Skip to main content
Log in

A novel application framework for self-supporting topology optimization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents an application framework that provides a complete process to design an optimized self-supporting structure, ready to be fabricated via additive manufacturing without the usage of additional support structures. Such supports in general have to be created during the fabricating process so that the primary object can be manufactured layer by layer without collapse; this process is very time-consuming and waste of material. The main approach resolves this issue by formulating the self-supporting requirements as an explicit quadratic continuous constraint in a topology optimization problem, or specifically, requiring the number of unsupported elements (in terms of the sum of squares of their densities) to be zero. Under the formulation, the required sensitivity of the self-supporting constraint with respect to the design density can be derived straightforward and is only linearly dependent on the density of the element itself. In addition, a novel discrete convolution operator is particularly designed to detect the unsupported elements. The approach works for cases of general overhang angles, and the produced optimized structures have close target compliance to those of the reference structures obtained without considering the self-supporting constraint, as demonstrated by various 2D and 3D benchmark examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Bendsoe, M., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  2. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)

    Article  Google Scholar 

  3. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49(5), 885–896 (1993)

    Article  Google Scholar 

  4. Huang, X., Xie, Y.M.: A further review of ESO type methods for topology optimization. Struct. Multidiscip. Optim. 41, 671–683 (2010)

    Article  Google Scholar 

  5. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MathSciNet  Google Scholar 

  6. van Dijk, N.P., Maute, K., Langelaar, M., van Keulen, F.: Level-set methods for structural topology optimization: a review. Struct. Multidiscip. Optim. 48(3), 437–472 (2013)

    Article  MathSciNet  Google Scholar 

  7. Qian, X.: Topology optimization in B-spline space. Comput. Methods Appl. Mech. Eng. 265, 15–35 (2013)

    Article  MathSciNet  Google Scholar 

  8. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39), 4135–4195 (2005)

    Article  MathSciNet  Google Scholar 

  9. Sigmund, O., Maute, K.: Topology optimization approaches: a comparative review. Struct. Multidiscip. Optim. 48(6), 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  10. Sigmund, O.: On Topology Optimization with Manufacturing Constraints. Springer, Netherlands (2006)

    Book  Google Scholar 

  11. Serphos MR (2014) Incorporating AM-specific manufacturing constraints into topology optimization. Master thesis. Report no: EM 2014.011, Delft University of Technology. https://repository.tudelft.nl/islandora/object/uuid:64200c38-704d-426f-a423-d0dd6f543213?collection=education

  12. Liu, J., Ma, Y.: A survey of manufacturing oriented topology optimization methods. Adv. Eng. Softw. 100, 161–175 (2016)

    Article  Google Scholar 

  13. Langelaar, M.: An additive manufacturing filter for topology optimization of print-ready designs. Struct. Multidiscip. Optim. 55, 1–13 (2016)

    MathSciNet  Google Scholar 

  14. Langelaar, M.: Topology optimization of 3D self-supporting structures for additive manufacturing. Addit. Manuf. 12, 60–70 (2016)

    Google Scholar 

  15. Daniel, T.: The development of design rules for selective laser melting. University of Wales, Cardiff (2009)

  16. Majhi, J., Janardan, R., Schwerdt, J., Smid, M., Gupta, P.: Minimizing support structures and trapped area in two-dimensional layered manufacturing. Computat. Geom. 12(3–4), 241–267 (1999)

    Article  MathSciNet  Google Scholar 

  17. Wang, W., Wang, T.Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F., Liu, X.: Cost-effective printing of 3D objects with skin-frame structures. ACM Trans. Graph. 32(6), 1–10 (2013)

    Google Scholar 

  18. Dumas, J., Hergel, J., Lefebvre, S.: Bridging the gap: automated steady scaffoldings for 3D printing. ACM Trans. Graph. 33(4), 1–10 (2014)

    Article  Google Scholar 

  19. Brackett, D., Ashcroft, I., Hague, R.: Topology optimization for additive manufacturing. In: Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, 2011, pp. 348–362

  20. Gaynor, A.T., Guest, J.K.: Topology optimization for additive manufacturing: considering maximum overhang constraint. In: AIAA AVIATION 2014—15th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, pp. 1–9 (2014)

  21. Gaynor, A.T., Guest, J.K.: Topology optimization considering overhang constraints: eliminating sacrificial support material in additive manufacturing through design. Struct. Multidiscip. Optim. 54(5), 1157–1172 (2016)

    Article  MathSciNet  Google Scholar 

  22. Qian, X.: Undercut and overhang angle control in topology optimization: a density gradient based integral approach. Int. J. Numer. Methods Eng. 111(3), 247–272 (2017)

    Article  MathSciNet  Google Scholar 

  23. Garaigordobil, A., Ansola, R., Santamaría, J., de Bustos, I.F.: A new overhang constraint for topology optimization of self-supporting structures in additive manufacturing. Struct. Multidiscip. Optim. 58(5), 2003–2017 (2018)

    Article  MathSciNet  Google Scholar 

  24. Allaire, G., Dapogny, C., Estevez, R., Faure, A., Michailidis, G.: Structural optimization under overhang constraints imposed by additive manufacturing technologies. J. Comput. Phys. 351, 295–328 (2017)

    Article  MathSciNet  Google Scholar 

  25. Mirzendehdel, A.M., Suresh, K.: Support structure constrained topology optimization for additive manufacturing. Comput. Aided Des. 81, 1–13 (2016)

    Article  Google Scholar 

  26. Lee, M., Fang, Q., Cho, Y., Ryu, J., Liu, L., Kim, D.-S.: Support-free hollowing for 3D printing via voronoi diagram of ellipses. Comput. Aided Des. 101, 23–36 (2018)

    Article  Google Scholar 

  27. Wang, W., Liu, Y.-J., Wu, J., Tian, S., Wang, C.C., Liu, L., Liu, X.: Support-free hollowing. IEEE Trans. Visual Comput. Graph. 24(10), 2787–2798 (2017)

    Article  Google Scholar 

  28. Xie, Y., Chen, X.: Support-free interior carving for 3D printing. Vis. Inform. 1(1), 9–15 (2017)

    Article  Google Scholar 

  29. Wu, J., Wang, C.L., Zhang, X., Westermann, R.: Self-supporting rhombic infill structures for additive manufacturing. Comput. Aided Des. 80, 32–42 (2016)

    Article  Google Scholar 

  30. Wu, J.: Continuous optimization of adaptive quadtree structures. Comput. Aided Des. 102, 72–82 (2017)

    Article  MathSciNet  Google Scholar 

  31. Chengkai, D., Chenming, W.C.C.L.W., Sylvain, L., Guoxin, F., Yong-Jin, L.: Support-free volume printing by multi-axis motion. ACM Trans. Graph. 37(4), 1–14 (2018)

    Google Scholar 

  32. Langelaar, M.: Combined optimization of part topology, support structure layout and build orientation for additive manufacturing. Struct. Multidiscip. Optim. 57(5), 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  33. Guo, X., Zhang, W., Zhong, W.: Explicit feature control in structural topology optimization via level set method. Comput. Methods Appl. Mech. Eng. 272, 354–378 (2014)

    Article  MathSciNet  Google Scholar 

  34. Sigmund, O.: A 99 line topology optimization code written in matlab. Struct. Multidiscip. Optim. 21(2), 120–127 (2001)

    Article  Google Scholar 

  35. Guest, J., Prevost, J., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61(2), 238–254 (2004)

    Article  MathSciNet  Google Scholar 

  36. Dłaz, A., Sigmund, O.: Checkerboard patterns in layout optimization. Struct. Multidiscip. Optim. 10(1), 40–45 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

The valuable comments and suggestions from the anonymous reviewers are greatly appreciated. The work described in this paper is partially supported by the NSF of China (No. 61872320) and the National Key Research and Development Program (No. 2016YFC1101302) from the MIST of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Li, M. & Liu, Y. A novel application framework for self-supporting topology optimization. Vis Comput 37, 1169–1184 (2021). https://doi.org/10.1007/s00371-020-01860-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01860-2

Keywords

Navigation