Skip to main content
Log in

Kinetic locally minimal triangulation: theoretical evaluation and combinatorial analysis

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Kinetic data structures represent an extension to ordinary data structures, where the underlying data become time dependent (e.g. moving points). In this paper, we define the kinetic locally minimal triangulation (KLMT) as a kinetic data structure extension to the locally minimal triangulation in the Euclidean plane. We explore the general properties of this data structure in order to show what types of events need to be considered during its life cycle; we also describe the predicates associated with these events. To describe the general kinetic features, we prove that KLMT is responsive, compact, efficient and non-local. In the combinatorial analysis of KLMT, we briefly describe the mathematical apparatus commonly used to investigate computational complexity properties of kinetic data structures and use it to establish the bounds on the number of events processed during the life cycle of this data structure. Finally, the obtained results are compared to the kinetic Delaunay triangulation showing that KLMT may provide some benefits over kinetic Delaunay triangulation, namely simplifying the mathematical equations that need to be computed in order to obtain the times of events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Agarwal, P.K., Basch, J., de Berg, M., Guibas, L.J., Hershberger, J.: Lower bounds for kinetic planar subdivisions. Discr. Comput. Geom. 24(4), 721–733 (2000). https://doi.org/10.1007/s004540010060

    Article  MathSciNet  MATH  Google Scholar 

  2. Albers, G., Guibas, L.J., Mitchell, J.S.B., Roos, T.: Voronoi diagrams of moving points. Int. J. Comput. Geom. Appl. 8(3), 365–380 (1998). citeseer.ist.psu.edu/albers95voronoi.html

    Article  MathSciNet  Google Scholar 

  3. Basch, J.: Kinetic data structures. Ph.D. thesis, Stanford University (1999)

  4. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. J. Algorithms 31(1), 1–28 (1999)

    Article  MathSciNet  Google Scholar 

  5. Basch, J., Guibas, L.J., Silverstein, C.D., Zhang, L.: A practical evaluation of kinetic data structures. In: Proc. 13th Annu. ACM Sympos. Comput. Geom, pp. 388–390. ACM Press (1997)

  6. Beni, L.H.: Development of a 3D kinetic data structure adapted for a 3D spatial dynamic field simulation. Ph.D. thesis, Université Laval, Québec (2009)

  7. Bose, P., Devroye, L., Evans, W.: Diamonds are not a minimum weight triangulation’s best friend. Int. J. Comput. Geom. Appl. 12(06), 445–453 (2002). https://doi.org/10.1142/S0218195902000979

    Article  MathSciNet  MATH  Google Scholar 

  8. Dickerson, M.T., Montague, M.H.: A (usually?) connected subgraph of the minimum weight triangulation. In: Proceedings of the Twelfth Annual Symposium on Computational Geometry, SCG ’96, pp. 204–213. ACM, New York (1996). https://doi.org/10.1145/237218.237364

  9. Erickson, J., Guibas, L.J., Stolfi, J., Zhang, L.: Separation-sensitive collision detection for convex objects. In: SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete algorithms, pp. 327–336. Society for Industrial and Applied Mathematics, Philadelphia (1999)

  10. Gavrilova, M., Rokne, J., Gavrilov, D.: Dynamic collision detection in computational geometry. In: 12th European Workshop on Computational Geometry, pp. 103–106. Munster, Germany (1996)

  11. Goldenstein, S., Karavelas, M.I., Metaxas, D.N., Guibas, L.J., Aaron, E., Goswami, A.: Scalable nonlinear dynamical systems for agent steering and crowd simulation. Comput. Graph. 25(6), 983–998 (2001)

    Article  Google Scholar 

  12. Goralski, I.R., Gold, C.M.: Maintaining the spatial relationships of marine vessels using the kinetic Voronoi diagram. In: ISVD ’07: Proceedings of the 4th International Symposium on Voronoi Diagrams in Science and Engineering, pp. 84–90. IEEE Computer Society, Washington (2007). https://doi.org/10.1109/ISVD.2007.30

  13. Guibas, L.J.: Kinetic data structures: a state of the art report. In: WAFR ’98: Proceedings of the Third Workshop on the Algorithmic Foundations of Robotics on Robotics: The Algorithmic Perspective, pp. 191–209. A. K. Peters, Ltd., Natick, MA, USA (1998)

  14. Guibas, L.J., Xie, F., Zhang, L.: Kinetic collision detection: algorithms and experiments. In: ICRA, pp. 2903–2910 (2001)

  15. Heigeas, L., Luciani, A., Thollot, J., Castagné, N.: A physically-based particle model of emergent crowd behaviors. In: Graphicon (2003). http://artis.imag.fr/Publications/2003/HLTC03

  16. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their relatives. Proc. IEEE 80(9), 1502–1517 (1992). https://doi.org/10.1109/5.163414

    Article  Google Scholar 

  17. Kamphuis, A., Overmars, M.H.: Finding paths for coherent groups using clearance. In: SCA ’04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 19–28. Eurographics Association, Aire-la-Ville, Switzerland (2004). https://doi.org/10.1145/1028523.1028526

  18. Kolingerová, I., Ferko, A., Vomáčka, T., Maňák, M.: Nearest Neighbour Graph and Locally Minimal Triangulation, pp. 455–464. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62395-5_31

    Book  Google Scholar 

  19. Kolingerová, I., Vomácka, T., Manak, M., Ferko, A.: Neighbourhood graphs and locally minimal triangulations. Trans. Comput. Sci. 33, 115–127 (2018). https://doi.org/10.1007/978-3-662-58039-4_7

    Article  MathSciNet  Google Scholar 

  20. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Probability and Statistics, 2nd edn. Wiley, Hoboken (2000)

    Book  Google Scholar 

  21. Overmars, M.: Practical algorithms for path planning and crowd simulation. In: Proceedings of the 25th European Workshop on Computational Geometry (EuroCG), p. 263. Brussels, Belgium (2009). Invited speech

  22. Richard Shewchuk, J.: Adaptive precision floating-point arithmetic and fast robust geometric predicates. Discr. Comput. Geom. 18(3), 305–363 (1997). https://doi.org/10.1007/PL00009321

    Article  MathSciNet  MATH  Google Scholar 

  23. Russel, D.: Kinetic data structures in practice. Ph.D. thesis, Stanford, CA, USA (2007). Adviser-Guibas, Leonidas

  24. Sharir, M., Agarwal, P.K.: Davenport–Schinzel Sequences and Their Geometric Applications. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  25. Sud, A., Andersen, E., Curtis, S., Lin, M., Manocha, D.: Real-time path planning for virtual agents in dynamic environments. In: SIGGRAPH ’08: ACM SIGGRAPH 2008 classes, pp. 1–9. ACM, New York (2008)

  26. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pp. 1160–1168. ACM, New York (2006). https://doi.org/10.1145/1179352.1142008

  27. Veltkamp, R.: The gamma-neighborhood graph. Comput. Geom. 1, 227–246 (1991)

    Article  MathSciNet  Google Scholar 

  28. Vomáčka, T., Kolingerová, I.: Computation of topologic events in kinetic Delaunay triangulation using sturm sequences of polynomials. In: SIGRAD 2008, pp. 57–64. University Electronic Press, Linköping (2008)

Download references

Acknowledgements

The authors would like to thank to RNDr. Svetlana Tomiczkova, Ph.D., from the Department of Mathematics of the Faculty of Applied Sciences at the University of West Bohemia for her invaluable help and proofreading of the text.

Funding

This work was funded by the Czech Science Foundation (Project Number 17-07690S) and by the Czech Ministry of Education, Youth and Sports (Project Number SGS-2019-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Vomáčka.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vomáčka, T., Kolingerová, I. & Maňák, M. Kinetic locally minimal triangulation: theoretical evaluation and combinatorial analysis. Vis Comput 36, 757–765 (2020). https://doi.org/10.1007/s00371-019-01657-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01657-y

Keywords

Navigation