Skip to main content
Log in

Evaluation on visualization methods of dynamic collaborative relationships for project management

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Using visualization methods to describe collaborative relationships can form a more intuitive and conducive graphical representation of these relationships, helping us better understand and analyze complex dynamic collaborative relationships. To explore a suitable visualization form for collaborative relationship analysis, we propose a task classification method to evaluate the two visual methods (node-link and adjacency matrix) which represent the static features and the three methods (animation, small multiples, and timeline) which represent the time characteristics of dynamic graphs. We present an evaluation system and design a task-based user evaluation experiment with the Dutch railway project data. By collecting and analyzing task completion time and error rates, we summarize our findings from the evaluation experiment and list three key recommendations to provide preliminary clues to visual designers: (1) Node-link has a better performance on small-scale project management. (2) Timeline has more advantages in the expression of project time management. (3) Animation will be a good choice when you need to check the status of tasks in the project management for a period of time. These findings can help the designers discover faster and more accurate ways to visualize the characteristics and changes of collaborative relationships, thus promoting the smooth progress of collaborative work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ahn, J., Plaisant, C., Shneiderman, B.: A task taxonomy for network evolution analysis. IEEE Trans. Vis. Comput. Graph. 20(3), 1 (2013)

    Google Scholar 

  2. Arendt, D.L., Blaha, L.M.: SVEN: informative visual representation of complex dynamic structure. Comput. Sci. (2014). arXiv:1412.6706

  3. Bach, B., Henry-Riche, N., Dwyer, T., Madhyastha, T., Fekete, J., Grabowski, T.: Small multipiles: piling time to explore temporal patterns in dynamic networks. Comput. Graph. Forum 34(3), 31–40 (2015)

    Article  Google Scholar 

  4. Bach, B., Pietriga, E., Fekete, J.D.: Graphdiaries: animated transitions and temporal navigation for dynamic networks. IEEE Trans. Vis. Comput. Graph. 20(5), 740 (2014)

    Article  Google Scholar 

  5. Bach, B., Pietriga, E., Fekete, J.D.: Visualizing dynamic networks with matrix cubes, pp. 877–886 (2014)

  6. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: A taxonomy and survey of dynamic graph visualization. Comput. Graph. Forum 36(1), 133–159 (2017)

    Article  Google Scholar 

  7. Behrisch, M., Bach, B., Henry Riche, N., Schreck, T., Fekete, J.D.: Matrix reordering methods for table and network visualization. Comput. Graph. Forum 35, 693–716 (2016)

    Article  Google Scholar 

  8. Borgo, R., Micallef, L., Bach, B., McGee, F., Lee, B.: Information visualization evaluation using crowdsourcing. Comput. Graph. Forum 37, 573–595 (2018)

    Article  Google Scholar 

  9. Caban, J.J., Rheingans, P., Yoo, T.: An evaluation of visualization techniques to illustrate statistical deformation models. Comput. Graph. Forum 30(3), 821–830 (2011)

    Article  Google Scholar 

  10. Carley, K.M.: Computational organizational science and organizational engineering. Simul. Modell. Pract. Theory 10(5), 253–269 (2002)

    Article  Google Scholar 

  11. Chang, C., Bach, B., Dwyer, T., Marriott, K.: Evaluating perceptually complementary views for network exploration tasks. In: CHI Conference on Human Factors in Computing Systems, pp. 1397–1407 (2017)

  12. Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graph. 6, 1009–1016 (2009)

    Article  Google Scholar 

  13. Farrugia, M., Quigley, A.: Effective Temporal Graph Layout: A Comparative Study of Animation Versus Static Display Methods. Palgrave Macmillan, London (2011)

    Google Scholar 

  14. Federico, P., Miksch, S.: Evaluation of Two Interaction Tech-niques for Visualization of Dynamic Graphs. Springer, New York (2016)

    MATH  Google Scholar 

  15. Fung, D.C., Li, S.S., Goel, A., Hong, S.H., Wilkins, M.R.: Visualization of the interactome: What are we looking at? Proteomics 12(10), 1669–1686 (2012)

    Article  Google Scholar 

  16. Ghoniem, M., Fekete, J.D., Castagliola, P.: A comparison of the readability of graphs using node-link and matrix-based representations. In: IEEE Symposium on Information Visualization, pp. 17–24 (2005)

  17. Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Möller, T.: A systematic review on the practice of evaluating visualization. IEEE Trans. Vis. Comput. Graph. 19(12), 2818–2827 (2013)

    Article  Google Scholar 

  18. Jianu, R., Rusu, A., Hu, Y., Taggart, D.: How to display group information on node-link diagrams: an evaluation. IEEE Trans. Vis. Comput. Graph. 20(11), 1530–1541 (2014)

    Article  Google Scholar 

  19. Kerracher, N., Kennedy, J.: Constructing and Evaluating Visualisation Task Classifications: Process and Considerations. Wiley, Hoboken (2017)

    Google Scholar 

  20. Kerracher, N., Kennedy, J., Chalmers, K.: A task taxonomy for temporal graph visualisation. IEEE Trans. Vis. Comput. Graph. 21(10), 1160–1172 (2015)

    Article  Google Scholar 

  21. Liu, S., Wu, Y., Wei, E., Liu, M., Liu, Y.: Storyflow: tracking the evolution of stories. IEEE Trans. Vis. Comput. Graph. 19(12), 2436–2445 (2013)

    Article  Google Scholar 

  22. Lu, Q., Zhu, X.Y., Liu, L., Cao, S.B.: An effective demonstration for group collaboration based on storyline visualization technology. In: IEEE International Conference on Computer Supported Cooperative Work in Design, pp. 47–52 (2014)

  23. Ma, K.L.: Stargate: a unified, interactive visualization of software projects. In: Visualization Symposium (2008)

  24. Marriott, K., Purchase, H., Wybrow, M., Goncu, C.: Memorability of visual features in network diagrams. IEEE Trans. Vis. Comput. Graph. 18(12), 2477–85 (2012)

    Article  Google Scholar 

  25. Ogawa, M., Ma, K.L.: Software evolution storylines. In: ACM 2010 Symposium on Software Visualization, Salt Lake City, pp. 35–42 (2010)

  26. Okoe, M., Jianu, R.: Graphunit: evaluating interactive graph visualizations using crowdsourcing. In: Eurographics Conference on Visualization, pp. 451–460 (2015)

  27. Qiang, L., Chai, B., Zhang, H.: Storytelling by the storycake visualization. Vis. Comput. 33(46), 1–12 (2017)

    Google Scholar 

  28. Ribeiro, F.C., Souza, J.M.D., Paula, M.M.V.D.: Use of information visualization techniques in a collaborative context. In: IEEE International Conference on Computer Supported Cooperative Work in Design, pp. 79–84 (2015)

  29. Shi, Y., Bryan, C., Bhamidipati, S., Zhao, Y., Zhang, Y., Ma, K.L.: Meetingvis: visual narratives to assist in recalling meeting context and content. IEEE Trans. Vis. Comput. Graph. 24(6), 1918–1929 (2018)

    Article  Google Scholar 

  30. Sébastien, R., Mcguffin, M.J.: Diffani: visualizing dynamic graphs with a hybrid of difference maps and animation. IEEE Trans. Vis. Comput. Graph. 19(12), 2556 (2013)

    Article  Google Scholar 

  31. Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualizations. IEEE Trans. Vis. Comput. Graph. 18(12), 2679 (2012)

    Article  Google Scholar 

  32. Wu, Y., Pitipornvivat, N., Zhao, J., Yang, S., Huang, G., Qu, H.: Egoslider: visual analysis of egocentric network evolution. IEEE Trans. Vis. Comput. Graph. 22(1), 260–269 (2015)

    Article  Google Scholar 

  33. Yoghourdjian, V., Archambault, D., Diehl, S., Dwyer, T., Klein, K., Purchase, H.C., Wu, H.Y.: Exploring the limits of complexity: a survey of empirical studies on graph visualisation. Vis. Inf. 2(4), 264–282 (2019)

    Google Scholar 

  34. Zhao, Y., Luo, F., Chen, M., Wang, Y., Xia, J., Zhou, F., Wang, Y., Chen, Y., Chen, W.: Evaluating multi-fuzzy clusters. IEEE Trans. Vis. Comput. Graph. 25(1), 12–21 (2018)

    Article  Google Scholar 

  35. Zhen, L., Wu, X., Zheng, Q.: A survey of dynamic network visualization and visual analysis. J. Comput. Aided Design Comput. Graph. 28(5), 693–701 (2016)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61972130 and 61906061, partly supported by the Key Research and Development Plan of Anhui Province under Grant No. 1704d0802177, partly supported by the Natural Science Foundation of Anhui Province of China under Grant No. 1708085MF158, and also partly supported by the Key Project of Transformation and Industrialization of Scientific and Technological Achievements of Intelligent Manufacturing Technology Research Institute of Hefei University of Technology under Grant No. IMICZ2017010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Huang, J., Zhang, Q. et al. Evaluation on visualization methods of dynamic collaborative relationships for project management. Vis Comput 37, 161–174 (2021). https://doi.org/10.1007/s00371-019-01789-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-019-01789-1

Keywords

Navigation