Skip to main content
Log in

Face recognition in unconstrained environment with CNN

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In recent years, convolutional neural networks have proven to be a highly efficient approach for face recognition. In this paper, we develop such a framework to learn a robust face verification in an unconstrained environment using aggressive data augmentation. Our objective is to learn a deep face representation from large-scale data with massive noisy and occluded face. Besides, we add an adaptive fusion of softmax loss and center loss as supervision signals, which are helpful to improve the performance and to conduct the final classification. The experiment results show that the suggested system achieves comparable performances with other state-of-the-art methods on the Labeled Faces in the Wild and YouTube face verification tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu, Y., Zhu, Q., Fan, Z., Zhang, D., Mi, J., Lai, Z.: Using the idea of the sparse representation to perform coarse to-fine face recognition. Inf. Sci. 238, 138–148 (2013)

    Article  MathSciNet  Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

  3. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

  4. Lei, Z., Chu, R., He, R., Liao, S., Li, S. Z.: Face recognition by discriminant analysis with Gabor tensor representation. In: International Conference on Biometrics, pp. 87–95. Springer, Berlin (2007)

  5. Sun, Y., Chen, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, pp. 1988–1996 (2014)

  6. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: Deepface: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

  7. Yi, D., Lei, Z., Liao, S., Li, S.Z.: Learning face representation from scratch. arXiv:1411.7923 (2014)

  8. Choi, J.Y.: Spatial pyramid face feature representation and weighted dissimilarity matching for improved face recognition. Vis. Comput. 34(11), 1535–1549 (2018)

    Article  Google Scholar 

  9. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

  10. LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1(4), 541–551 (1989)

    Article  Google Scholar 

  11. Yaeger, L., Lyon, R., Webb, B.: Effective training of a neural network character classifier for word recognition. In: Advances in Neural Information Processing Systems, pp. 807–813 (1996)

  12. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

  13. Faiedh, H., Hamdi, S., Bouguezzi, S., Farhat, W., Souani, C.: Architectural exploration of multilayer perceptron models for on-chip and real-time road sign classification. Pro. Inst. Mech. Eng. Part I J. Syst. Control Eng. 232(6), 772–783 (2018)

    Google Scholar 

  14. Farhat, W., Sghaier, S., Faiedh, H., Souani, C.: Design of efficient embedded system for road sign recognition. J. Ambient Intell. Humanized Comput. 10, 1–17 (2018)

    Google Scholar 

  15. Fredj, H.B., Ltaif, M., Ammar, A., Souani, C.: Parallel implementation of Sobel filter using CUDA. In: International Conference on Control Automation and Diagnosis (ICCAD), pp. 209–212 (2017)

  16. Wang, B., Chen, S., Wang, J., Hu, X.: Residual feature pyramid networks for salient object detection. Vis. Comput. 35, 1–12 (2019). https://doi.org/10.1007/s00371-019-01779-3

    Article  Google Scholar 

  17. Xi, P., Guan, H., Shu, C., Borgeat, L., Goubran, R.: An integrated approach for medical abnormality detection using deep patch convolutional neural networks. Vis. Comput. 35, 1–14 (2019). https://doi.org/10.1007/s00371-019-01775-7

    Article  Google Scholar 

  18. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

  19. Sun, Y., Wang, X., Tang, X.: Deep learning face representation from predicting 10,000 classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1891–1898 (2014)

  20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

  21. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets, 2014. arXiv:1405.3531

  22. Guo, K., Wu, S., Xu, Y.F.: Face recognition using both visible light image and near-infrared image and a deep network. CAAI Trans. Intell. Technol. 2(1), 39–47 (2017)

    Article  Google Scholar 

  23. An, F., Liu, Z.: Facial expression recognition algorithm based on parameter adaptive initialization of CNN and LSTM. Vis. Comput. 35, 1–16 (2019). https://doi.org/10.1007/s00371-019-01635-4

    Article  Google Scholar 

  24. Lv, J.J., Cheng, C., Tian, G.D., Zhou, X.D., Zhou, X.: Landmark perturbation-based data augmentation for unconstrained face recognition. Sig. Process. Image Commun. 47, 465–475 (2016)

    Article  Google Scholar 

  25. Wu, X., He, R., Sun, Z., Tan, T.: A light cnn for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  26. Zhang, Y., Shang, K., Wang, J., Li, N., Zhang, M.M.: Patch strategy for deep face recognition. IET Image Proc. 12(5), 819–825 (2018)

    Article  Google Scholar 

  27. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for deep face recognition. In: European Conference on Computer Vision, pp. 499–515. Springer, Cham (2016)

  28. Wen, G., Chen, H., Cai, D., He, X.: Improving face recognition with domain adaptation. Neurocomputing 287, 45–51 (2018)

    Article  Google Scholar 

  29. Devries, T., Biswaranjan, K., Taylor, G.W.: Multi-task learning of facial landmarks and expression. In: Canadian Conference on Computer and Robot Vision, Montreal, QC, pp. 98–103 (2014)

  30. Wang, X., Wang, K., Lian, S.: A survey on face data augmentation. arXiv:1904.11685 (2019)

  31. Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)

    Article  Google Scholar 

  32. Qi, C., Su, F.: Contrastive-center loss for deep neural networks. In: IEEE International Conference on Image Processing (ICIP) pp. 2851–2855 (2017)

  33. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  34. Deng, J., Guo, J., Zhou, Y., Yu, J., Kotsia, I., Zafeiriou, S.: RetinaFace: single-stage dense face localisation in the wild. arXiv:1905.00641 (2019)

  35. Masi, I., Trần, A.T., Hassner, T., Leksut, J.T., Medioni, G.: Do we really need to collect millions of faces for effective face recognition? In: European Conference on Computer Vision, pp. 579–596. Springer, Cham (2016)

  36. Leng, B., Yu, K., Jingyan, Q.I.N.: Data augmentation for unbalanced face recognition training sets. Neurocomputing 235, 10–14 (2017)

    Article  Google Scholar 

  37. Lv, J.J., Shao, X.H., Huang, J.S., Zhou, X.D., Zhou, X.: Data augmentation for face recognition. Neurocomputing 230, 184–196 (2017)

    Article  Google Scholar 

  38. Sun, Y., Wang, X., Tang, X.: Deep learning face representation by joint identification-verification. In: Advances in Neural Information Processing Systems, Montreal, Canada, pp. 1988–1996 (2014)

  39. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, pp. 2892–2900 (2015)

  40. Yi, D., Lei, Z., Liao, S., et al.: Learning face representation from scratch. arXiv:1411.7923 (2014)

  41. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

  42. Hu, W., Huang, Y., Zhang, F., Li, R., Li, W., Yuan, G.: SeqFace: make full use of sequence information for face recognition. arXiv:1803.06524 (2018)

  43. Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., Liu, W. (2018). Cosface: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hana Ben Fredj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Fredj, H., Bouguezzi, S. & Souani, C. Face recognition in unconstrained environment with CNN. Vis Comput 37, 217–226 (2021). https://doi.org/10.1007/s00371-020-01794-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01794-9

Keywords

Navigation