip, Leap Motion
controller, and the Data Glove device. In addition to that, shape analysis,
Machine Learning and Support Vector Machine are described. Also, funda-
mental basic information about the basic human hand anatomy has been pro-
vided, because, in discussion and results part, anatomical names of the hand
parts and finger joints are used in detail to be shown the test results clearly. In
the final section, the general structure and features of the WEKA tool, which
helps to find SVM results, are also explained briefly.

2.1 Shape Analysis

In many professional fields like computer-aided design, architecture, and
video game development, there is a growing demand to analyze 3D geomet-
ric shapes automatically; therefore, shape analysis methods have emerged.
Shape analysis is basically about automatic analysis and processing of the
3D geometric shapes using a computer. It detects the similarities between
3D shapes using its parts or processed generic descriptors of the shapes. 3D
shapes that are treated for 3D shape analysis can be in three different digi-
tal forms, and these forms are point clouds, constructive solid geometry, and
polygonal geometry. 3D shapes are needed to be processed to extract their
features to simplify analysis process. These features are called as shape de-
scriptors.

Shape analysis can be categorized into eight different topics according to their
problem types introduced by Funkhouser [18].

• Registration: It is a problem that aligns two 3D shapes according to their
position, rotation, and scale. A state-of-art method for registration is
developed by Paul [19] who has addressed the 3D shape registration
problem using iterative closest point algorithm which is a procedure
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Figure 2.1: Shape Analysis Chart

that finds the nearest point on a geometric model to a given position.
His work can handle different type of models such as point sets, triangle
meshes, and parametric surfaces.

• Matching: It is a problem which is based on their geometric similarities.
To solve the problem of matching, Kortgen [20] introduces a novel shape
matching method which compares 2D shape contexts to find similarity
between two 3D shapes. 2D shape contexts are randomly sampled from
3D shapes, and these contexts create a similarity score with other 3D
shapes.

• Retrieval: It is a problem of finding the 3D shapes based on the geomet-
ric query of the shapes in 3D shape database. Princeton University 3D
shape database is one of the best example for this topic [14].

• Verification: Verification is a problem of comparing two 3D shapes whether
they are matching or not. Finding 3D registered faces in the database
[21] is a good example for this subject. In this work, a rich correspon-
dence between 3D face models is established by finding distinct points
of the face. Afterward, face recognition method is applied using simi-
larity information.

• Classification: It is an application that partitions 3D shapes automat-
ically. Ip [22] introduces a useful technique that is a model matching
algorithm using reinforcement learning method. It is a classification
method for solid substantial models using machine learning methods.
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• Feature Detection: It is about extracting geometric features of 3D shapes.
One of the best examples of feature detection extracts shape features
using primitive shapes approach [23]. First, a 3D shape is calculated lo-
cally. After that, a proper primitive shape is placed to the corresponding
local area.

• Segmentation: In these shape analysis type, 3D shapes are segmented
into pieces according to their significant parts. 3D shape segmentation
can be done using Reeb graph algorithm [24].

• Semantic Labeling: It is a study about creating the semantic meaning of
the 3D shapes.

• Synthesis: Synthesis is a problem of construction of new 3D shapes us-
ing 3D surfaces in the shape database.

2.2 Human-Computer Interaction Devices

User input constitutes a very critical, and necessary part of the human com-
puter interaction. The change of computer usage directly affects the technol-
ogy of input devices. In this sense, electronic controller manufacturers always
aim to reduce the size of input devices and to ease their use. As time went by,
many devices such as touch-phones, hand-held devices, VR controllers with
different usage types were developed. As a result of this approach, devices
have been designed to help imitate the movement of the human body. Kinect
is one of the most notable examples of such devices. In addition to these,
many devices have been introduced to provide only hand imitation instead
of the whole body. These type of devices include Power Glove, Data Glove,
Leap Motion, Soli.

2.2.1 Power Glove

Power glove is a game controller developed for the Nintendo entertainment
system, which was released in 1989. The device was developed by Abrams
/ Gentile Entertainment and produced by Mattel. Since it is the first virtual
reality controller and provided to the end user, it has attracted the interest
of the video game players and news excessively. However, the failure of the
games exclusive for the controller, the negative criticism of the device and the
weak sales forces caused the controller to be a failed product.

There are buttons on the power glove similar to the classic Nintendo Enter-
tainment System controllers for users to use in applications and games. Also,
the device has the ability to detect hand movements of the users. The device
can only detect the roll dimension and has sensors that have 2-bit sensitivity
for the hand fingers except for the thumb finger [25]. There are two ultrasonic
transmitters in the controller. Besides, a device with three ultrasonic receivers
is positioned in front of the controller to track the transmitters on the glove
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[26]. The sound transmission between these two devices allows finding the
position of the transmitters in X, Y, Z and these values are used to give the
glove’s rotation.

Figure 2.2: Power Glove (Center for Computer History [2])

Power Glove is the least reliable device among the listed devices in this sec-
tion. However, it is an important device regarding being one of the first ex-
amples of a virtual reality controller. Also, since power gloves are very cheap,
many researchers have used this device in their researches.

2.2.2 Google Soli

Google Soli is a millimeter wave radar to be created for human-computer in-
teraction solutions developed by Google ATAP group [3]. It can detect hand

Figure 2.3: Project Soli [3]
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gestures millimeter accuracy, and these gestures are calculated with 10000
frames per second. Unlike other camera devices, Soli is not affected by light-
ing, atmospheric conditions and noise, and can detect gestures through mate-
rials like clothes. The main working principle of the Soli device is that it emits
a modulated electromagnetic wave to objects around it that are mostly hand
members such as fingers, palm, and wrist. These waves strike to the hand and
fingers and are collected by the receiving antenna. The characteristics of these
reflected electromagnetic waves, such as delay, phase, and frequency, provide
detailed information about the hand members they are subjected. In this way,
different properties of the hands such as speed, distance, size, surface infor-
mation can be learned from these received waves. After this step, collected
wave information are processed and used them in the machine learning algo-
rithms to extract gestures from this descriptors.

2.2.3 Leap Motion

The Leap Motion Controller is a portable tracking device that obtains move-
ments, gestures and discrete positions of hands, fingers, and tools for hand
gesture-based human-computer interaction applications. The device was pub-
licly available in summer 2013. It can capture hands with sub-millimeter ac-
curacy in a limited space with innovative gesture and position tracking sys-
tem. Legacy motion capturing systems are based on raw 2D image data of
optical 3D sensors for detecting the depth of the objects in the scene. On the
other hand, Leap Motion can be classified as a stereoscopic optical tracking
system. As seen in Figure 2.4, It uses three separate infrared emitter and two
monochromatic IR cameras to capture the motion of the hand raw data with-
out using motion capture markers [27]. It can track hand movements and
position of the fingertips around 0.01 mm accuracy in the real time [28].

Figure 2.4: Leap Motion Decomposition. Image Courtesy of Leap Motion [4]

According to the article about how leap motion works [4], the controller per-
forms its capabilities by these steps;

1. Leap Motion captures the raw sensor image data.
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2. This raw data is written into its memory

3. The resolution adjustment is performed.

4. Image data is streamed to the computer.

5. The hand image extraction and segmentation process are done on the
computer.

6. Images are analyzed, and final virtual hand data is extracted from these
processed images.

Leap Motion Controller has some advantages and disadvantages over differ-
ent areas of use. The first advantage is that it has a small size that measures
three by eight centimeters. Also, it has a very simple connection procedure
with the computer, and it captures only raw stereoscopic data and sends to a
connected computer via USB. The other advantage is that processing of raw
data is done on the computer instead of the device itself. Without a motion
capture markers and other additional devices, it can capture data easily. It
provides a detailed detection data that includes hand and finger position and
rotations. Therefore, there is no need to process data again. Moreover, an-
other advantage of the Leap Motion is that the device has a wide field of
vision which is shaped like inverted pyramid because of its wide angle cam-
eras. The controller’s interaction area is 60 centimeters above the device, by
60 centimeters wide on each side, by 60 centimeters deep on each other side
[4]. On the other hand, Leap Motion controller has some drawbacks. Firstly,
the controller has difficulty in detecting fingers that are touching each other.
Secondly, when the hand is perpendicular to the leap motion controller, it
may not detect fingers properly. When these two conditions occur, leap mo-
tion output may become lagged and inaccurate [29]. Moreover, the accuracy
of the device varies according to the type, angle, and intensity of the light
source.

2.2.4 Data Glove

The 5DT Data Glove is a wearable glove device for hand motion capturing
solution. It is designed and manufactured by 5DT(Fifth Dimension Technolo-
gies) company. These types of gloves are built to be used in the various pro-
fession such as motion capture, animation, and simulation.

Data glove has different connection options. It connects to the computer using
USB cable, and it is based on a serial port connection(RS232). Also, there is a
blue-tooth option available for the gloves [30]. Because of its ease of use and
lower price, the wired version of the glove is used.

Data glove has left handed and right handed options available, but in this
thesis, the only right-handed glove is used because the rate of the people that
uses the right hand is very high.
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Data Glove has different operating system support like Windows, Linux as
well as Mac OSX. Additionally, it provides a plug-in for motion builder ap-
plication, standalone application, and SDK. Data Glove part of this thesis is
implemented using SDK because the SDK also has Unity 3D interface.

Data Glove is put on different types of hand while samples are taken, and
the device fits every hand and calibrates itself automatically, independent of
different hand size. Also, it has high hand data update rate. The device sends
the hand data in 60 Hz.

Data Glove has two different models with five sensors and 14 sensors [5]. The
first model, Data Glove Ultra 5, measures only average finger flexure of the
each finger. Furthermore, the second model, Data Glove Ultra 14 takes values
from flexure of the fingers and abduction between fingers. Finger flexure is
calculated at two joints on each finger. In this thesis, a model with 14 sensors
is used to get samples accurately.

Data glove produces raw sensor values; also it broadcast scaled(auto-calibrated)
values between 0 and 1. Data gloves hand joint values are optimized and fil-
tered well, and there is no additional calculation to use. Additional informa-
tion about the sensors is explained in section 4.

Figure 2.5: Data Glove Device. Taken from Data Glove Manual [5]
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2.3 Machine Learning

Machine learning is a sub-area of artificial intelligence that aims to learn struc-
ture from data. Machine learning methods are used in many fields such as
bioinformatics, text processing, and image recognition. In terms types of
problems, there are two different main machine learning methods, supervised
and unsupervised learning.

In machine learning, data types are treated differently according to their types.
Type of the data is the main factor that determines which machine learning
method to be used and can be categorized as labeled and unlabeled data
types. Unlabeled data consists natural or artificial information such as au-
dio recordings, videos, articles. There is no explanation or tag for these type
of data, and they contain only data. On the other hand, Labeled data has
a tag or title alongside its information. Unlabeled data are used for cluster-
ing; conversely, labeled data are used for predicting targeted data that has no
label.

2.3.1 Supervised Learning

In supervised learning, data has an input and a label. The main goal of the su-
pervised learning is creating a function from these labeled data. For example,
if an email contains money win-words, after some rules are applied, email
should be marked as spam. Supervised learning can be categorized into two
methods as classification and regression. In classification, the desired input is
classified as the result of each observation. In the previous example, classes
are discrete, and there is no digital connection between them. On the other
hand, in regression, a real value for each observation is estimated by using its
previous data. For instance, in real estate valuation theory, a predicted value
of each estate is calculated according to the surrounding property prices. The
main aim of the supervised learning is finding an appropriate function to
minimize the cost of prediction in classification and regression problems.

2.3.2 Unsupervised Learning

Unsupervised learning is about giving potential labels to unlabeled data. Find-
ing similarities, grouping or exploring associated rules is the main purpose of
the unsupervised learning. The most known method in unsupervised learn-
ing is clustering. Clustering splits the observations into meaningful groups.
Also, dimensionality reduction is another method in unsupervised learning
that aims to reduce feature counts of the observations. For instance, automat-
ically labeling people in photographs or categorizing every molecule in the
database are examples of unsupervised learning method.
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2.4 Support Vector Machine

Support Vector Machine(SVM) is a supervised learning method for pattern
recognition, classification, and regression. It was invented by Vladimir N.
Vapnik in 1963. The basic concept of Support Vector Machine is creating de-
cision planes that are called hyperplane for linearly separable patterns, and
these hyperplanes classify all training data vectors in two separate classes.
Although hyperplanes are firstly defined as linearly, they can be extended to
patterns that are not linear using kernel functions.

SVM classification is basically split data sets into two groups. The first group
is training data set. In this set, every instance has one target value and several
features. The other group is testing set that contains only feature values. The
aim of the SVM classification is to produce a model that predicts the target
label values of the experiment data. Experiment data is classified one of the
two categories same as the training data in binary classification [31].

Consider that training set of Support Vector Machine consists of training vector-
label pairs (xi, yi), i = 1, ....., l where xi ε Rn and y ε 1,−1. We can define the
optimization problem of the support vector machine by

min
ω,b,ξ

1

2
ωTω + C

l∑
i=1

ξi

subject to yi(w
Tφ(xi) + b) ≥ 1− ξi

ξi ≥ 0 (2.1)

where φ(xi) maps the training vector values in a high dimensional space and
C > 0 is the error parameter [32].

To create the best classification function, the most applicable hyperplane is
needed to construct . For this reason, the hyperplane is built equally distant
from both classes. This distance is called as margin. When the margin dis-
tance increases, classification error of the SVM decreases. In Figure 2.6, three
different hyper planes can be seen. The first hyper-plane named P1 does not
separate the data into the category. The second one called P2 separates the
data, but the margin of the hyperplane remains small. The last hyper plane
P3 is the most appropriate hyper plane that has the largest margin.

Let (x1, y1), ....., (xn, yn) are n points of data set where xi ε Rn and y ε (1,−1)

Suppose we have equation below,

g(~xi) = ~ω · ~xi + b (2.2)

Therefore, data points in the set can be described as,
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Figure 2.6: Hyperplane Examples

g(~x) ≥ 1, ∀~x ε class1
g(~x) ≤ −1, ∀~x ε class2 (2.3)

So the hyper-plane equation is

~ω · ~xi + b = 0 (2.4)

we can define margin line for positive values,

~ω · ~xi + b ≥ 1 (2.5)

moreover, for negative values margin line is defined as,

~ω · ~xi + b ≤ −1 (2.6)

so both equation can be written as,

~yi(~ω · ~xi + b) ≥ 1 (2.7)

As can be seen in Figure 2.7, the distance of two margin line is 2/w. For maxi-
mizing the distance between margins, we need to minimize w. Minimizing w
is nonlinear optimization task solved by the Karush-Kuhn-Tucker(KKT) con-
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ditions using Lagrange multipliers λi

~w =
N∑
i=0

λiyi~xi (2.8)

N∑
i=0

λiyi = 0 (2.9)

x1

x2

1__
||w||

1__
||w||

Figure 2.7: Hyperplane Margin

In some cases, data can not be separated with linear hyper-planes and these
cases are called as non-linear cases. The best solution to overcome non-linear
cases is using kernels in SVMs. Kernels can be defined as a function that
simulates the projection of the initial data in a feature space with higher di-
mension [33]. The data can be counted as a separable data with linear SVM
in the higher dimension. The dot product calculation in linear SVM is revised
by the function;

K(~xi, ~xj) ≡ φ(xi)
Tφ(xj) (2.10)

There is four kernels commonly used and these are;

linear,

K(~xi, ~xj) = xTi xj (2.11)
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polynomial,

K(~xi, ~xj) = (γxTi xj + r)d, γ > 0 (2.12)

radial basis function(RBF),

K(~xi, ~xj) = exp(−γ ‖xi − xj‖2), γ > 0 (2.13)

sigmoid,

K(~xi, ~xj) = tanh(γxTi xj + r) (2.14)

In this thesis, some random data are held for training and the remaining data
are used for testing. For getting better results, the test data are gathered uni-
formly and the test data and training data are exchanged to ensure the results
are correct. This concept is called as cross-validation. The goal of the cross-
validation is to observe how much the results are accurate in Support Vector
Machine approach. In cross-validation phase, in the beginning, some folds
are needed to be decided. The data is randomly split into determined num-
ber equally. One split data is used for the test, and the remaining data are
used for training for each turn. For example, we use three-fold cross valida-
tion on 30 data. We split this data into ten equally part. After that, every ten
data is used for test and others are used for training. According to Hsu [31],
ten-fold cross-validation is counted as the best way of predicting error rate,
and it has become a standard way of cross-validation.

2.5 Weka Tool

In this thesis, Weka(Waikato Environment for Knowledge Analysis) tool is
used for training and testing the results. Weka is machine learning tool that
has the collection of machine learning algorithms and data preprocessing
tools. It provides the process of data mining, preparing input data, visualiz-
ing input data, visualizing the result of learning. It is designed for trying the
new unprocessed data quickly at the University of Waikato in New Zealand.
Weka is written in Java, distributed under terms of GNU and it runs on Mac,
Win, and Linux. This tool takes the data in the form of a single relational table
in the ARFF format. Weka is a workbench tool that includes methods for all
the standard data mining problems. This tool can be used for these topics;

• Regression

• Classification

• Attribute selection

• Clustering
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• Association rule mining

Weka tool has three main sections for different data mining work. The first
tool is called Explorer. Users can access all features using explorer section
such as read data set from arff file, build decision tree or train in SVM. The sec-
ond tool is knowledge flow. It provides designing configurations for streamed
data processing. The final tool is called experimenter. It helps to answer the
question "which method and parameter work best for this data." Explorer is
the main part that is used in this thesis.

Explorer has these features below:

• Preprocess: This function imports the data from ARFF file. Filters can
be employed for utilizing the raw data.

• Classify: It applies classification and regression algorithms.

• Associate: This feature identifies relationships between attributes in the
data.

• Cluster: In this feature, clustering techniques such as k-means algorithm
are applied.

• Select: It identifies most predicting attributes.

• Visualize: This feature generates plot matrix of the result.

In this work, libSVM package is integrated with Weka to use all of the SVM
properties. LibSVM is an open source library for Support Vector Machine
classification, regression, and distribution estimation. It is developed at Na-
tional Taiwan University, and it supports multi-class support vector classifi-
cation. LibSVM uses "one-against-one" method in multi-class classification.
For each n classes, n ∗ (n − 1) classifiers are created and each classifier trains
the data between two classes. To train these two classes libSVM uses the fol-
lowing equations;

min
wij ,bij ,ξij

1

2

(
ωij
)T
ωij + C

∑
t

(
ξij
)
t

subject to
(
wij
)T
φ (xt) + bij ≥ 1 − ξijt , if xt in the ith class,(

wij
)T
φ (xt) + bij ≤ − 1 + ξijt , if xt in the jth class,

ξijt ≥ 0.

LibSVM uses voting approach for multi-class classification. In this approach,
all classifiers are performed to a random sample and the highest voted class
is used in combined classifier.
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Figure 2.8: Weka - Explorer User Interface

2.6 Human Hand Anatomy

In this thesis, the basic information about hand anatomy is needed to be
given, because basic terms of the bones and joints are used in further sections
especially in discussion and results section. The human hand can be defined
as multi-fingered extremity at the end of the arm. The human hand organ is
the most complex part of the body according to its movement abilities. Be-
cause of the connection between ring and pinky fingers, we can use tools in
a very accurate way [34]. The hand has two different types of movement,
and these are fine and gross movements. Gross movement skills are catego-
rized as larger movements. These skills are driven by larger muscle groups
of the hand. Movements of the whole hand, picking up the large object or
perform heavy work is some examples of this skill. On the contrary, fine mo-
tor skills are referred to small movements of hands such as holding small
objects or performing detailed work. In this work, fine motor skills are used
mostly because objects that are used in tests are small and no heavy work
are performed. The fine motor skills perform two different movements in the
horizontal plane as abduction and adduction. Adduction is the movement of
fingers toward the hand’s mid-line. On the other, abduction is a movement
away from the hand’s mid-line.

The hand can split into four main parts:

• Fingers: Digits that are extent from hand. It mainly is used for gripping
objects.
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• Palm: Inner surface of the hand.

• Back: The back of the hand.

• Wrist: The connection between hand and arm. It enables the hand
movements.

metacarpals

proximal phalanx

middle phalanx

distal phalanx

Figure 2.9: Bones of Hand

Human hand contains 19 different bones. The palm has five metacarpal bones.
Each finger has three distinct bones except thumb finger. Index, middle, ring
and pinky fingers have one proximal phalanx, one middle phalanx, and one
distal phalanx. On the other hand, thumb finger has only one proximal pha-
lanx and one distal phalanx. It does not have middle phalanx bone. Each
bone is connected to each other with ligaments. In Figure 2.9, the bone orga-
nization can be seen in detail.
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CHAPTER 3

PREVIOUS WORK

There are various methods that have been proposed for 3D shape analysis
and retrieval since the early 1990s. Also, in recent years, graphics hardware is
cheaper and faster than before, construction of 3D shapes are becoming prac-
tical and profitable. This section discusses and reviews some of the most sig-
nificant 3D shape retrieval and analysis papers. Based on the representation
shape descriptor, we divide shape matching methods into three categories.
These methods are rigid shape retrieval, non-rigid shape retrieval, and inter-
action based shape retrieval methods.

3.1 Rigid Shape Retrieval and Analysis

Rigid Shape Retrieval and Analysis methods can be split into two categories
according to their shape descriptor types: (1) Global shape retrieval, (2) Local
shape retrieval.

3.1.1 Global Shape Retrieval and Analysis

Global Shape retrieval and analysis is based on global features of a 3D rigid
shape. Statistical information of the boundary or the volume of the shape,
volume-surface ratio and Fourier transform of the volume are some examples
of these retrieval methods [35].

Osada et al. [17] introduce a novel method that computes global features ex-
tracted from 3D shapes. This approach aims to decrease the computational
complexity by comparing only 3D shape distributions. This method gives a
solid comparison without any necessary translation, rotation, scale, and mir-
ror operations. The fundamental idea of this article is generating a shape
function using different approaches. These shape function types are listed as
follows;

• Calculation of the angle between three random points on the surface of
the 3D shape.
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• Measurement of the distance between a fixed and random point on the
surface.

• Measurement of the distance between two random points on the sur-
face.

• Calculation of the area of the triangle between three random points on
the surface.

• Calculation of the cube root of the volume of the tetrahedron between
four random points on the surface.

These shape functions are used to create shape distribution histogram, and
these histograms are the main elements to compare 3D shape distributions.

Another work for global shape retrieval is shown by Paquet et al. [36]. Ac-
cording to this article, 3D and 2D shape descriptor can be extracted from
MPEG-7 images of the shapes. In this work, bounding box information is
extracted from images and is used for categorizing 3D shapes.

Using Zernike invariants as 3D shape descriptor is another novel method for
3D Shape Retrieval [37]. Novotni et al. aim to classify 3D shapes according to
their general categories using common shape-based descriptors. It is insen-
sitive to noise, position, rotation, scale and other surface deficiency. Novotzi
utilized the 3D Zernike descriptor using Canterakis’ work [38] to analyze 3D
shapes.

Similarity-based 3D shape retrieval is another global shape retrieval method.
The main idea of this approach [6] is that if two 3D shapes are similar accord-
ing to their topological shape, they are also similar from all angles. Chen et
al. introduce a novel method based on Light Field Descriptor to describe 3D
shapes. Using Light Field Descriptors, they extract 3D shape features from
camera views at different angles. This work aims to reduce the feature sizes
and decrease the complexity of the retrieval process. Figure 3.1 shows that
the example of silhouettes of the 3D chair model at different viewing angles.

Figure 3.1: Chair Silhouettes at Different Camera Angles [6]
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3.1.2 Local Shape Retrieval and Analysis

In general, global shape features are suitable for most of the 3D shapes, but
some shapes are become distinctive according to their local features. Accord-
ing to Shilane et al. [7] similarity of two shapes can be found using their set
of local descriptors. However, this work also states that finding local features
in local shape retrieval is a highly expensive process. Because of this, Shi-
lane et al. introduce a new method for selecting the most distinctive local
features. Local features are selected from several regions for each 3D shape,
and their retrieval performance is computed using multivariate Gaussian dis-
tributions. This method uses only important local features because using all
local features in 3D shapes results in longer retrieval performance. In Figure
3.2, we can see the randomly selected descriptors and their scores. The final
image represents the selected descriptors that have the highest score.

Figure 3.2: Local 3D Shape Descriptors. Colors are Visualized According to
the Order of Importance of the Descriptors From Red to Green. [7]

3.2 Non-Rigid Shape Retrieval and Analysis

Non-rigid 3D Shape Retrieval methods are becoming a significant research
topic with the increasing popularity of the recent trends in multimedia con-
tents such as pre-rendered images, computer animations, video games and
interactive applications. 3D shapes such as human body and hand models
that appear in different poses in Figure 3.3 by using different joint data are
widely employed in both virtual and real environments [39]. Categorization
and analysis of these same structured 3D shapes that are posed distinctively
are needed to compare accurately and quickly because these models can be
analyzed as different shapes if we use available rigid shape analyzing tech-
niques.

Non-rigid shape retrieval and analysis are still considered as a challenging
problem. Most of these methods are implemented on watertight 3D shapes.
Therefore, there is a limited 3D shape data can be used in these techniques or
3D shape correction methods are needed to use on 3D shape before applying
these methods. On the other hand, our approach expands this watertight
limit because of its interaction feature.
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Figure 3.3: Examples of Non-rigid Hand Models

Examples accepted by the majority of this technique is presented in detail by
Lian et al. [39]. This work categorizes 3D non-rigid shape retrieval methods
as employing local features, topological structures, isometric-invariant global
geometric properties, and direct shape matching.

The first approach is partial 3D shape retrieval and analysis using local fea-
tures between two 3D models. A well-defined method based on Spin image
signature was presented by Yi et al. [40]. Using Monte Carlo method, initial
points of spin images are generated, and vector quantization generates 3D
shape features based on word descriptors. In Ovsjanikov et al. [9] work, they
present a feature-based computer vision approach to find non-rigid shape
features. They use Heat kernel signature which is constant in different poses
of the same 3d shape. In Figure 3.4, we can see the RGB visualization of
feature vectors. Each image has different poses, but their feature vectors are
distributed similarly.

The second approach is a similarity calculation between 3D shapes using a
novel technique, topology matching. It is based on the geodesic distance of
the 3D shapes. Hilaga et al. [8] suggest a new method for finding similar-
ity between polyhedral models using Multi-Resolution Reeb Graphs(MRGs).
MRG creates a continuous function which is based on the geodesic distance
of the shape that is constant to rotation and translation. In Figure 3.4, we
can see the distribution of Reeb Graph function bet two different posed frog
model. Another topology matching method is skeleton based shape match-
ing [41]. In Sundar’s work, they introduce a novel method that firstly creates
a skeleton of the volume. After that, they index this skeletons into 3D shape
database and finally compare these skeleton graphs for 3D shape matching.

Many investigations have also been made trying to find the geodesic distance
of 3D non-rigid 3D models for shape matching. Jain et al. [42] suggest a
new retrieval approach by comparing 3D shapes of eigenvectors that contain
geodesic distances of selected shape nodes. On the other hand, in Reuter et
al. [43] work eigenvectors are created using Laplace-Beltrami operator.

The final approach is based on the exact difference between 3D non-rigid
shapes. It is a very reliable solution, but because of a direct match between
shapes, it is very impractical, and it has high computational complexity. The
best example of this approach is based on Gromov-Hausdorff distances, Mem-
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Figure 3.4: Examples of Non-rigid Shape Retrieval Descriptor Visualization:
MRG Distribution(bottom) [8] and Heat Kernel Descriptors(top) [9]

oli et al. [44] achieved isometric invariant comparisons with this work.

3.3 Indirect Shape Retrieval and Analysis

Up to this time, shape retrieval methods analyze the 3D shapes based on their
geometric or topological features. These features are extracted directly from
the shape. In recent years, new 3D shape analysis approaches are developed.
Interaction based shape retrieval methods are based on how external agents
interact with the shape of the surface. This type of retrieval approach has
some benefits upon other conventional retrieval methods. The most signifi-
cant advantage of this method is that 3D shape functions can be discovered
by the object external factor interaction such as human body, object handlers,
etc. The other benefit of the interaction based retrieval is that shape retrieval
is not entirely affected by the defects of the shape.

Liu et al. [10] introduce a new method titled as indirect shape analysis(ISA).
In this method, shape features are not computed directly from shape itself. It
uses external agents which are deformable 3D shapes like hands and the hu-
man body. This work aims to map external models to 3D shapes correctly. Us-
ing external models distance and orientation information, Liu et al. match ob-
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jects with their probabilistic information. This method has some drawbacks.
Firstly, 3D shapes must be placed upright correctly and scaled according to its
external models. The second drawback is that models should be appropriate
for aligning external models correctly. Figure 3.1 shows that green colored
images are correct alignments, and red images are aligned incorrectly.

For understanding this method detailed, let M is the 3D shape as the input
query. The features of the query model are extracted by placing agent A to the
query shape. Placing the agent model is calculated by following probability
function:

T = argmax P (T | A,M) (3.1)

Where T is the transformation of the model. Therefore, we can define proba-
bility function as:

P (T | A,M) = Pd(T (A),M) x Pb(T (A),M) x Po(T (A),M) (3.2)

In this equation, Pd is the probabilistic distance term. This term calculates the
compatibility between the geometric distance of the agent A and query shape
M. This distance is calculated by Euclidean distance method. Secondly, Pb is
the binary term of distance threshold. It is a threshold distance which decides
whether the distance between agent and shape is in threshold or not. The
final term is Po that is defined as orientation term. This term calculates the
compatibility between pairwise orientations.

Figure 3.5: Interaction Examples of Indirect Shape Analysis [10]

Although recent works are focused on analyzing geometric structures of 3D
shapes, extracting semantic and functionality of the 3D shapes is becoming a
popular topic in the field of 3D shape analysis. Kim et al. [11] propose a new
shape analysis method that predicts human pose on the human-made objects.
Also, This work extracts contact points and kinematic parameters of the 3D
shape. This method extracts the features based on object affordance [45]. Ob-
ject affordance is a concept that which actions can be performed on the object
by people. This work does not assume a human pose. Firstly, manually cre-
ated human poses with proper shape contact points is created. After that,
This posing data is processed, and function shows the quality of the object
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affordance. After the learning process, when a 3D shape is used as an input,
framework searches the results to find proper human pose with small energy
according to affordance model. The energy function for learning process is
defined as;

E(T,Θ,m, S) = wdistEdist(T,Θ,m, S) + wfeatEfeat(m,S)

+wposeEpose(Θ) + wsymEsym(T,m, S) + wisectEisect(T,Θ, S)
(3.3)

If human pose model is touched to the target point Edist term is equal to zero.
If the human shape is placed in wrong target points, Efeat value is increased.
Epose term is penalty value for irrational poses,Efeatis corresponding to object
and human symmetry errors ,and Eisect is penalty value for surface intersec-
tions.

Figure 3.6: Shape2Pose Placement Examples [11]

Kaick [12] introduces a new interaction based method that contains contex-
tual descriptors. This work aims to define the functionality of the objects in
a geometric manner. In this study, Contextual descriptors are called interac-
tion context(ICON). Normally, other works extract functionality of the shape
indirectly. On the other hand, interaction contexts define functionality of the
objects explicitly. Interaction context collects the geometric data between the
center object and peripheral objects. After that, it constructs a hierarchical
structure to define interaction relations between shapes.

Another fundamental topic for 3D shape classification is object reasoning and
their affordances. Instead of using shapes, names, types, or colors to catego-
rize shapes, objects can be classified by defining which function that object
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Figure 3.7: ICON Interaction Examples [12]

is used for. For example, basketball object can be labeled as a rollable ob-
ject or apple can be defined as an eatable object. According to Zhu [46], the
Knowledge Base (Knowledge Graph) approach gives a new direction to clas-
sification methods by using the function of the objects. Knowledge Base(KB)
is a graph like structure that holds entities to define the functionality of the
object. KB consists of various object attributes and entities. Attributes consist
of three different types; visual attributes(e.g. color), physical attributes(e.g.
size, weight) and categorical attributes(e.g. cat is an animal). Affordances
provide a moderate representation to represent objects, allowing objects to
be recognized even if they have never seen it before. Affordances consist of
three types of entities and these labels(e.g. ride and sit on), human poses(e.g.
skeleton information of the human poses) and human-object interaction(e.g.
relative position between hand and object). An analysis of objects can be
strengthened by establishing a link between attributes and affordances.

Traditional methods use the set of labeled parts of the object. However, the
connection between 3D shape and agent is another topic that should be given
importance. Bar-Aviv [47] introduces a novel approach to classify 3D shapes
using their functional usage. It argues whether the classification will be car-
ried out using actions that are done by a candidate. In order to prove this
method, the ABSV: Agent-Based Simulated Vision approach is presented.
ABSV is a process that classifies the objects using virtual human model. In
ABSV Method, for every object, there is a human pose using a virtual agent.
For instance, if 3D chair model is employed in ABSV, it is defined as seat-
able object and agent embodies sitting pose in a virtual environment. In this
method, the algorithm first looks the functional configurations in six degrees
of freedom in global space and then, starts an iterative process until reaching
target configuration. The best configuration represents the best position to
execute intended functionality.
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CHAPTER 4

PROPOSED METHOD

4.1 System Overview

The organization of the applications implemented for this thesis is shown in
Figure 4.1 for Leap Motion implementation and Figure 4.2 for Data Glove
application.

Figure 4.1: Leap Motion Application Pipeline

In the first step of both applications, the hand descriptors and the interaction
attributes are gathered from Leap Motion controller and Data Glove device.
Then, the set of relevant features is extracted from the data that are acquired
by these devices. After the feature extraction process, training and test data
are converted into proper arff formatted file. During the data collection pro-
cess, these two controllers provide different types of data, and these data are
collected at various times. For this reason, extracted features are not inte-
grated in the machine learning process. In pre-process part, data is scaled and
offset. Afterward, best SVM kernel is selected according to the data type of
the feature. With grid search approach, best kernel parameters are found for
each approach. Cross-validation method using best kernel parameters gives
the best result for this dataset. Finally, a multi-class support vector machine
is applied to the extracted features from both applications, and the results of
these classified objects are compared in Section 5.
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Figure 4.2: Data Glove Application Pipeline

4.2 Selection Features for Leap Motion Application

In Leap Motion application part of the thesis, different types of features of
the hand are used to classify 3D shapes accurately. These features are mostly
extracted directly from the hand and calculated by Leap Motion SDK. In addi-
tion to these features, a novel feature is implemented, and this feature calcu-
lates the interaction between the hand and virtual object to enhance retrieval
performance. All these feature values are recorded 60 frames in one second
by Leap Motion application to prevent data loss during the sampling process.

During the process of sample acquisition, we observed that most of the val-
ues that are calculated by Leap Motion device are very accurate. However, in
some situations, Leap Motion device may produce unsatisfactory results. We
found out that light source angle, intensity, and type are some of the reasons
for the poor results; therefore, we took the samples during daylight to prevent
data loss. Also, if the fingers are standing next to each other, Leap Motion de-
vice may not get the data of the fingers correctly. Moreover, hand orientation
is another factor for capturing finger data properly. Thus, some of our virtual
objects are aligned differently to capture all fingers correctly. Background ob-
jects cause another problem for obtaining hand data. For example, if a part of
the human body or real life object enters the Leap Motion camera frame, the
device may not recognize the hand appropriately. Therefore, users are sitting
on the chair when application samples were taken, and the objects that may
affect Leap Motion camera are removed from the room. All features used in
Leap Motion application are explained in detail below.

4.2.1 Position and Direction of Fingertips

The features for the translation and orientation of the fingers in world coor-
dinates are shown in Figure 4.3. Finger positions and directions are repre-
sented by Fi and Di, respectively. These vectors are 3D vector variable and
i = {1, 2, 3, 4, 5}. Each finger id is determined by leap motion respectively.

4.2.2 Hand and Arm Direction

Vectors that show hand and arm directions are unit direction vectors in world
coordinates. Direction vectors are shown using Dh and Da, respectively.
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Figure 4.3: Finger Points and Directions on the Virtual Hand. Courtesy of
Leap Motion [13]

4.2.3 Hand Normal and Center

As seen in Figure 4.4, hand normal is a unit vector that is perpendicular to the
palm plane and pointing down from the palm center in world coordinates,
and it is shown as Nh. Hand Center is an approximate position of the palm
region in the world coordinates and it appears as Ph.

Figure 4.4: Position, Normal and Direction of the Virtual Hand. Courtesy of
Leap Motion [13]

4.2.4 Pinch and Grab Strength

Pinch strength shows that how much the hand joints are close to the prede-
fined pinch pose. Additionally, grab strength shows closeness of the hand
joint values to the predefined grab pose. These values are defined between
zero and one. Figure 4.5 shows the poses that give zero and one values in our
Leap Motion Application.

4.2.5 Sphere Center and Radius

Sphere center value defines the center position of the imaginary sphere that
fits the curvature of the hand and radius refers radius of the defined sphere.
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Figure 4.5: Pinch(Bottom) and Grab(Top) States of the Virtual Hand:

This sphere is placed approximately as if the hand of the user was holding a
sphere. The size of the sphere decreases while the hand pose turns into a fist.

Figure 4.6: Hand Sphere and Radius of the Virtual Hand. Courtesy of Leap
Motion [13]

4.2.6 Distance of Fingertips

It is a distance value between all fingers based on meters. It is calculated as,

Dij = ||Fi − Fj|| , i, j = 1, ..., 5 (4.1)
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4.2.7 Wrist Angle

This feature is based on an angle between arm and hand that are normalized
vectors in world coordinates. It is calculated from the following equation,

α = acos (DH · DA) (4.2)

4.2.8 Angle Difference Between Initial and Current Joints

This feature uses the rotation of the each finger joint of the hand in local coor-
dinates. The angles between distal and middle phalanx, middle and proximal
phalanx, and proximal phalanx and metacarpals are recorded for all fingers
except thumb joints. Thumb joint angles are accounted for only between dis-
tal phalanx and proximal phalanx, and metacarpals and proximal phalanx.
These joint variables can be shown as Jij , i = {1, 2, 3, 4, 5}which shows finger
id and j = {1, 2, 3}which is used for joint id.

When the application is started, initial quaternion values of the hand is recorded
to calculate every joint angle. These joint variables can be shown as Iij , i =
{1, 2, 3, 4, 5}which shows finger id and j = {1, 2, 3}which is used for joint id.
To record current sample, every angle of the joint is calculated by the follow-
ing equation,

Aij = Jij · conj (Iij) (4.3)

Aij = [A0 A1 A2 A3] (4.4)

θ = 2 · acos (A0) (4.5)

4.2.9 Interaction Points

Interaction points consist of small spheres that reside on the inner surface of
the hand. When spheres interact with the virtual object, they become active.
Every sphere is attached to a part of the hand and if that part of the hand
moves, spheres move accordingly. Sphere interaction status is recorded 60
times per second. To get a sample from the subjects, the application calculates
an average of the interaction point values in one second. Figure 4.7 shows the
interaction points which are created according to the average interaction data
between each object and hand.
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Figure 4.7: The Interaction Points Obtained by Averaging the Results of All
Objects

4.2.10 Fingertip distance from hand center

Fingertip distance is a 3D relative distance between the global position of the
every finger and the position of the hand center. It is calculated as,

Di = ||Fi − C|| , i = 1, ..., 5 (4.6)

Also, we used scalar value of the every finger by the following formula,

Magi =
√
D2
i , i = 1, ..., 5 (4.7)

4.2.11 Fingertip elevation from hand center

Fingertip elevation is a 3D relative angle between hand plane that is con-
structed using hand normal and the direction of the hand position. It is cal-
culated as,

u = Fi − C (4.8)

N = (A, B, C) (4.9)
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α =
|A · u1 + B · u2 + C · u3|√
A2 +B2 + C2 ·

√
u21 + u22 + u23

(4.10)

4.3 Selection Features for Data Glove Application

In this application, since the users interact only with the real world objects,
only the features supported by Data Glove is used. The Data Glove API pro-
vides hand values from 14 different points as shown in Figure 4.8. Ten of
these values are the angle of the finger joints, and the remaining four are the
angle between the fingers. As seen in Table 4.1, the sensor ID numbers corre-
sponding to the descriptions are shown. The values that are transmitted from
the glove can be between zero and one, as well as between zero and 4096 [5].
In this thesis, we used values between zero and one to use it in the supporting
vector machine efficiently.

Figure 4.8: Data Glove Sensor Index Map. Taken from Data Glove Manual [5]

4.4 Object Selection

Many different objects are selected that have different properties and types to
use in both Leap Motion and Data Glove applications developed for this the-
sis. In total, nine different objects are employed in these applications. Three of
them are chosen as objects with primitive shape, and the other objects are se-
lected as objects which are regularly used in daily life. Every object has a real
and a virtual version. Real objects are employed in Data Glove application,
on the other hand, virtual objects are part of the Leap Motion application.
Virtual and real objects are not identical, but their dimensions and shapes are
the same. As seen in Figure 4.9 and 4.10, the virtual and real versions of the
objects are listed below,
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Table 4.1: The feature set of the Data Glove application.

Sensor Driver Sensor Index Description

0 0 Thumb Flexure(At Knuckle)

1 1 Thumb Flexure (Second Joint)

2 2 Thumb-Index Finger Abduction

3 3 Index Finger Flexure(At Knuckle)

4 4 Index Finger Flexure(Second Joint)

5 5 Index-Middle Finger Abduction

6 6 Middle Finger Flexure(At Knuckle)

7 7 Middle Finger Flexure(Second Joint)

8 8 Middle-Ring Finger Abduction

9 9 Ring Finger Flexure(At Knuckle)

10 10 Ring Finger Flexure(Second Joint)

11 11 Ring-Little Finger Abduction

12 12 Little Finger Flexure(At Knuckle)

13 13 Little Finger Flexure(Second Joint)

• Sphere: The first object used in both of the applications developed for
the thesis is one of the primitive shapes, sphere-like object. The diameter
of the sphere is chosen as 6.5 cm so that users can easily hold sphere
object by hand. Respectively, the reason for choosing this object is the
similarity with many round objects such as tennis ball or door handle.
The other reason is that it aims to grab the object from different angles
and ability to grasp with the whole hand.

• Cylinder: The other object selected for these experiments is the cylin-
drical shape as seen in Figure 4.10. It is intended to hold this object by
hand or with fingertips in the tests. The cylinder shape has a radius of
5.5 cm and a length of 20 cm. The reason for using this object is similar
to the form of a bottle or stick-like objects.

• Quadrangular: The purpose of choosing a rectangular prism is the need
for a cornered and large depth object, and its resemblance to box-like
objects. The object is 14 cm wide, 7.5 cm high and 5 cm deep. In general,
it is intended that users interact with this object using their fingertips.

• Mouse: The reason why the mouse is selected for these experiments is
that it has a functional use in everyday life. The real and virtual mouse
objects have slight differences in shape, but their dimensions are very
close to each other. It is intended to use with the palm, pointer and
middle finger when the mouse object is used.

• Cup: The cup object is chosen because it is a commonly used object on
a daily basis. There is little difference between the real and virtual cup
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Figure 4.9: Real Objects That are Used in Data Glove Application: Cup(Top
Left), Cylinder(Top), Mouse(Top Right), Pencil(Middle Left), Phone(Center),
Quadrangular(Middle Right), Scissor(Bottom Left), Sphere(Middle), and
Tablet(Bottom Right)

objects except for their colors. During the tests, users were advised to
hold the cup from its handle. The cup has 7.5 cm radius and 8 cm height.

• Phone: In thesis experiments, the phone object is selected, because it has
a rectangular prism form and it is an item commonly used in daily life.
In the experiments with Data Glove device, Sony Xperia Z2 is used as a
real phone object. Also, the same object created in a virtual scene with
the same dimensions for the leap motion experiments. The dimensions
of the object are 14.5 X 7.5 X 0.7 cm.

• Tablet: This item is used to test whether the applications would distin-
guish this object from the phone or not. In experiments, kindle fire is
used as a real object, and the virtual object is created as a rectangle vol-
ume with the same size as the kindle fire. Tablet object is 19.5 cm high,
13.5 cm wide and 1 cm deep.

• Pencil: Pencil shape is similar to cylinder object but differs in dimen-
sions. It has a subtle radius, and its height is 14 cm. During the test
of this object, the users tried to keep the object as if they are writing
something to paper.

• Scissor: This object is chosen because it has a very different shape and
gripping dynamics than the other objects. Virtual and real objects are in
various forms, even though the dimensions are the same.
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Figure 4.10: Virtual Objects Used in Leap Motion Application: Cup(Top
Left), Cylinder(Top), Mouse(Top Right), Pencil(Middle Left), Phone(Center),
Quadrangular(Middle Right), Scissor(Bottom Left), Sphere(Middle), and
Tablet(Bottom Right)

4.5 Experiment Process for Collecting the Data

The goal of this study is creating a classification method that is extracted from
user-defined static hand motions. To do this experiment, two different data
capturing process is built, and nine different shapes which are different based
on their topological shapes are found for achieving the first phase of the ex-
periment. Moreover, to execute the second phase of the experiment, these ob-
jects are created virtually using their real world references. The participants
are provided with the hardware and software they needed for the both phase
such as Leap Motion controller and Data Glove device. In every experiment,
firstly, the necessary information is given to each participant to perform the
sampling process properly. After that introduction, their data is captured for
each real-world object in the first phase of the experiment or virtual shape in
the second phase of the experiment. Finally, these hand information is pro-
cessed and used in support vector machine for object classification.

4.5.1 Participants And Experiment Area

For this thesis, twenty-six participants are volunteered from Ankara METU
Area. The volunteers are twenty-one male and five female participants within
age range between 24 and 46, and their average age is 32. The candidates are
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chosen from the various profession. On the other hand, to avoid technical
bias, we choose most of them from computer-based jobs, such as software
developers or 3D-2D graphics artists. The participants average daily com-
puter usage is 6.0 hours(least is 4, and the most are 10). 13 members are re-
ported that they used leap motion controller before. None of the participants
used data glove device before. Moreover, the other five stated that they used
human-computer interaction device before(like Microsoft Kinect or Nintendo
Wiimote). In this experiment, all participants used their right hands even if
they are left handed.

The experiments are performed in a closed environment. The samples were
taken during the daytime because Leap Motion gives better results under
natural light. A relatively quiet environment is created so that users are not
distracted or experiment is interrupted by external factors. The room where
these experiments are carried out is located in Ankara METU-Technopolis.

Figure 4.11: Experiment Area

4.5.2 Experiment Process and Applications

At the beginning of the hand data collecting process, we gave a tutorial re-
garding how to use both of these applications. After that process, we show
the 3D or real world shapes that are used in both experiments. It is the vi-
tal issue that example of how the users should hold the objects is not given.
On the other hand, for functional objects only, users are informed that they
should grab items as they are using the objects. When the user grabs the
objects, the dataset for every 3D shapes is saved as a JSON file. During the
whole experiment, the participants use only their right hands.

The two applications developed for this thesis are similar to each other in gen-
eral. When each user starts any of these applications, the name of the user is
first entered through the graphical user interface. Subsequently, the appropri-
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ate application is opened according to controller type. When the user holds
the object, the hand information is saved with the help of the submit button
in the application. If the hand information is successfully saved, the status
field corresponding to that object turns green, and this process continues for
each object. Each saved user file contains information about which objects are
stored in the saved file and hand information for each saved object when the
objects are saved, and how many samples are taken from the subject. After
the samples are taken from all users, they are exported in the ARFF file for-
mat, and the ARFF file layout can be seen in Figure 4.13. If the feature is a
scalar value, then it is inserted as a single entry into the arff format. On the
other hand, if it is vector value, the value is added as a separate feature for
each dimension. The general interface of both applications is shown in Figure
4.12.

Figure 4.12: Screenshot for Leap Motion Application(Left) and Data Glove
Application(Right)

@RELATION InteractionClassification

@RELATION thesis
@ATTRIBUTE handdirectionx REAL
@ATTRIBUTE handdirectiony REAL
@ATTRIBUTE handdirectionz REAL
@ATTRIBUTE wristangle REAL

@ATTRIBUTE class {object1,object2,object3}
@DATA
5.1,3.5,1.4,0.2,object1
4.9,3.0,1.4,0.2,object2
4.7,3.2,1.3,0.2,object3

\label{code:arff_example}

Figure 4.13: Example of ARFF File
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4.5.3 Shape Analysis

The feature selection method that is explained in Section 4.2 shows ten differ-
ent feature vectors, each represents relevant information about hand samples
that are extracted from Leap Motion device. Moreover, section 4.3 shows the
features that are used in Data Glove Application. These hand features are
used in Multi-Class Support Vector Machine to analyze 3D shapes. In this
thesis, two different feature sets are defined for 3D shape retrieval. Leap mo-
tion feature set is described as Vlm, and data glove gesture sets are described
as Vdg. These feature sets are used by Multi-Class SVM’s one by one.

In order to apply Multi-Class Support Vector Machine, all vectors are clas-
sified according to their correspondent 3D shapes. To obtain the classifica-
tion results; first, Support Vector Machine calculates the outcome of every
3D shapes for remaining 3D shapes. In other words, if we have N different
objects that will be used in SVM, then N/(N − 1/2) binary SVM are used to
find a result for each 3D shape couple. Each result of these SVMs is used as a
point of a certain shape, and the object that has a maximum number of points
is selected as the output of the classification.

In this thesis, Non-linear Radial Basis Function(RBF) is used to train feature
vectors in SVM. To find best RBF variables, the grid-based search method is
applied for Leap Motion and Data Glove applications. For every RBF param-
eters, (C, γ) a range of values is selected, and a basic grid is created for every
(C, γ) couple. Then, SVM with RBF is applied with these values repeatedly
until best results are found. Furthermore, to find best results, ten-fold cross-
validation approach is used for both application features. In cross-validation,
the original data is randomly divided into 10 subsamples. A single subsam-
ple is keep for the validation data for testing and the remaining 9 subsamples
are used for training. This procedure is repeated ten times for every subsam-
ple and SVM calculates the average of this result. At the end of the procedure,
these ten results from these subsamples are averaged to produce a single es-
timation with the optimal RBF variables.
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CHAPTER 5

RESULTS AND DISCUSSION

In this thesis, the work to find the interaction between the hand and the 3D
shapes consists of two phases. These two stages examine hand-object interac-
tion from a different point of view. In the first stage, the real-world objects are
captured using the Data Glove controller, and the samples are collected with
the aid of the software which is implemented for this thesis. In this phase,
hand-object interaction samples which are captured from Data Glove appli-
cation are analyzed with the help of the SVM, and eventually, these objects
are categorized with a significant result. In the second phase, the samples are
taken from the users by providing the objects in the virtual environment with
the help of Leap Motion controller. The objects used in this phase have the
same dimensions and shapes as the objects utilized in the first stage. Also,
SVM is used in the same way as the first step to categorize the shapes. In this
section, the analysis and categorization results that are computed in these two
stages are shown, and a detailed comparison is made between these results.
The accuracy results found in this section are calculated by the ratio of the
true positive predictions to all predictions.

In this section, to ease to show objects on tables, all objects are named sequen-
tially from O1 to O9 as below,

• O1: Sphere

• O2: Mouse

• O3: Cylinder

• O4: Cup

• O5: Phone

• O6: Cube

• O7: Scissor

• O8: Tablet

• O9: Pencil
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5.1 Data Glove Results

To measure the performance of the approach that is used in Data Gloves con-
troller application, we capture a dataset of the hand-object interaction infor-
mation using the setup in Figure 4.11. The Data Glove dataset contains data
of 9 different real-world objects which can be seen in Figure 4.9 and this data
is captured from 20 different people. Each object is captured twice for every
subject, and 360 samples are obtained in total.

The features obtained from the Data Glove controller are very few due to the
limited capabilities of the device. For this reason, only 14 different features
are extracted from the samples obtained from Data Glove. These features are
the normalized joint angles between the metacarpals, proximal phalanx, and
middle phalanx. For convenience, the angle between metacarpals and proxi-
mal phalanx is used as knuckle joint angle, and the angle between proximal
phalanx and middle phalanx is written as the second joint. Also, the horizon-
tal angle between the fingers are used as a feature in this phase, and these
features are called as abduction angle.

Table 5.1: Confusion Matrix for All Data Gloves Feature Set.
O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 27 0 3 0 0 5 4 0 1
O2 0 32 0 0 4 0 3 0 1
O3 2 0 34 0 0 2 1 0 1
O4 0 0 1 36 0 0 0 0 3
O5 0 0 0 0 31 0 2 4 3
O6 4 0 2 0 2 27 4 1 0
O7 1 1 1 1 1 2 25 2 6
O8 0 0 0 0 2 1 2 32 3
O9 0 1 0 0 1 0 4 5 29

Table 5.1 shows the results obtained from Data Glove application using the
classification algorithm in Section 4. All features allow getting an accuracy of
about 75% of the objects are correct, they can recognize the majority of shapes.
Also, we have obtained an adequate result of 0.72 kappa statistics. Moreover,
the confusion matrix of all features shows that there is no significant high rate
false positive values.

If the features are narrowed to the only abduction angles, accuracy is de-
creased to 60.55% as shown in Table 5.5. Also, kappa static shows a reasonable
result with 0.54. As seen in Table 5.2, false positive distributions look similar,
but there is a clear similarity between two object pairs. Classification between
sphere-cube and phone-tablet objects seems to be miscategorized due to the
limited accuracy of the hand abduction angles. 13 out of the 40 cube object
samples are evaluated as sphere object, and in the same way, 14 out of 40
phone objects is found as tablet object according to abduction confusion ma-
trix.

When only knuckle joint features are used in SVM to categorize shapes, the
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Table 5.2: Confusion Matrix of the Abduction of the Data Gloves Feature Set.
O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 25 2 4 0 0 4 5 0 0
O2 0 31 0 1 4 1 1 2 0
O3 2 0 32 0 0 2 1 2 0
O4 1 6 1 25 4 0 2 1 0
O5 0 3 0 1 22 0 0 14 0
O6 13 0 4 0 0 15 4 4 0
O7 3 3 1 1 0 5 22 1 4
O8 1 1 1 3 5 1 1 24 3
O9 0 4 0 1 2 1 8 5 19

Table 5.3: Confusion Matrix of the Knuckle Joints of the Data Gloves Feature
Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 11 0 12 1 0 6 3 4 3
O2 2 17 4 2 6 5 3 1 0
O3 11 3 18 2 0 1 3 1 1
O4 1 0 1 23 0 0 3 8 4
O5 2 7 0 5 17 2 0 6 1
O6 3 1 2 0 2 29 2 1 0
O7 5 2 5 3 0 1 16 2 6
O8 5 2 2 5 4 3 0 14 5
O9 0 0 2 4 0 0 5 5 24

results are decreased dramatically as low as 46.94%, and kappa statistics is
fallen to 0.4. The results show that the objects can not be separated using only
these features. In Table 5.3, the results of sphere and cylinder objects show
great similarities; on the other hand, the categorization of specific objects such
as tablets, telephone, and scissors is not done properly. Additionally, the con-
fusion matrix of the second joints gives the similar results with the knuckle
joints as seen in Table 5.4. This matrix does not show any significant result
with 42.50% accuracy and 0.35 kappa value. In this matrix, functional objects
like scissor and mouse have the lowest accuracy results. On the other hand,
primitive objects like cube and cylinder have more meaningful results than
functional objects.

Table 5.4: Confusion Matrix of the Second Joints of the Data Gloves Feature
Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 14 2 4 3 2 2 2 2 9
O2 3 10 2 1 5 3 2 8 6
O3 5 2 18 3 0 2 4 3 3
O4 2 1 4 30 0 2 0 0 1
O5 3 6 0 0 17 1 6 4 3
O6 2 2 5 3 5 13 2 4 4
O7 1 5 7 1 1 1 7 7 9
O8 1 3 2 0 2 2 3 26 1
O9 4 2 5 3 3 0 3 3 17
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An interesting observation is that the feature descriptor groups capture dif-
ferent properties of the hand and by combining them together, it is possible to
improve the categorization accuracy, e.g., by combining knuckle, second and
abduction feature groups, an accuracy of about 65% can be reached. Further-
more, by combining all three feature groups together, accuracy is increased
to 75%, and it shows the best accuracy that can be extracted from Data Glove
application.

Table 5.5: Performance of the Data Glove Features.
Feature Set Accuracy Calculation Time
Abduction 60.55% 6.12 sec.

Knuckle 46.94% 6.21 sec.
Second 42.50% 6.49 sec.

Abduction + Knuckle 65.83% 7.79 sec.
Knuckle + Second 61.94% 5.92 sec.

Abduction + Second 66.94% 6.25 sec.
Abduction + Second + Knuckle 75.83% 7.82 sec.

Although the joint abduction results seem satisfactory, the results of the knuckle
and second joints alone are not sufficient to distinguish the shapes from each
other. The similarities of grabbing of the objects and the features that obtained
from data glove controller show that features which are extracted from hand
alone are sufficient to categorize the 3D shapes.

5.2 Leap Motion Results

As shown in Figure 4.12, an application is developed that captures the hand
data to measure the classification performance. This dataset consists of infor-
mation about nine different virtual 3D shapes which are in Figure 4.10. This
dataset is obtained from 26 different people. Each object is captured two times
for every people, and 495 samples are caught in total.

The features that are captured from the Leap Motion controller are very dis-
tinct thanks to controller’s flexible interface. 56 different features are extracted
from the samples obtained from Leap Motion controller and these features are
grouped into three main categories as general hand features, finger features,
and interaction features. General hand features consist of the hand direction,
hand normal, arm direction, wrist angle, pinch strength, and grab strength.
Moreover, finger joint angles, fingertip position, fingertip direction, the dis-
tance between fingers, and finger elevation are used as finger features. Also,
there are 64 interaction points are placed on the hand model, and they are
grouped as interaction features.

Table 5.6 shows the results obtained by using all the features extracted from
Leap Motion software. All the features revealed a result of 80% correctness,
which in general showed the correct classification of the objects. A value of
0.92 kappa statistics also proves that the results are satisfactory. However,
there is a misclassification between phone and tablet objects. These objects
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can not be adequately classified by support vector machine, because these ob-
jects are very similar to each other in the form of grabbing. If these two objects
are assumed to be a single class, a result of more than ninety percent can be
obtained. Also, during data collection process, users are miscategorized these
objects and that proves the correctness of the results. Furthermore, there is a
slight similarity between the sphere and the cube objects, and this similarity
also reduces the accuracy rate.

Table 5.6: Confusion Matrix of the All Features of the Leap Motion Feature
Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 51 1 1 0 0 2 0 0 0
O2 0 52 2 0 0 1 0 0 0
O3 1 1 53 0 0 0 0 0 0
O4 0 0 0 48 0 0 1 1 5
O5 0 0 0 3 23 0 0 29 0
O6 6 1 0 0 0 47 0 1 0
O7 0 0 0 2 0 1 52 0 0
O8 0 0 0 0 35 0 0 20 0
O9 0 0 0 3 2 0 0 0 50

Table 5.7 shows the matrix obtained by using general hand features. Simi-
lar to the results obtained from all the features, this table also contains high-
frequency mixed recognition between phone and tablet objects. It is notewor-
thy that 33 of 55 phone objects are categorized as tablet objects, and 23 of 55
tablet objects are found as phone objects. As a result, an accuracy rate of 73%
indicates the success of the general hand features. The similarities in Table 5.7
are also seen in Table 5.8. The tablet and the phone resemble each other in a
similar way, and the similarity of the sphere and the cube is increased. Con-
fusion matrix in Table 5.8 has 74% accuracy and 0.72 kappa statistics which is
good value for classification precision.

Table 5.7: Confusion Matrix of the General Hand Features of the Leap Motion
Feature Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 = Sphere 42 1 6 0 0 5 0 1 0
O2 = Mouse 1 52 1 0 0 1 0 0 0
O3 = Cylinder 4 2 48 0 0 1 0 0 0
O4 = Cup 0 0 0 42 3 0 0 2 8
O5 = Phone 0 0 0 2 20 0 0 33 0
O6 = Cube 15 0 1 0 0 38 0 1 0
O7 = Scissor 0 0 0 2 0 0 53 0 0
O8 = Tablet 0 0 0 1 23 0 1 29 1
O9 = Pencil 0 0 0 6 0 1 0 2 46

Data obtained using interaction point features are less accurate than other
feature results, but in general, it can be said that the objects are classified
in a significant degree. With an accuracy of 60% and a value of 0.55 kappa
statistics, a moderate result is achieved.
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Table 5.8: Confusion Matrix of the Finger Features of the Leap Motion Feature
Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 = Sphere 45 0 3 0 1 6 0 0 0
O2 = Mouse 0 54 1 0 0 0 0 0 0
O3 = Cylinder 5 2 48 0 0 0 0 0 0
O4 = Cup 0 0 0 39 4 1 4 0 7
O5 = Phone 0 0 0 9 23 2 1 20 0
O6 = Cube 5 0 2 0 0 47 0 1 0
O7 = Scissor 0 0 0 4 0 0 49 1 1
O8 = Tablet 0 0 0 3 31 0 0 21 0
O9 = Pencil 1 0 0 3 1 0 0 3 47

When we first look at the sphere shape in Table 5.9, it can be said that, despite
a high accuracy, some of the samples are incorrectly classified as cube objects,
and interaction point similarity is the main reason of this misclassification. As
seen in Figure 5.1, there is a high interaction value in the distal and middle
phalanx areas of the fingers, and medium-sized interactions can be seen in
the areas where metacarpal and proximal phalanx bones are joined.

The mouse object also has high false positive values as in the sphere object.
It is evident that 12 of the 55 mouse objects are categorized as cup objects.
As can be seen in Figure 5.1, there is interaction in thumb, index and mid-
dle fingers at high quantity, and also there is interaction at the points where
metacarpals intersect with these three fingers.

The cylinder object presents a high categorization rate, showing 46 of the 55
samples as true positive. This object has a high percentage of interaction on
the Distal Phalanx bones. On the other hand, the cup object has a high rate
of classification as scissors and pen objects. Thumb, index, ring and middle
fingers actively play a major role in the hand shape interaction of the cup
object, but having the lack of interaction with the metacarpals is the reason
classification of the cube as scissor and pencil objects.

When looking at the accuracy rates of phone and tablet shapes, there is a
very high false positive result as in the other leap motion analyzes. As can be
seen in Figure 5.1, the hand and index fingers show a high level of interaction
on these two objects and the same rate of interaction does not appear in the
other fingers and palm. 24 of the 55 samples in the phone object categorized
as tablets and 19 of the 55 tablet objects are displayed as telephones. As in the
other feature sets, the interaction points feature set can not distinguish the
difference between phones and tablets.

While the cube object displays a general false positive distribution for every
other shape, the scissor object is similar to the pen shape in high rate. There
is a high-frequency fingertip shape interaction in the cube object, and a small
interaction with the palm can also be seen in Figure 5.1.

In the hand pen object interaction, the thumb, index finger and middle fin-
ger are in very high interaction rate of the 3D shape. However, there is no
interaction with palms. Moreover, the scissor object interacts with these three
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fingers at a high rate, causing 11 of the 55 samples to be recognized as pen
objects.

When all of the interaction points for each shape are examined, the objects
do not interact with the parts of the metacarpal near the wrist, and therefore
these areas do not contribute to the classification in general. During the inter-
action, phalanx bone regions play a major role in classification. Besides, the
thumb finger can be seen as a common point in every interaction.

Table 5.9: Confusion Matrix of the Interaction Features of the Leap Motion
Feature Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 36 5 8 0 0 6 0 0 0
O2 4 38 1 0 0 12 0 0 0
O3 3 1 46 0 1 1 1 0 2
O4 0 0 0 40 1 0 7 1 6
O5 2 0 1 2 11 6 5 24 4
O6 4 9 2 1 3 29 1 4 2
O7 0 0 0 5 0 0 43 1 6
O8 1 1 2 1 19 4 3 21 3
O9 0 0 1 4 5 0 11 1 33

Table 5.10: Accuracy and Calculation Results of Combined Features.
Feature Set Accuracy Calculation Time

Hand General 74.74% 14.14 sec.
Finger 75.35% 26.8 sec.

Interaction 60.00% 29.81 sec.
Hand General + Fingers 78.98% 25.6 sec.

Hand General + Interaction 73.53% 32.81 sec.
Fingers + Interaction 77.97% 68.24 sec.

Hand General + Fingers + Interaction 80.00% 40.56 sec

When objects are classified using feature sets in a pair, accuracy is increasing
slightly. With a combination of feature sets of hand general and fingers, the
accuracy increased to 78%, and the kappa value reaches to 0.76 which is very
strong value for this method. In these results, an unexpected false positive
value is not encountered except for tablets and telephone objects. Likewise,
Hand General and Interaction feature set combination have a good result with
77%. In this combination, in addition to the tablets and phones, it can be seen
that the spheres and cube objects are not adequately classified. Fingers and
interaction feature set pair shows a result that is similar to the combination
of hand general and fingers with a result of 77%. In these results, there is an
unexpected false positive result of classification between pen and cup. As a
result, when all the feature sets are used, we get a successful result of 80%;
however, this approach does not accurately distinguish phone and tablet ob-
jects. If these objects are assumed to be of the same class, the result is shown
in Table 5.11 appears.

Besides all of these feature set combinations, the leave-one-out method is also
applied to improve Leap Motion experiment results which can be seen in Ta-
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Figure 5.1: Hand Object Interaction Points for Every Object

ble 5.12. Using all the features sets found on Leap Motion experiment, a better
accuracy result of 83.23% is achieved than 10-fold cross-validation technique.
When compared to the 10-fold cross-validation experiment, this method clas-
sifies the majority of 3D shapes, and there are no significant true positive
value changes in the cube, mouse, cylinder, and scissor object results. On the
other hand, true positive results on tablet and phone 3D shapes are increased
slightly. Furthermore, the confusion matrix of this experiment shows that the
distribution of the false positive values is similar to the previous experiment.

Table 5.11: Confusion Matrix of the All Features of the Leap Motion Feature
Set Without Using Tablet Class.

O1 O2 O3 O4 O5 O6 O7 O9
O1 47 1 2 0 0 5 0 0
O2 0 52 1 0 0 2 0 0
O3 1 1 53 0 0 0 0 0
O4 0 0 0 47 1 0 1 6
O5 0 0 0 3 107 0 0 0
O6 4 1 0 0 1 49 0 0
O7 0 0 0 2 0 1 52 0
O9 0 0 0 4 2 0 0 49

Considering the results of both applications, Leap Motion application gives
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more accurate results with 80% accuracy. However, Leap Motion applica-
tion demonstrates unsuccessful results in phone and tablet classification in
contrast to the Data Glove application. On the other hand, Data Glove appli-
cation has more even distributed false positive results. The calculation times
show a proportional result according to the size of the data.

Table 5.12: Confusion Matrix of the All Features of the Leap Motion Feature
Set Using Leave-One-Out Method.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 50 1 0 0 0 3 0 1 0
O2 0 54 1 0 0 0 0 0 0
O3 4 0 51 0 0 0 0 0 0
O4 0 0 0 46 1 0 2 1 5
O5 0 0 0 2 28 1 0 24 0
O6 3 0 0 0 1 51 0 0 0
O7 0 0 0 0 0 1 54 0 0
O8 0 0 0 0 26 0 0 29 0
O9 0 0 0 3 2 0 0 0 50

In addition to SVM classification experiments, the success of the classification
approach is also proven when compared to 3D shape distribution histograms.
3D shape distribution functions are used to create shape signature using 3D
shape polygons [48], and these shape functions create histograms to use in ob-
ject classification. Different shape function approaches are explained in Sec-
tion 3 and measurement of the distance between a fixed point and random
points on the surface is used in this work. As seen in Table 5.2, if the objects
have different shape forms, shape histograms can be used for classification.
However, there is no satisfactory success in classifying objects that are similar
in shape but have different classes. Shape histograms show that cylinder ob-
jects give similar results with the pencil shapes. On the other hand, in Leap
Motion application, we get a successful accuracy without a false positive re-
sult in the classification between pencil and cylinder. With this work, we can
see that the objects can be successfully classified according to how they are
held, besides their shapes.
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Figure 5.2: D1 Shape Distributions of the Shapes Above. In Each Plot, the
Horizontal Axis Shows Normalized Distance, and the Vertical Axis Repre-
sents the Probability of That Distance Between Two Points on the Surface of
the 3D Shape.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this work, we utilized a novel descriptor for the analysis and classification
of 3D shapes. It is interesting to note that, as of today, descriptors in many
approaches were derived from the 3D shapes directly. However, in this study,
we have obtained new descriptors by using the information of how to grab
3D objects in the correct way besides the features which are obtained from the
3D objects directly. These descriptors have defined by which parts of the 3D
shapes, and the virtual hand models are interacting with each other.

To perform this interaction method, two different applications have been de-
veloped that collect the hand data from the hand controllers. First of all, an
application that uses Data Glove device was implemented to analyze hand
data that is extracted from the interaction between nine real objects and the
human hand. This application helps to compare the results of the actual clas-
sification work with real object interaction. In this part of the work, satis-
factory classification results were gained with 75% accuracy. The main work
of this thesis was to implement the application that uses leap motion con-
troller. With the help of Leap Motion device, 3D hand model interacted with
nine selected 3D shapes in a virtual environment and contributed to classify
these objects properly. Moreover, with this approach, we could classify rigid
objects with the aid of the non-rigid objects. The results obtained from this
application were very satisfactory, and it has been proved that the interaction
descriptors improve the results with 80% accuracy described in Section 5. In
the classification process of both applications, ten-fold multi-class support
vector machine was used.

In this study, classification was not affected by noise, the number of polygons
or 3D shape transform. Moreover, whether the 3D shapes is watertight or de-
fective did not change the classification results. On the other hand, a potential
limitation of this work was the possibility that controller devices did not de-
tect hand inputs correctly. Although our overall impression is that devices get
most of the hand data smoothly, the ability of the Data Glove device to iden-
tify data varies subtly with the size of the hand. Furthermore, in some cases,
Leap Motion controller may get input inaccurately due to the light source
and external objects in the room. However, we hypothesized that only minor
differences in hand data would be observed.

Our results can serve as a guide, for researchers, which describes the how
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hand parts are involved with grabbing action using interaction map results.
In particular, our results show the which fingers are the most and least im-
portant and demonstrate user habits while grabbing an object.

As part of the further development of this work, we intend to improve the
efficiency of classification by increasing the number of subject and samples.
Also, combining applications of Leap Motion and Data Glove devices ex-
tend out descriptors and this approach may improve our classification results.
Nevertheless, the current API of Leap Motion controller does not make this
unification possible. Integrating two-handed objects to our applications may
enhance our classification algorithms in future developments. Moreover, 3D
shapes can be categorized as their functions instead of grasping natures, and
hand data can be collected not only in a static state also in motion. The last
improvement that we plan to make in the future is to include an invariant
system for non-rigid transformations that covers the bending feature of the
3D shapes, because the current practice is invariant to rigid transformations.
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APPENDICES
Appendix A

DETAILED SVM RESULTS OF DATA GLOVES
APPLICATION

A.1 All Results

Table A.1: Confusion Matrix for All Data Gloves Feature Set.
O1 O2 O3 O4 O5 O6 O7 O8 O9

O1 = Sphere 27 0 3 0 0 5 4 0 1
O2 = Mouse 0 32 0 0 4 0 3 0 1
O3 = Cylinder 2 0 34 0 0 2 1 0 1
O4 = Cup 0 0 1 36 0 0 0 0 3
O5 = Phone 0 0 0 0 31 0 2 4 3
O6 = Cube 4 0 2 0 2 27 4 1 0
O7 = Scissor 1 1 1 1 1 2 25 2 6
O8 = Tablet 0 0 0 0 2 1 2 32 3
O9 = Pencil 0 1 0 0 1 0 4 5 29

Table A.2: Detailed Accuracy Table for All Data Gloves Feature Set.
TP Rate FP Rate Precision Recall F-Measure MCC ROC AreaPRC Area

Sphere 0.675 0.022 0.794 0.675 0.730 0.702 0.827 0.572
Mouse 0.800 0.006 0.941 0.800 0.865 0.853 0.897 0.775
Cylinder 0.850 0.022 0.829 0.850 0.840 0.819 0.914 0.722
Cup 0.900 0.003 0.973 0.900 0.935 0.928 0.948 0.887
Phone 0.725 0.031 0.756 0.775 0.765 0.736 0.872 0.611
Cube 0.675 0.031 0.730 0.675 0.701 0.666 0.822 0.529
Scissor 0.625 0.063 0.556 0.625 0.588 0.535 0.781 0.389
Tablet 0.800 0.038 0.727 0.800 0.762 0.732 0.881 0.604
Pencil 0.725 0.056 0.617 0.725 0.667 0.624 0.834 0.478
Average 0.758 0.030 0.769 0.758 0.761 0.733 0.864 0.618
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Table A.3: Summary for All Data Gloves Feature Set.
Correctly Classified Instances 273 75.8333%
Incorrectly Classified Instances 87 24.1667%
Kappa statistics 0.7281
Mean Absolute Error 0.0483
Root Mean Squared Error 0.2198
Relative Absolute Error 27.177%
Root Relative Squared Error 73.739%
Total Number of Instances 360
X property: cost 3.1
Y property: gamma 1.584

A.2 Abduction Joint Results

Table A.4: Confusion Matrix of the Abduction Joints of the Data Gloves Fea-
ture Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 = Sphere 21 2 4 0 0 7 6 0 0
O2 = Mouse 0 30 0 3 2 0 1 3 1
O3 = Cylinder 4 0 33 0 0 0 0 2 1
O4 = Cup 1 6 1 26 2 0 0 1 3
O5 = Phone 0 2 0 1 21 2 0 12 2
O6 = Cube 5 0 3 0 1 24 3 4 0
O7 = Scissor 2 1 0 1 1 1 24 3 7
O8 = Tablet 0 1 2 4 4 2 1 22 4
O9 = Pencil 0 1 3 3 4 4 3 5 17

Table A.5: Detailed Accuracy Table of the Abduction Joints of the Data Gloves
Feature Set.

TP Rate FP Rate Precision Recall F-Measure MCC ROC AreaPRC Area
Sphere 0.525 0.038 0.636 0.525 0.575 0.531 0.744 0.387
Mouse 0.750 0.041 0.698 0.750 0.723 0.687 0.855 0.551
Cylinder 0.825 0.041 0.717 0.825 0.767 0.738 0.892 0.611
Cup 0.650 0.038 0.684 0.650 0.667 0.626 0.806 0.484
Phone 0.525 0.044 0.600 0.525 0.560 0.511 0.741 0.368
Cube 0.600 0.050 0.600 0.600 0.600 0.550 0.775 0.404
Scissor 0.600 0.044 0.632 0.600 0.615 0.569 0.778 0.423
Tablet 0.550 0.094 0.423 0.550 0.478 0.408 0.728 0.283
Pencil 0.425 0.056 0.486 0.425 0.453 0.391 0.684 0.270
Average 0.606 0.049 0.608 0.606 0.604 0.557 0.778 0.420
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Table A.6: Summary of the Abduction Joints of the Data Gloves Feature Set.
Correctly Classified Instances 218 60.5556%
Incorrectly Classified Instances 142 39.4444%
Kappa statistics 0.5563
Mean Absolute Error 0.0789
Root Mean Squared Error 0.2809
Relative Absolute Error 44.3584%
Root Relative Squared Error 94.2067%
Total Number of Instances 360
X property: cost 2.6
Y property: gamma 6.3095

A.3 Knuckle Joints Results

Table A.7: Confusion Matrix of the Knuckle Joints of the Data Gloves Feature
Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 = Sphere 11 0 12 1 0 6 3 4 3
O2 = Mouse 2 17 4 2 6 5 3 1 0
O3 = Cylinder 11 3 18 2 0 1 3 1 1
O4 = Cup 1 0 1 23 0 0 3 8 4
O5 = Phone 2 7 0 5 17 2 0 6 1
O6 = Cube 3 1 2 0 2 29 2 1 0
O7 = Scissor 5 2 5 3 0 1 16 2 6
O8 = Tablet 5 2 2 5 4 3 0 14 5
O9 = Pencil 0 0 2 4 0 0 5 5 24

Table A.8: Detailed Accuracy Table of the Knuckle Joints of the Data Gloves
Feature Set.

TP Rate FP Rate Precision Recall F-Measure MCC ROC AreaPRC Area
Sphere 0.275 0.091 0.275 0.275 0.275 0.184 0.592 0.156
Mouse 0.425 0.047 0.531 0.425 0.472 0.418 0.689 0.290
Cylinder 0.450 0.088 0.391 0.450 0.419 0.341 0.681 0.237
Cup 0.575 0.069 0.511 0.575 0.541 0.481 0.753 0.341
Phone 0.425 0.038 0.586 0.425 0.493 0.447 0.694 0.313
Cube 0.725 0.056 0.617 0.725 0.667 0.624 0.834 0.478
Scissor 0.400 0.059 0.457 0.400 0.427 0.361 0.670 0.250
Tablet 0.350 0.088 0.333 0.350 0.341 0.257 0.631 0.189
Pencil 0.600 0.063 0.545 0.600 0.571 0.516 0.769 0.372
Average 0.469 0.066 0.472 0.469 0.467 0.403 0.702 0.292
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Table A.9: Summary of the Knuckle Joints of the Data Gloves Feature Set.
Correctly Classified Instances 169 46.9444%
Incorrectly Classified Instances 191 53.0556%
Kappa statistics 0.4031
Mean Absolute Error 0.1061
Root Mean Squared Error 0.3257
Relative Absolute Error 59.6646%
Root Relative Squared Error 109.2582%
Total Number of Instances 360
X property: cost 3.1
Y property: gamma 31.6227

A.4 Second Joint Results

Table A.10: Confusion Matrix of the Second Joints of the Data Gloves Feature
Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 = Sphere 14 2 4 3 2 2 2 2 9
O2 = Mouse 3 10 2 1 5 3 2 8 6
O3 = Cylinder 5 2 18 3 0 2 4 3 3
O4 = Cup 2 1 4 30 0 2 0 0 1
O5 = Phone 3 6 0 0 17 1 6 4 3
O6 = Cube 2 2 5 3 5 13 2 4 4
O7 = Scissor 1 5 7 1 1 1 7 7 9
O8 = Tablet 1 3 2 0 2 2 3 26 1
O9 = Pencil 4 2 5 3 3 0 3 3 17

Table A.11: Detailed Accuracy Table of the Second Joints of the Data Gloves
Feature Set.

TP Rate FP Rate Precision Recall F-Measure MCC ROC AreaPRC Area
Sphere 0.350 0.066 0.400 0.350 0.373 0.302 0.642 0.212
Mouse 0.250 0.072 0.303 0.250 0.274 0.194 0.589 0.159
Cylinder 0.450 0.091 0.383 0.450 0.414 0.335 0.680 0.233
Cup 0.750 0.044 0.682 0.750 0.714 0.678 0.853 0.539
Phone 0.425 0.056 0.486 0.425 0.453 0.391 0.684 0.270
Cube 0.325 0.041 0.500 0.325 0.394 0.345 0.642 0.238
Scissor 0.200 0.069 0.267 0.200 0.229 0.149 0.566 0.142
Tablet 0.650 0.097 0.456 0.650 0.536 0.476 0.777 0.335
Pencil 0.425 0.113 0.321 0.425 0.366 0.277 0.656 0.200
Average 0.425 0.072 0.422 0.425 0.417 0.350 0.677 0.259
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Table A.12: Summary of the Second Joints of the Data Gloves Feature Set.
Correctly Classified Instances 153 42.5%
Incorrectly Classified Instances 207 57.5%
Kappa statistics 0.3531
Mean Absolute Error 0.115
Root Mean Squared Error 0.3391
Relative Absolute Error 64.6626%
Root Relative Squared Error 113.7425%
Total Number of Instances 360
X property: cost 3.1
Y property: gamma 1.995

Appendix B

DETAILED SVM RESULTS OF LEAP MOTION
APPLICATION

B.1 All Results

Table B.1: Confusion Matrix of the All Features of the Leap Motion Feature
Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 = Sphere 51 1 1 0 0 2 0 0 0
O2 = Mouse 0 52 2 0 0 1 0 0 0
O3 = Cylinder 1 1 53 0 0 0 0 0 0
O4 = Cup 0 0 0 48 0 0 1 1 5
O5 = Phone 0 0 0 3 23 0 0 29 0
O6 = Cube 6 1 0 0 0 47 0 1 0
O7 = Scissor 0 0 0 2 0 1 52 0 0
O8 = Tablet 0 0 0 0 35 0 0 20 0
O9 = Pencil 0 0 0 3 2 0 0 0 50
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Table B.2: Detailed Accuracy Table of the All of the Leap Motion Feature Set.
TP Rate FP Rate Precision Recall F-Measure MCC ROC AreaPRC Area

Sphere 0.927 0.016 0.879 0.927 0.903 0.891 0.956 0.823
Mouse 0.945 0.007 0.945 0.945 0.945 0.939 0.969 0.900
Cylinder 0.964 0.007 0.946 0.964 0.955 0.949 0.978 0.916
Cup 0.873 0.018 0.857 0.873 0.865 0.848 0.927 0.762
Phone 0.418 0.084 0.383 0.418 0.400 0.322 0.667 0.225
Cube 0.855 0.009 0.922 0.855 0.887 0.874 0.923 0.804
Scissor 0.945 0.002 0.981 0.945 0.963 0.959 0.972 0.934
Tablet 0.364 0.070 0.382 0.364 0.377 0.303 0.647 0.213
Pencil 0.909 0.011 0.909 0.909 0.909 0.898 0.949 0.837
Average 0.800 0.025 0.804 0.800 0.800 0.776 0.888 0.713

Table B.3: Summary of the All of the Leap Motion Feature Set.
Correctly Classified Instances 396 80.0%
Incorrectly Classified Instances 99 20.0%
Kappa statistics 0.775
Mean Absolute Error 0.0444
Root Mean Squared Error 0.2108
Relative Absolute Error 22.4975%
Root Relative Squared Error 67.0742%
Total Number of Instances 495
X property: cost 3.6
Y property: gamma 0.0199

B.2 General Hand Features

Table B.4: Confusion Matrix of the General Hand Features of the Leap Motion
Feature Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 = Sphere 42 1 6 0 0 5 0 1 0
O2 = Mouse 1 52 1 0 0 1 0 0 0
O3 = Cylinder 4 2 48 0 0 1 0 0 0
O4 = Cup 0 0 0 42 3 0 0 2 8
O5 = Phone 0 0 0 2 20 0 0 33 0
O6 = Cube 15 0 1 0 0 38 0 1 0
O7 = Scissor 0 0 0 2 0 0 53 0 0
O8 = Tablet 0 0 0 1 23 0 1 29 1
O9 = Pencil 0 0 0 6 0 1 0 2 46
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Table B.5: Detailed Accuracy Table of the General Hand Features of the Leap
Motion Feature Set.

TP Rate FP Rate Precision Recall F-Measure MCC ROC AreaPRC Area
Sphere 0.764 0.045 0.677 0.764 0.718 0.682 0.859 0.544
Mouse 0.945 0.007 0.945 0.945 0.945 0.939 0.969 0.900
Cylinder 0.873 0.018 0.857 0.873 0.865 0.848 0.927 0.762
Cup 0.764 0.025 0.792 0.764 0.778 0.751 0.869 0.631
Phone 0.364 0.059 0.435 0.364 0.396 0.330 0.652 0.229
Cube 0.691 0.018 0.826 0.691 0.752 0.728 0.836 0.605
Scissor 0.964 0.002 0.981 0.964 0.972 0.969 0.981 0.950
Tablet 0.527 0.089 0.426 0.527 0.472 0.400 0.719 0.277
Pencil 0.836 0.020 0.836 0.836 0.836 0.816 0.908 0.718
Average 0.747 0.032 0.753 0.747 0.748 0.718 0.858 0.624

Table B.6: Summary of the General Hand Features of the Leap Motion Feature
Set.

Correctly Classified Instances 370 74.7475%
Incorrectly Classified Instances 125 25.2525%
Kappa statistics 0.7159
Mean Absolute Error 0.0561
Root Mean Squared Error 0.2369
Relative Absolute Error 28.4059%
Root Relative Squared Error 75.369%
Total Number of Instances 495
X property: cost 1.1
Y property: gamma 0.2511

B.3 Finger Features

Table B.7: Confusion Matrix of the Finger Features of the Leap Motion Fea-
ture Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 = Sphere 45 0 3 0 1 6 0 0 0
O2 = Mouse 0 54 1 0 0 0 0 0 0
O3 = Cylinder 5 2 48 0 0 0 0 0 0
O4 = Cup 0 0 0 39 4 1 4 0 7
O5 = Phone 0 0 0 9 23 2 1 20 0
O6 = Cube 5 0 2 0 0 47 0 1 0
O7 = Scissor 0 0 0 4 0 0 49 1 1
O8 = Tablet 0 0 0 3 31 0 0 21 0
O9 = Pencil 1 0 0 3 1 0 0 3 47
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Table B.8: Detailed Accuracy Table of the Finger Features of the Leap Motion
Feature Set.

TP Rate FP Rate Precision Recall F-Measure MCC ROC AreaPRC Area
Sphere 0.818 0.025 0.804 0.818 0.811 0.787 0.897 0.678
Mouse 0.982 0.005 0.964 0.982 0.973 0.970 0.989 0.949
Cylinder 0.873 0.014 0.889 0.873 0.881 0.866 0.930 0.790
Cup 0.709 0.043 0.672 0.709 0.690 0.651 0.833 0.509
Phone 0.418 0.084 0.383 0.418 0.400 0.322 0.667 0.225
Cube 0.855 0.020 0.839 0.855 0.847 0.828 0.917 0.733
Scissor 0.891 0.011 0.907 0.891 0.899 0.887 0.940 0.821
Tablet 0.382 0.057 0.457 0.382 0.416 0.352 0.663 0.243
Pencil 0.855 0.018 0.855 0.855 0.855 0.836 0.918 0.746
Average 0.754 0.031 0.752 0.754 0.752 0.722 0.861 0.633

Table B.9: Summary of the Finger Features of the Leap Motion Feature Set.
Correctly Classified Instances 373 75.3535%
Incorrectly Classified Instances 122 24.6465%
Kappa statistics 0.7227
Mean Absolute Error 0.0548
Root Mean Squared Error 0.234
Relative Absolute Error 27.7226%
Root Relative Squared Error 74.4548%
Total Number of Instances 495
X property: cost 0.5
Y property: gamma 0.398

B.4 Hand-Object Interaction Features

Table B.10: Confusion Matrix of the Interaction Features of the Leap Motion
Feature Set.

O1 O2 O3 O4 O5 O6 O7 O8 O9
O1 = Sphere 36 5 8 0 0 6 0 0 0
O2 = Mouse 4 38 1 0 0 12 0 0 0
O3 = Cylinder 3 1 46 0 1 1 1 0 2
O4 = Cup 0 0 0 40 1 0 7 1 6
O5 = Phone 2 0 1 2 11 6 5 24 4
O6 = Cube 4 9 2 1 3 29 1 4 2
O7 = Scissor 0 0 0 5 0 0 43 1 6
O8 = Tablet 1 1 2 1 19 4 3 21 3
O9 = Pencil 0 0 1 4 5 0 11 1 33
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Table B.11: Detailed Accuracy Table of the Interaction Features of the Leap
Motion Feature Set.

TP Rate FP Rate Precision Recall F-Measure MCC ROC AreaPRC Area
Sphere 0.655 0.032 0.720 0.655 0.686 0.649 0.811 0.510
Mouse 0.691 0.032 0.704 0.691 0.697 0.660 0.827 0.521
Cylinder 0.836 0.034 0.754 0.836 0.793 0.767 0.901 0.649
Cup 0.727 0.030 0.755 0.727 0.741 0.709 0.849 0.579
Phone 0.200 0.066 0.275 0.200 0.232 0.155 0.567 0.144
Cube 0.527 0.066 0.500 0.527 0.513 0.451 0.731 0.316
Scissor 0.782 0.064 0.606 0.782 0.683 0.644 0.859 0.498
Tablet 0.382 0.070 0.404 0.382 0.393 0.319 0.656 0.223
Pencil 0.600 0.052 0.589 0.600 0.595 0.543 0.774 0.398
Average 0.600 0.050 0.590 0.600 0.592 0.544 0.775 0.426

Table B.12: Summary of the Interaction Features of the Leap Motion Feature
Set.

Correctly Classified Instances 297 60.00%
Incorrectly Classified Instances 122 198.40%
Kappa statistics 0.55
Mean Absolute Error 0.0889
Root Mean Squared Error 0.2981
Relative Absolute Error 44.995%
Root Relative Squared Error 94.8572%
Total Number of Instances 495
X property: cost 5.1
Y property: gamma 0.1
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