Skip to main content
Log in

Compressing animated meshes with fine details using local spectral analysis and deformation transfer

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Geometry-centric shape animation, usually represented as dynamic meshes with fixed connectivity and time-deforming geometry, is becoming ubiquitous in digital entertainment and other relevant graphics applications. However, digital animation with fine details, which requires more diversity of texture on meshed geometry, always consumes a significant amount of storage space, and compactly storing and efficiently transmitting these meshes still remain technically challenging. In this paper, we propose a novel key-frame-based dynamic meshes compression method, wherein we decompose the meshes into the low-frequency and high-frequency parts by applying piece-wise manifold harmonic bases to reduce spatial-temporal redundancy of primary poses and by using deformation transfer to recover high-frequency details. First of all, we partition the animated meshes into several clusters with similar poses, and the primary poses of meshes in each cluster can be characterized as a linear combination of manifold harmonic bases derived from the key-frame of that cluster. Second, we recover the geometric details on each primary pose using the deformation transfer technique which reconstructs the details from the key-frames. Thus, we only need to store a very small number of key-frames and a few harmonic coefficients for compressing time-varying meshes, which would reduce a significant amount of storage in contrast with traditional methods where bases were stored explicitly. Finally, we employ the state-of-the-art static mesh compression method to store the key-frames and apply a second-order linear prediction coding to the harmonics coefficients to further reduce the spatial-temporal redundancy. Our comprehensive experiments and thorough evaluations on various datasets have manifested that, our novel method could obtain a high compression ratio while preserving high-fidelity geometry details and guaranteeing limited human perceived distortion rate simultaneously, as quantitatively characterized by the popular Karni–Gotsman error and our newly devised local rigidity error metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Alexa, M., Müller, W.: Representing animations by principal components. In: Computer Graphics Forum, vol. 19, pp. 411–418. Wiley Online Library (2000)

  2. Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International Society for Optics and Photonics (1992)

  3. Bici, M.O., Akar, G.B.: Improved prediction methods for scalable predictive animated mesh compression. J. Vis. Commun. Image Represent. 22(7), 577–589 (2011)

    Article  Google Scholar 

  4. Chen, C., Xia, Q., Li, S., Qin, H., Hao, A.: High-fidelity compression of dynamic meshes with fine details using piece-wise manifold harmonic bases. In: Proceedings of Computer Graphics International 2018, pp. 23–32. ACM (2018)

  5. De Goes, F., Goldenstein, S., Velho, L.: A hierarchical segmentation of articulated bodies. In: Computer graphics forum, vol. 27, pp. 1349–1356. Wiley Online Library (2008)

  6. Fröhlich, S., Botsch, M.: Example-driven deformations based on discrete shells. In: Computer graphics forum, vol. 30, pp. 2246–2257. Wiley Online Library (2011)

  7. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 209–216. ACM Press/Addison-Wesley Publishing Co. (1997)

  8. Hajizadeh, M., Ebrahimnezhad, H.: Predictive compression of animated 3D models by optimized weighted blending of key-frames. Comput. Animat. Virtual Worlds 27(6), 556–576 (2016)

    Article  Google Scholar 

  9. Heu, J.H., Kim, C.S., Lee, S.U.: Snr and temporal scalable coding of 3-D mesh sequences using singular value decomposition. J. Vis. Commun. Image Represent. 20(7), 439–449 (2009)

    Article  Google Scholar 

  10. Hou, J., Chau, L.-P., Magnenat-Thalmann, N., He, Y.: Compressing 3-D human motions via keyframe-based geometry videos. IEEE Trans. Circuits Syst. Video Technol. 25(1), 51–62 (2014)

    Google Scholar 

  11. Hou, J., Chau, L.P., Magnenat-Thalmann, N., He, Y.: Low-latency compression of mocap data using learned spatial decorrelation transform. Comput. Aided Geom. Des. 43, 211–225 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hou, J., Chau, L.P., Magnenat-Thalmann, N., He, Y.: Sparse low-rank matrix approximation for data compression. IEEE Trans. Circuits Syst. Video Technol. 27(5), 1043–1054 (2017)

    Article  Google Scholar 

  13. Hou, J., Chau, L.P., Zhang, M., Magnenat-Thalmann, N., He, Y.: A highly efficient compression framework for time-varying 3-D facial expressions. IEEE Trans. Circuits Syst. Video Technol. 24(9), 1541–1553 (2014)

    Article  Google Scholar 

  14. Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3D animations of triangle meshes with fixed connectivity. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 126–135. Eurographics Association (2003)

  15. Karni, Z., Gotsman, C.: Spectral compression of mesh geometry. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 279–286. ACM Press/Addison-Wesley Publishing Co. (2000)

  16. Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Comput. Graph. 28(1), 25–34 (2004)

    Article  Google Scholar 

  17. Lee, P.F., Kao, C.K., Tseng, J.L., Jong, B.S., Lin, T.W.: 3D animation compression using affine transformation matrix and principal component analysis. IEICE Trans. Inf. Syst. 90(7), 1073–1084 (2007)

    Article  Google Scholar 

  18. Luo, G., Cordier, F., Seo, H.: Compression of 3D mesh sequences by temporal segmentation. Comput. Animat. Virtual Worlds 24(3–4), 365–375 (2013)

    Article  Google Scholar 

  19. Maglo, A., Lavoué, G., Dupont, F., Hudelot, C.: 3D mesh compression: survey, comparisons, and emerging trends. ACM Comput. Surv. (CSUR) 47(3), 44 (2015)

    Article  Google Scholar 

  20. Mamou, K., Zaharia, T., Prêteux, F.: A skinning approach for dynamic 3D mesh compression. Comput. Animat. Virtual Worlds 17(3–4), 337–346 (2006)

    Article  Google Scholar 

  21. Mullen, P., Tong, Y., Alliez, P., Desbrun, M.: Spectral conformal parameterization. In: Computer Graphics Forum, vol. 27, pp. 1487–1494. Wiley Online Library (2008)

  22. Neumann, T., Varanasi, K., Theobalt, C., Magnor, M., Wacker, M.: Compressed manifold modes for mesh processing. In: Computer Graphics Forum, vol. 33, pp. 35–44. Wiley Online Library (2014)

  23. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. (TOG) 31(4), 30 (2012)

    Article  Google Scholar 

  24. Payan, F., Antonini, M.: Temporal wavelet-based compression for 3D animated models. Comput. Graph. 31(1), 77–88 (2007)

    Article  Google Scholar 

  25. Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 209–217. ACM (2005)

  26. Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Symposium on Geometry Processing, vol. 4, p. 30 (2007)

  27. Sorkine, O., Cohen-Or, D., Toledo, S.: High-pass quantization for mesh encoding. In: Symposium on Geometry Processing, vol. 42 (2003)

  28. Stefanoski, N., Liu, X., Klie, P., Ostermann, J.: Scalable linear predictive coding of time-consistent 3D mesh sequences. In: 3DTV Conference, 2007, pp. 1–4. IEEE (2007)

  29. Stefanoski, N., Ostermann, J.: Spatially and temporally scalable compression of animated 3D meshes with MPEG-4/FAMC. In: 15th IEEE International Conference on Image Processing, 2008. ICIP 2008, pp. 2696–2699. IEEE (2008)

  30. Stefanoski, N., Ostermann, J.: Spc: fast and efficient scalable predictive coding of animated meshes. In: Computer Graphics Forum, vol. 29, pp. 101–116. Wiley Online Library (2010)

  31. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. In: ACM Transactions on Graphics (TOG), vol. 23, pp. 399–405. ACM (2004)

  32. Sun, J., Ovsjanikov, M., Guibas, L.: A concise and provably informative multi-scale signature based on heat diffusion. In: Computer Graphics Forum, vol. 28, pp. 1383–1392. Wiley Online Library (2009)

  33. Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. In: Computer Graphics Forum, vol. 27, no. 2, pp. 251–260. Wiley Online Library (2008)

  34. Váša, L., Brunnett, G.: Exploiting connectivity to improve the tangential part of geometry prediction. IEEE Trans. Visualiz. Comput. Graph. 19(9), 1467–1475 (2013)

    Article  Google Scholar 

  35. Váša, L., Marras, S., Hormann, K., Brunnett, G.: Compressing dynamic meshes with geometric Laplacians. In: Computer Graphics Forum, vol. 33, pp. 145–154. Wiley Online Library (2014)

  36. Váša, L., Skala, V.: Coddyac: Connectivity driven dynamic mesh compression. In: 3DTV Conference, 2007, pp. 1–4. IEEE (2007)

  37. Váša, L., Skala, V.: Cobra: Compression of the basis for PCA represented animations. In: Computer Graphics Forum, vol. 28, pp. 1529–1540. Wiley Online Library (2009)

  38. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. In: ACM Transactions on Graphics (TOG), vol. 27, p. 97. ACM (2008)

  39. Winkler, T., Drieseberg, J., Alexa, M., Hormann, K.: Multi-scale geometry interpolation. In: Computer Graphics Forum, vol. 29, pp. 309–318. Wiley Online Library (2010)

  40. Zhang, H., van Kaick, O., Dyer, R.: Spectral methods for mesh processing and analysis. In: Proceedings of Eurographics State-of-the-Art Report, vol. 122 (2007)

  41. Zhong, M., Qin, H.: Sparse approximation of 3D shapes via spectral graph wavelets. Vis. Comput. 30(6–8), 751–761 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported in part by National Natural Science Foundation of China (Nos. 61672077, 61672149 and 61532002), National Key R&D Program of China (No. 2017YFF0106407), Applied Basic Research Program of Qingdao (No. 161013xx), National Science Foundation of USA (Nos. IIS-0949467, IIS-1047715, IIS-1715985, and IIS-1049448), the capital health research and development of special 2016-1-4011, and the Excellence Foundation of BUAA for PhD Students (No. 2017043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

An earlier and shorter version of this paper was presented at the Computer Graphics International Conference 2018 [4].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Xia, Q., Li, S. et al. Compressing animated meshes with fine details using local spectral analysis and deformation transfer. Vis Comput 36, 1029–1042 (2020). https://doi.org/10.1007/s00371-019-01650-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01650-5

Keywords

Navigation