Skip to main content
Log in

Privacy-preserving video fall detection using visual shielding information

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In recent years, fall detection, especially for the elderly living alone at home, is a challenge in the field of computer vision and pattern recognition. However, there is a concern of loss of privacy in intelligent visual surveillance. In order to solve the contradiction between security surveillance and privacy protection in vision-based fall detection methods, we propose a concept named visual shielding, which can be applied to eliminate visual information but not reduce monitoring function. In the preprocessing, the multilayer compressed sensing is used to compress video frames to achieve visual shielding effect. Then, object region is separated from shielded videos by the low-rank and sparse decomposition theory, based on which to extract motion trajectory features of the object via the dense trajectory algorithm. Finally, the fall detection issue is transformed into the sparse recognition problem of the signal. Experimental results on three public fall databases show that the specificity and sensitivity of the proposed method can be maintained at an ideal level, which has the dual advantages of high privacy protection and high recognition accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ambrose, A.F., Paul, G., Hausdorff, J.M.: Risk factors for falls among older adults: a review of the literature. Maturitas 75(1), 51–61 (2013)

    Article  Google Scholar 

  2. Noury, N., Rumeau, P., Bourke, A.K., óLaighin, G., Lundy, J.E.: A proposal for the classification and evaluation of fall detectors. Irbm 29(6), 340–349 (2008)

    Article  Google Scholar 

  3. Igual, R., Medrano, C., Plaza, I.: Challenges, issues and trends in fall detection systems. Biomed. Eng. Online 12(1), 66–66 (2013)

    Article  Google Scholar 

  4. Mousse, M.A., Motamed, C., Ezin, Eugène, C.: Percentage of human-occupied areas for fall detection from two views. Vis. Comput. 33(12), 1529–1540 (2017)

    Article  Google Scholar 

  5. Tao, J., Turjo, M., Wong, M.F., Wang, M., Tan, Y.P.: Fall incidents detection for intelligent video surveillance. In: 5th IEEE International Conference on Information, Communications and Signal Processing, pp. 1590–1594 (2005)

  6. Mastorakis, G., Makris, D.: Fall detection system using Kinect’s infrared sensor. J. Real Time Image Process. 9(4), 635–646 (2014)

    Article  Google Scholar 

  7. Li, Y., Ho, K.C., Popescu, M.: A microphone array system for automatic fall detection. IEEE Trans. Biomed. Eng. 59(5), 1291–1301 (2012)

    Article  Google Scholar 

  8. Zhong, Z., Conly, C., Athitsos, V.: A survey on vision-based fall detection. In: ACM International Conference on Pervasive Technologies Related to Assistive Environments, pp. 1–7 (2015)

  9. Debard, G., Karsmakers, P., Deschodt, M., Vlaeyen, E., Dejaeger, E., Milisen, K. et al.: Camera-Based fall detection on real world data. In: Theoretical Foundations of Computer Vision, pp. 356–375 (2012)

  10. Auvinet, E., Multon, F., Saint-Arnaud, A., Rousseau, J., Meunier, J.: Fall detection with multiple cameras: an occlusion-resistant method based on 3-d silhouette vertical distribution. IEEE Trans. Inf. Technol. Biomed. 15(2), 290–300 (2011)

    Article  Google Scholar 

  11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  12. Emmanuel, J., Candès, Li, X., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3), 1–37 (2011)

    MathSciNet  MATH  Google Scholar 

  13. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103(1), 60–79 (2013)

    Article  MathSciNet  Google Scholar 

  14. Shoaib, M., Dragon, R., Ostermann, J.: View-invariant fall detection for elderly in real home environment. In: Proceedings of the Fourth Pacific-Rim Symposium on Image Video Technology, pp. 52–57 (2010)

  15. Dafeng, W., Yongkui, L., Shuang, L., Wenxing, B., Wei, W.: Abnormal behavior recognition of fall in surveillance video. Electron. Des. Eng. 24(22), 1126–1222 (2016)

    Google Scholar 

  16. Mirmahboub, B., Samavi, S., Karimi, N., Shirani, S.: Automatic monocular system for human fall detection based on variations in silhouette area. IEEE Trans. Biomed. Eng. 60(2), 427–436 (2013)

    Article  Google Scholar 

  17. Rougier, C., Meunier, J., St-Arnaud, A., Rousseau, J.: Robust video surveillance for fall detection based on human shape deformation. IEEE Trans. Circuits Syst. Video Technol. 21(5), 611–622 (2011)

    Article  Google Scholar 

  18. Foroughi, H., Aski, B.S., Pourreza, H.: Intelligent video surveillance for monitoring fall detection of elderly in home environments. In: IEEE International Conference on Computer and Information Technology, pp. 219–224 (2008)

  19. Zerrouki, N., Houacine, A.: Combined curvelets and hidden Markov models for human fall detection. Multimed. Tools Appl. 77, 6405–6424 (2018)

    Article  Google Scholar 

  20. Qian, H., Mao, Y., Xiang, W., Wang, Z.: Home environment fall detection system based on a cascaded Multi-SVM classifier. In: International Conference on Control, Automation, Robotics and Vision, pp. 1567–1572 (2008)

  21. Anderson, D., Keller, J.M., Skubic, M., Chen, X., He, Z.: Recognizing falls from silhouettes. In: International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 6388–6391 (2006)

  22. Charfi, I., Miteran, J., Dubois, J., Atri, M., Tourki, R.: Definition and performance evaluation of a robust SVM based fall detection solution. In: International Conference on Signal Image Technology and Internet Based Systems, pp. 218–224 (2012)

  23. Poonsri, A., Chiracharit,W.: Fall detection using Gaussian mixture model and principle component analysis. In: 2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE), pp. 1–4 (2017)

  24. Kwolek, B., Kepski, M.: Human fall detection on embedded platform using depth maps and wireless accelerometer. Comput. Methods Prog. Biomed. 117(3), 489–501 (2014)

    Article  Google Scholar 

  25. Wang, S., Chen, L., Zhou, Z., Sun, X., Dong, J.: Human fall detection in surveillance video based on pcanet. Multimed. Tools Appl. 75(19), 11603–11613 (2016)

    Article  Google Scholar 

  26. Chua, J.L., Chang, Y.C., Lim, W.K.: A simple vision-based fall detection technique for indoor video surveillance. Signal Image Video Process. 9(3), 623–633 (2015)

    Article  Google Scholar 

  27. Lee, T., Mihailidis, A.: An intelligent emergency response system: preliminary development and testing of automated fall detection. J. Telemed. Telecare 11(4), 194–198 (2005)

    Article  Google Scholar 

  28. Mubashir, M., Shao, L., Seed, L.: A survey on fall detection: principles and approaches. Neurocomputing 100, 144–152 (2013)

    Article  Google Scholar 

  29. Rougier, C., Meunier, J.: Demo: Fall detection using 3d head trajectory extracted from a single camera video sequence. In: Proceedings of the First International Work-shop on Video Processing for Security (2006)

  30. Candes, E.J., Tao, T.: Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  Google Scholar 

  31. Zha, Z., Liu, L., Zhang, X.: Compressed sensing image reconstruction via adaptive sparse nonlocal regularization. Vis. Comput. 34(1), 117–137 (2018)

    Article  Google Scholar 

  32. Emmanuel, JCandès: The restricted isometry property and its implications for compressed sensing. C. R. Math. 346((9–10)), 589–592 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Gan, L.: Block compressed sensing of natural images. In: IEEE International Conference on Digital Signal Processing, pp. 403–406 (2007)

  34. Jixin, L., Quansen, S.: Chaotic cellular automaton for generating measurement matrix used in CS coding. IET Signal Process. 11(1), 115–122 (2017)

    Article  Google Scholar 

  35. ORL face database. https://www.cl.cam.ac.uk/research/dtg/attarchive/face database.html. Accessed 16 Nov 2018

  36. Wright, J., Ganesh, A., Zhou Z, Wanger, A., Ma, Y.: Demo: Robust face recognition via sparse representation. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 1–2 (2009)

  37. Weinland, D., Ronfard, R., Boyer, E.: A survey of vision-based methods for action representation, segmentation and recognition. Comput. Vis. Image Underst. 115(2), 224–241 (2011)

    Article  Google Scholar 

  38. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE PAMI 35(1), 221–231 (2013)

    Article  Google Scholar 

  39. Xue, Z., Dong, J., Zhao, Y., Liu, C., Chellali, R.: Low-rank and sparse matrix decomposition via the truncated nuclear norm and a sparse regularizer. Vis. Comput. 35, 1549–1566 (2019)

    Article  Google Scholar 

  40. Zhou, T., Tao, D.: GoDec: randomized low rank and sparse matrix decomposition in noisy case. Int. Conf. Mach. Learn. 31(6), 33–40 (2011)

    Google Scholar 

  41. Daniilidis, K., Maragos, P., Paragios, N.: improving the fisher kernel for large-scale image classification. ECCV 13, 143–156 (2010)

    Google Scholar 

  42. Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13(6), 1450–64 (2012)

    Article  Google Scholar 

  43. Patel, V.M., Wu, T., Biswas, S., Phillips, P.J., Chellappa, R.: Dictionary-based face recognition under variable lighting and pose. IEEE Trans. Inf. Forensics Secur. 7(3), 954–965 (2012)

    Article  Google Scholar 

  44. Jixin, L., Quansen, S.: Sparse recognition via intra-class dictionary learning using visual saliency information. Neurocomputing 196, 70–81 (2016)

    Article  Google Scholar 

  45. Kwolek, B., Kepski, M.: Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 168, 637–645 (2015)

    Article  Google Scholar 

  46. Auvinet, E., Rougier, C., Meunier, J., St-Arnaud, A., Rousseau,J.: Multiple cameras fall data set. Technical Report 1350. DIRO Université de Montréal (2010)

Download references

Funding

This work was supported by funds from the Provincial Natural Science Foundation of the Science and Technology Bureau of Jiangsu Province (Grant No. BK20180088), the China Postdoctoral Science Foundation (Grant No. 2019M651916), the Scientific Research Foundation of Nanjing University of Posts and Telecommunications (Grant No. NY218066) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX18_0919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jixin Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xia, Y. & Tang, Z. Privacy-preserving video fall detection using visual shielding information. Vis Comput 37, 359–370 (2021). https://doi.org/10.1007/s00371-020-01804-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01804-w

Keywords

Navigation