Skip to main content

Advertisement

Log in

Physically based modeling and animation of landslides with MPM

The Visual Computer Aims and scope Submit manuscript

Abstract

Landslide is a disaster which may cause huge losses of human life and block the traffic on hilly area. In this paper, we present a new physically based model to simulate the dynamic flow of landslides, under a modified MPM (material point method) framework. To realistically simulate the characteristics of fracture and flow of soil medium in landslide, we introduce the modified Cambridge clay model (MCCM) from soil dynamics into the yield surface criterion to model the dynamic process of landslides. The interaction between soil and rock in the landslide is simulated by a level-set-based two-way fluid–solid coupling algorithm. Meanwhile, we propose a GPU-based optimization to calculate the signed distance function in level set to improve the efficiency of collision detection. We also simplify the hardening and softening parameter calculation algorithm of MCCM to reduce the calculation involved in landslide simulation. By choosing different values of the material yield surface parameters, various kinds of landslide disaster scenes with different cover area are successfully generated, including rocks rolling from hill, soil and rock collapsing, landslide flowing, and covering the road and cars. Experimental results demonstrate the potential of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Liu, S., Wang, Z., Zheng, G., Lei, H., Peng, Q.: Physically based animation of sandstorm. Comput. Animat. Virtual Worlds 18(4–5), 259–269 (2010)

    Google Scholar 

  2. Wang, C., Zhang, Q., Kong, F., Gao, Y.: Fast animation of debris flow with mixed adaptive grid refinement. Comput. Animat. Virtual Worlds 26(1), 3–14 (2015)

    Article  Google Scholar 

  3. Zhang, S., Kong, F., Li, C., Wang, C., Qin, H.: Hybrid modeling of multiphysical processes for particle-based volcano animation. Comput. Animat. Virtual Worlds 28, 3–4 (2017)

    Google Scholar 

  4. Miller, G., Pearce, A.: Globular dynamics: a connected particle system for animating viscous fluids. Comput. Graph. 13(3), 305–309 (1989)

    Article  Google Scholar 

  5. Zhu, Y., Bridson, R.: Animating sand as a fluid. ACM Trans. Graph. (TOG) 24(3), 965–972 (2005)

    Article  Google Scholar 

  6. Lenaerts, T., Dutre, P.: Mixing fluids and granular materials. Comput. Graph. Forum 28(2), 213–218 (2009)

    Article  Google Scholar 

  7. Alduan, I., Otaduy, M.A.: SPH granular flow with friction and cohesion. In: Proceedings of the 2011 ACM SIGGRAPH / Eurographics symposium on computer animation, pp 25–32 (2011)

  8. Ihmsen, M., Wahl, A., Teschner, M.: A Lagrangian framework for simulating granular material with high detail. Comput. Graph. 37(7), 800–808 (2013)

    Article  Google Scholar 

  9. Macklin, M., Müller, M., Chentanez, N., Kim, T.-Y.: Unified particle physics for real-time applications. ACM Trans. Graph. (TOG) 33(4), 153 (2014)

    Article  Google Scholar 

  10. Andersen, S., Andersen, L.: Modelling of landslides with the material-point method. Comput. Geosci. 14(1), 137–147 (2010)

    Article  MATH  Google Scholar 

  11. Soga, K., Alonso, E., Yerro, A., Kumar, K., Bandara, S., Kwan, J.S.H., Koo, R.C.H., Law, R.P.H., Yiu, J., Sze, E.H., Ho, K.K.: Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Gotechnique 68(5), 457–458 (2018)

    Article  Google Scholar 

  12. Mast, C.M., Mackenzie-Helnwein, P., Arduino, P., Miller, G.R.: Landslide and debris flow-induced static and dynamic loads on protective structures. In: Borja, R.I. (ed.) Multiscale and Multiphysics Processes in Geomechanics, pp. 169–172. Springer, Berlin (2011)

    Chapter  Google Scholar 

  13. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. (TOG) 32(4), 102 (2013)

    Article  MATH  Google Scholar 

  14. Stomakhin, A., Schroeder, C., Jiang, C., Chai, L., Teran, J., Selle, A.: Augmented MPM for phase-change and varied materials. ACM Trans. Graph. (TOG) 33(4), 138 (2014)

    Article  MATH  Google Scholar 

  15. Tampubolon, A.P., Gast, T., Klár, G., Fu, C., Teran, J., Jiang, C., Museth, K.: Multi-species simulation of porous sand and water mixtures. ACM Trans. Graph. (TOG) 36(4), 105 (2017)

    Article  Google Scholar 

  16. Ram, D., Gast, T., Jiang, C., Schroeder, C., Stomakhin, A., Teran, J., and Kavehpour, P.: A material point method for viscoelastic fluids, foams and sponges. In: Proceedings of the 14th ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, pp. 157–163 (2015)

  17. Jiang, C., Schroeder, C., Selle, A., Teran, J., Stomakhin, A.: The affine particle-in-cell method. ACM Trans. Graph. (TOG) 34(4), 51 (2015)

    MATH  Google Scholar 

  18. Carlson, M., Mucha, P.J., Turk, G.: Rigid fluid: animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (TOG) 23(3), 377–384 (2004)

    Article  Google Scholar 

  19. Narain, R., Golas, A., Lin, M.C.: Free-flowing granular materials with two-way solid coupling. ACM Trans. Graph. (TOG) 29(6), 173 (2010)

    Article  Google Scholar 

  20. Daviet, G., Bertails-Descoubes, F.: A semi-implicit material point method for the continuum simulation of granular materials. ACM Trans. Graph. (TOG) 35(4), 102 (2016)

    Article  Google Scholar 

  21. Hu, Y., Fang, Y., Ge, Z., Qu, Z., Zhu, Y., Pradhana, A., Jiang, C.: A moving least squares material point method with displacement discontinuity and two-way rigid body coupling. ACM Trans. Graph. (TOG) 37(4), 150 (2018)

    Google Scholar 

  22. Koschier, D., and Bender, J.: Density maps for improved SPH boundary handling. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, p. 1 (2017)

  23. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. (TOG) 32(4), 104 (2013)

    Article  MATH  Google Scholar 

  24. Yue, Y., Smith, B., Chen, P.Y., Chantharayukhonthorn, M., Kamrin, K., Grinspun, E., Hybrid grains: adaptive coupling of discrete and continuum simulations of granular media. In: SIGGRAPH Asia, : Technical Papers. ACM 2018, p. 283 (2018)

  25. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge university Press, Cambridge (1997)

    MATH  Google Scholar 

  26. Klár, G., Gast, T., Pradhana, A., Fu, C., Schroeder, C., Jiang, C., Teran, J.: Drucker-prager elastoplasticity for sand animation. ACM Trans. Graph. (TOG) 35(4), 103 (2016)

    Article  Google Scholar 

  27. Borja, R.I., Lee, S.R.: Cam-clay plasticity, part 1: implicit integration of elasto-plastic constitutive relations. Comput. Methods Appl. Mech. Eng. 78(1), 49–72 (1990)

    Article  MATH  Google Scholar 

  28. Zhang, S.-X., Chen, C.-Y., Zhang, F., and Wang, Z.-Y.: Physical solid fracture simulation based on random voronoi tessellation. In: 2016 International Conference on Computer Engineering and Information Systems. Atlantis Press, (2016)

  29. Gao, M., Wang, X., Wu, K., Pradhana, A., Sifakis, E., Yuksel, C., Jiang, C.: GPU optimization of material point methods. In: SIGGRAPH Asia, : Technical Papers. ACM 2018, p. 254 (2018)

Download references

Acknowledgements

This research work was supported partially by National Key R&D Program of China under Grant No. 2017YFB1002703, Natural Science Foundation of China under Grant No. U1736109 and 863 Program of China under Grant No. 2015AA016404. The authors thank Wei Li and Yuan Chen from Timeaxis Digital Studios Co., Ltd., for their help with 3D modeling of scenes, rendering, and video production. Many thanks are also to the reviewers for their helpful comments. There are no conflicts of interest with other people or entities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangye Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Chen, Y., Zhang, H. et al. Physically based modeling and animation of landslides with MPM. Vis Comput 35, 1223–1235 (2019). https://doi.org/10.1007/s00371-019-01709-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01709-3

Keywords

Navigation