Skip to main content
Log in

Compression of geometry videos by 3D-SPECK wavelet coder

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

A geometry video is formed as a sequence of geometry images where each frame is a remeshed form of a frame of an animated mesh sequence. For efficiently coding geometry videos by exploiting temporal as well spatial correlation at multiple scales, this paper proposes the 3D-SPECK algorithm which has been successfully applied to the coding of volumetric medical image data and hyperspectral image data in the past. The paper also puts forward several postprocessing operations on the reconstructed surfaces that compensate for the visual artifacts appearing in the form of undulations due to the loss of high-frequency wavelet coefficients, cracks near geometry image boundaries due to vertex coordinate quantization errors and serrations due to regular or quad splitting triangulation of local regions of large anisotropic geometric stretch. Experimental results on several animated mesh sequences demonstrate the superiority of the subjective and objective coding performances of the newly proposed approach to those of the commonly recognized animated mesh sequence coding approaches at low and medium coding rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Alexa, M., Müller, W.: Representing animations by principal components. Comput. Graph. Forum 19, 411–418 (2000)

    Article  Google Scholar 

  2. Islam, A., Pearlman, W.A.: Embedded and efficient lowcomplexity hierarchical image coder. In: Visual Communications and Image Processing 1999. SPIE (1998). https://doi.org/10.1117/12.334677

  3. Bayazit, U.: A greedy region growing algorithm for anisotropic stretch adaptive triangulation of geometry images. Graph. Models (2019). https://doi.org/10.1016/j.gmod.2019.101045

    Article  Google Scholar 

  4. Boulfani Cuisinaud, Y., Antonini, M.: Motion-based geometry compensation for dwt compression of 3d mesh sequences. In: ICIP (1), pp. 217–220. IEEE (2007). http://dblp.uni-trier.de/db/conf/icip/icip2007-1.html#Boulfani-CuisinaudA07

  5. Briceño, H.M., Sander, P.V., McMillan, L., Gortler, S.J., Hoppe, H.: Geometry videos: a new representation for 3d animations. In: Parent, R., Singh, K., Breen, D.E., Lin, M.C. (eds.) Symposium on Computer Animation, pp. 136–146. The Eurographics Association (2003). http://dblp.uni-trier.de/db/conf/sca/sca2003.html#BricenoSMGH03

  6. Castro, D.d.l.I.: Pyntcloud (2019). https://pypi.org/project/pyntcloud/

  7. Chew, B.S., Chau, L.P., He, Y., Wang, D., Hoi, S.C.H.: Spectral geometry image: image based 3d models for digital broadcasting applications. TBC 57(3), 636–645 (2011)

    Google Scholar 

  8. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring error on simplified surfaces. Comput. Graph. Forum 17(2), 167–174 (1998)

    Article  Google Scholar 

  9. Cohen-Steiner, D., Da, F.: A greedy delaunay-based surface reconstruction algorithm. Vis. Comput. 20(1), 4–16 (2004)

    Article  Google Scholar 

  10. Collins, G., Hilton, A.: A rigid transform basis for animation compression and level of detail. In: Chantler, M. (ed.) Vision, Video, and Graphics. The Eurographics Association, Aire-la-Ville (2005). https://doi.org/10.2312/vvg.20051003

    Chapter  Google Scholar 

  11. Digne, J., Morel, J.M., Mehdi-Souzani, C., Lartigue, C.: Scale space meshing of raw data point sets. Comput. Graph. Forum 30, 1630–1642 (2011). https://doi.org/10.1111/j.1467-8659.2011.01848.x

    Article  Google Scholar 

  12. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997). https://doi.org/10.1016/S0167-8396(96)00031-3

    Article  MathSciNet  MATH  Google Scholar 

  13. Gu, X., Gortler, S.J., Hoppe, H.: Geometry images. ACM Trans. Graph. 21(3), 355–361 (2002)

    Article  Google Scholar 

  14. Gu, X., Wang, Y., Yau, S.T.: Geometric compression using Riemann surface structure. Commun. Inf. Syst. 3(3), 171–182 (2004)

    MathSciNet  MATH  Google Scholar 

  15. Gu, X., Yau, S.T.: Global conformal parameterization. In: Kobbelt, L., Schröder, P., Hoppe, H. (eds.) Symposium on Geometry Processing, ACM International Conference Proceeding Series, vol. 43, pp. 127–137. Eurographics Association (2003). http://dblp.uni-trier.de/db/conf/sgp/sgp2003.html#GuY03

  16. Gu, X., Zhang, S., Huang, P., Zhang, L., Yau, S.T., Martin, R.: Holoimages. In: Proceedings of the 2006 ACM Symposium on Solid and Physical Modeling, SPM ’06, pp. 129–138. ACM, New York, NY, USA (2006). https://doi.org/10.1145/1128888.1128906

  17. Guskov, I., Khodakovsky, A.: Wavelet compression of parametrically coherent mesh sequences. In: Badler, N.I., Desbrun, M., Boulic, R., Pai, D.K. (eds.) Symposium on Computer Animation, pp. 183–192. The Eurographics Association (2004). http://dblp.uni-trier.de/db/conf/sca/sca2004.html#GuskovK04

  18. Habe, H., Katsura, Y., Matsuyama, T.: Skin-off: representation and compression scheme for 3d video. In: in Proceedings of Picture Coding Symposium (PCS ’04), pp. 301–306 (2004)

  19. Hajizadeh, M., Ebrahimnezhad, H.: NLME: a nonlinear motion estimation-based compression method for animated mesh sequence. Vis. Comput. 36(3), 649–665 (2020)

    Article  Google Scholar 

  20. Hou, J., Chau, L.P., He, Y., Zhang, M., Magnenat-Thalmann, N.: Rate-distortion model based bit allocation for 3-d facial compression using geometry video. IEEE Trans. Circuits Syst. Video Techol. 23(9), 1537–1541 (2013)

    Article  Google Scholar 

  21. Hou, J., Chau, L.P., Magnenat-Thalmann, N., He, Y.: Compressing 3-d human motions via keyframe-based geometry videos. IEEE Trans. Circuits Syst. Video Technol. 25(1), 51–62 (2015)

    Article  Google Scholar 

  22. Hou, J., Chau, L.P., Zhang, Magnenat-Thalmann, N., He, Y.: A highly efficient compression framework for time-varying 3-d facial expressions. IEEE Trans. Circuits Syst. Video Technol. 24(9), 1541–1553 (2014). https://doi.org/10.1109/TCSVT.2014.2313890

    Article  Google Scholar 

  23. Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3d animations of triangle meshes with fixed connectivity. In: Symposium on Computer Animation, pp. 126–135. The Eurographics Association (2003)

  24. Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Comput. Graph. 28(1), 25–34 (2004)

    Article  Google Scholar 

  25. Karpinsky, N., Zhang, S.: Holovideo: real-time 3d range video encoding and decoding on GPU. Opt. Lasers Eng. 50(2), 280–286 (2012). https://doi.org/10.1016/j.optlaseng.2011.08.002

    Article  Google Scholar 

  26. Karpinsky, N., Zhang, S.: 3D range geometry video compression with the H. 264 codec. Opt. Lasers Eng. 51, 620–625 (2013). https://doi.org/10.1016/j.optlaseng.2012.12.021

    Article  Google Scholar 

  27. Mamou, K., Zaharia, T., Prêteux, F.: TFAN: a low complexity 3d mesh compression algorithm. J. Vis. Comput. Anim. 20, 343–354 (2009). https://doi.org/10.1002/cav.319

    Article  Google Scholar 

  28. Mamou, K., Zaharia, T.B., Prêteux, F.J.: A skinning approach for dynamic 3d mesh compression. J. Vis. Comput. Anim. 17(3–4), 337–346 (2006)

    Google Scholar 

  29. Mamou, K., Zaharia, T.B., Prêteux, F.J.: FAMC: The MPEG-4 standard for animated mesh compression. In: ICIP, pp. 2676–2679. IEEE (2008). http://dblp.uni-trier.de/db/conf/icip/icip2008.html#MamouZP08

  30. Marpe, D., Wiegand, T., Schwarz, H.: Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 620–636 (2003)

    Article  Google Scholar 

  31. Mekuria, R.: MPEG reference software with OpenCTM for benchmarking MPEG graphics codecs and datasets from live reconstruction (2015). https://github.com/kmammou/openFAMC

  32. Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. Vis. Math. 3(7), 34–57 (2002)

    MATH  Google Scholar 

  33. Müller, K., Smolic, A., Kautzner, M., Wiegand, T.: Rate-distortion optimization in dynamic mesh compression. In: ICIP, pp. 533–536. IEEE (2006). http://dblp.uni-trier.de/db/conf/icip/icip2006.html#MullerSKW06

  34. Payan, F., Antonini, M.: Temporal wavelet-based geometry coder for 3D animated models. Comput. Graph. 31(1), 77–88 (2007). https://doi.org/10.1016/j.cag.2006.09.009

    Article  Google Scholar 

  35. Pearlman, W.A., Islam, A., Nagaraj, N., Said, A.: Efficient, low-complexity image coding with a set-partitioning embedded block coder. IEEE Trans. Circuits Syst. Video Technol. 14(11), 1219–1235 (2004). https://doi.org/10.1109/TCSVT.2004.835150

    Article  Google Scholar 

  36. Peercy, M.S., Airey, J., Cabral, B.: Efficient bump mapping hardware. In: Owen, G.S., Whitted, T., Mones-Hattal, B. (eds.) SIGGRAPH, pp. 303–306. ACM (1997). http://dblp.uni-trier.de/db/conf/siggraph/siggraph1997.html#PeercyA-C97

  37. Pereira, F.C., Ebrahimi, T.: The MPEG-4 Book. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  38. Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Trans. Graph. 22(3), 340–349 (2003)

    Article  Google Scholar 

  39. Quynh, D.T., He, Y., Chen, X., Xia, J., Sun, Q., Hoi, S.C.: Modeling 3d articulated motions with conformal geometry videos (CGVS). In: Proceedings of the 19th ACM International Conference on Multimedia, MM ’11, pp. 383–392. ACM, New York, NY, USA (2011). https://doi.org/10.1145/2072298.2072349

  40. Rau, C.: OpenGI—easy parameterization and geometry image creation. http://opengi.sourceforge.net/ (2011)

  41. Ricard, J.: Video codec based point cloud compression (V-PCC) test model (2019). https://github.com/MPEGGroup/mpeg-pcc-tmc2

  42. Sander, P.V., Gortler, S.J., Snyder, J., Hoppe, H.: Signal-specialized parametrization. In: Proceedings of the 13th Eurographics Workshop on Rendering, EGRW ’02, pp. 87–98. Eurographics Association, Aire-la-Ville (2002). http://dl.acm.org/citation.cfm?id=581896.581909

  43. Sander, P.V., Snyder, J., Gortler, S.J., Hoppe, H.: Texture mapping progressive meshes. In: Pocock, L. (ed.) SIGGRAPH, pp. 409–416. ACM (2001). http://dblp.uni-trier.de/db/conf/siggraph/siggraph2001.html#SanderS-GH01

  44. Sattler, M., Sarlette, R., Klein, R.: Simple and efficient compression of animation sequences. In: Terzopoulos, D., Zordan, V.B., Anjyo, K., Faloutsos, P. (eds.) Symposium on Computer Animation, pp. 209–217. ACM (2005). http://dblp.uni-trier.de/db/conf/sca/sca2005.html#SattlerSK05

  45. Schwarz, S., Preda, M., Baroncini, V., Budagavi, M., Cesar, P., Chou, P.A., Cohen, R.A., Krivokuća, M., Lasserre, S., Li, Z., Llach, J., Mammou, K., Mekuria, R., Nakagami, O., Siahaan, E., Tabatabai, A., Tourapis, A.M., Zakharchenko, V.: Emerging MPEG standards for point cloud compression. IEEE J. Emerging Sel. Top. Circuits Syst. 9(1), 133–148 (2019). https://doi.org/10.1109/JETCAS.2018.2885981

    Article  Google Scholar 

  46. Stefanoski, N., Klie, P., Liu, X., Ostermann, J.: Layered predictive coding of time-consistent dynamic 3d meshes using a non-linear predictor. In: ICIP (5), pp. 109–112. IEEE (2007). http://dblp.uni-trier.de/db/conf/icip/icip2007-5.html#StefanoskiKLO07

  47. Sumner, R.W., Po-povic, J.: Mesh data from deformation transfer for triangle meshes (2004). http://people.csail.mit.edu/sumner/research/deftransfer-/data.html

  48. Tang, X., Pearlman, W.A.: Three-Dimensional Wavelet-Based Compression of Hyperspectral Images, pp. 273–308. Springer, Boston (2006). https://doi.org/10.1007/0-387-28600-4_10

    Book  Google Scholar 

  49. Taubin, G.: Curve and surface smoothing without shrinkage. In: Proceedings of IEEE International Conference on Computer Vision, pp. 852–857 (1995)

  50. Vasa, L.: Geometric Laplacian dynamic mesh encoder (1.03, with kgcomparer) (2015). http://meshcompression.org/software-tools

  51. Vlasic, D., Baran, I., Matusik, W.: Articulated mesh animation from multi-view silhouettes. http://people.csail.mit.edu/drdaniel/mesh_animation/in-dex.html (2008)

  52. Vása, L., Marras, S., Hormann, K., Brunnett, G.: Compressing dynamic meshes with geometric Laplacians. Comput. Graph. Forum 33(2), 145–154 (2014)

    Article  Google Scholar 

  53. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 560–576 (2003). https://doi.org/10.1109/TCSVT.2003.815165

    Article  Google Scholar 

  54. Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987). https://doi.org/10.1145/214762.214771

    Article  Google Scholar 

  55. Xia, J., He, Y., Quynh, D.P., Chen, X., Hoi, S.C.: Modeling 3D facial expressions using geometry videos. In: Proceedings of the 18th ACM International Conference on Multimedia, MM ’10, pp. 591–600. ACM, New York, NY, USA (2010). https://doi.org/10.1145/1873951.1874010

  56. Xia, J., Quynh, D.T.P., He, Y., Chen, X., Hoi, S.C.H.: Modeling and compressing 3-d facial expressions using geometry videos. IEEE Trans. Circuits Syst. Video Technol. 22(1), 77–90 (2012)

    Article  Google Scholar 

  57. Xu, J., Joshi, R.L., Cohen, R.A.: Overview of the emerging HEVC screen content coding extension. IEEE Trans. Circuits Syst. Video Technol. 26(1), 50–62 (2016). https://doi.org/10.1109/TCSVT.2015.2478706

    Article  Google Scholar 

  58. Yoshizawa, S., Belyaev, A., Seidel, H.P.: A fast and simple stretch-minimizing mesh parameterization. In: Proceedings of the Shape Modeling International 2004, pp. 200–208. IEEE Computer Society, Washington, DC, USA (2004). https://doi.org/10.1109/SMI.2004.2

Download references

Acknowledgements

Mesh data used in this work was made available by Robert Sumner and Jovan Popovic, and by Daniel Vlasic, Ilya Baran, Wojciech Matusik, Jovan Popović from the Computer Graphics Group at MIT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canan Gulbak Bahce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 0 KB)

Supplementary material 2 (txt 0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahce, C.G., Bayazit, U. Compression of geometry videos by 3D-SPECK wavelet coder. Vis Comput 37, 973–991 (2021). https://doi.org/10.1007/s00371-020-01847-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01847-z

Keywords

Navigation