Skip to main content
Log in

A density-accurate tracking solution for smoke upresolution

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Controlling smoke simulations is a notoriously challenging and tedious task, usually requiring many trial-and-error iterations that prevent using expensive computations at high resolutions. Unfortunately, naïvely going from a more efficient low-resolution simulation to a high-quality high-resolution simulation usually results in a different behavior of smoke animation. Moreover, the longer the animation, the more different the result. We propose a tracking procedure where we optimally modify the velocity field of the simulation in order to make the smoke density distribution closely follow the low-resolution density in both space and time. We demonstrate the benefits of our approach by accurately tracking various 2D and 3D simulations. The resulting animations are predictable, preserving the coarse density distribution of the low-resolution guides, while being enhanced with plausible high-frequency details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ando, R., Thuerey, N., Wojtan, C.: A stream function solver for liquid simulations. ACM Trans. Graph. 34(4), 53 (2015)

    Article  Google Scholar 

  2. Bergou, M., Mathur, S., Wardetzky, M., Grinspun, E.: TRACKS: toward directable thin shells. ACM Trans. Graph. 36(3), 50 (2007)

    Article  Google Scholar 

  3. Chu, M., Thuerey, N.: Data-driven synthesis of smoke flows with CNN-based feature descriptors. ACM Trans. Graph. 36(4), 69 (2017)

    Article  Google Scholar 

  4. Eckert, M.L., Um, K., Thuerey, N.: Scalarflow: a large-scale volumetric data set of real-world scalar transport flows for computer animation and machine learning. ACM Trans. Graph. 38(6), 239 (2019)

    Article  Google Scholar 

  5. Foster, N., Metaxas, D.: Controlling fluid animation. In: Proceedings of the Computer Graphics International, pp. 178–188. IEEE (1997)

  6. Gregson, J., Ihrke, I., Thuerey, N., Heidrich, W.: From capture to simulation: connecting forward and inverse problems in fluids. ACM Trans. Graph. 33(4), 139 (2014)

    Article  Google Scholar 

  7. Huang, R., Melek, Z., Keyser, J.: Preview-based sampling for controlling gaseous simulations. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 177–186 (2011)

  8. Inglis, T., Eckert, M.L., Gregson, J., Thuerey, N.: Primal-dual optimization for fluids. Comput. Graph. Forum 36(8), 354–368 (2017)

    Article  Google Scholar 

  9. Kim, B., Azevedo, V.C., Gross, M., Solenthaler, B.: Transport-based neural style transfer for smoke simulations. ACM Trans. Graph. 38(6), 188 (2019)

  10. Kim, T., Thürey, N., James, D., Gross, M.: Wavelet turbulence for fluid simulation. ACM Trans. Graph. 27(3), 50 (2008)

    Article  Google Scholar 

  11. Liu, S., Xu, Y., Noh, J., Tong, Y.: Visual fluid animation via lifting wavelet transform. Comput. Animat. Virtual Worlds 25(3–4), 473–483 (2014)

    Article  Google Scholar 

  12. McNamara, A., Treuille, A., Popović, Z., Stam, J.: Fluid control using the adjoint method. ACM Trans. Graph. 23(3), 449–456 (2004)

    Article  Google Scholar 

  13. Mercier, O., Beauchemin, C., Thuerey, N., Kim, T., Nowrouzezahrai, D.: Surface turbulence for particle-based liquid simulations. ACM Trans. Graph. 34(6), 202 (2015)

    Article  Google Scholar 

  14. Milliez, A., Sumner, R., Gross, M., Thomaszewski, B.: HairControl: a tracking solution for directable hair simulation. Comput. Graph. Forum 37(8), 115–123 (2018)

    Article  Google Scholar 

  15. Nielsen, M.B., Bridson, R.: Guide shapes for high resolution naturalistic liquid simulation. ACM Trans. Graph. 30(4), 83 (2011)

    Article  Google Scholar 

  16. Nielsen, M.B., Christensen, B.B.: Improved variational guiding of smoke animations. Comput. Graph. Forum 29, 705–712 (2010)

    Article  Google Scholar 

  17. Nielsen, M.B., Christensen, B.B., Bin Zafar, N., Roble, D., Museth, K.: Guiding of smoke animations through variational coupling of simulations at different resolution. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 217–226 (2009)

  18. Pan, Z., Manocha, D.: Efficient solver for spacetime control of smoke. ACM Trans. Graph. 36(5), 162 (2017)

    Article  Google Scholar 

  19. Sato, S., Dobashi, Y., Kim, T., Nishita, T.: Example-based turbulence style transfer. ACM Trans. Graph. 37(4), 84 (2018)

    Article  Google Scholar 

  20. Sato, S., Morita, T., Dobashi, Y., Yamamoto, T.: A data-driven approach for synthesizing high-resolution animation of fire. In: Proceedings of the Digital Production Symposium, pp. 37–42 (2012)

  21. Shi, L., Yu, Y.: Controllable smoke animation with guiding objects. ACM Trans. Graph. 24(1), 140–164 (2005)

    Article  Google Scholar 

  22. Stam, J.: Stable fluids. In: Proceedings of the ACM SIGGRAPH, pp. 121–128 (1999)

  23. Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A.: A material point method for snow simulation. ACM Trans. Graph. 32(4), 102 (2013)

    Article  Google Scholar 

  24. Thuerey, N., Pfaff, T.: Mantaflow (2016). URL http://mantaflow.com

  25. Thürey, N., Keiser, R., Pauly, M., Rüde, U.: Detail-preserving fluid control. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 7–12 (2006)

  26. Treuille, A., McNamara, A., Popović, Z., Stam, J.: Keyframe control of smoke simulations. ACM Trans. Graph. 22(3), 716–723 (2003)

    Article  Google Scholar 

  27. Xiao, X., Wang, H., Yang, X.: A CNN-based flow correction method for fast preview. Comput. Graph. Forum 38(2), 431–440 (2019)

    Article  Google Scholar 

  28. Xie, Y., Franz, E., Chu, M., Thuerey, N.: tempoGAN: a temporally coherent, volumetric GAN for super-resolution fluid flow. ACM Trans. Graph. 37(4), 95 (2018)

    Google Scholar 

  29. Yuan, Z., Chen, F., Zhao, Y.: Pattern-guided smoke animation with Lagrangian coherent structure. ACM Trans. Graph. 30(6), 136 (2011)

    Article  Google Scholar 

  30. Zhang, S., Yang, X., Wu, Z., Liu, H.: Position-based fluid control. In: Proceedings of the Symposium on Interactive 3D Graphics and Games, pp. 61–68 (2015)

Download references

Funding

Pierre Poulin acknowledges financial support from NSERC and the Université de Montréal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Schoentgen.

Ethics declarations

Conflicts of interest

The authors declare that there is no known conflict of interests with respect to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 20781 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoentgen, A., Zehnder, J., Poulin, P. et al. A density-accurate tracking solution for smoke upresolution. Vis Comput 36, 2299–2311 (2020). https://doi.org/10.1007/s00371-020-01889-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-020-01889-3

Keywords

Navigation