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Abstract
With the rise of virtual reality experiences for applications in entertainment, industry, science and medicine, the evaluation
of human motion in immersive environments is becoming more important. By analysing the motion of virtual reality users,
design choices and training progress in the virtual environment can be understood and improved. Since the motion is captured
in a virtual environment, performing the analysis in the same environment provides a valuable context and guidance for the
analysis.Wehave created a visual analysis system that is designed for immersive visualisation and exploration of humanmotion
data. By combining suitable data mining algorithms with immersive visualisation techniques, we facilitate the reasoning and
understanding of the underlying motion. We apply and evaluate this novel approach on a relevant VR application domain to
identify and interpret motion patterns in a meaningful way.

Keywords Virtual reality · Immersive analytics · Movement analysis · Trajectory visualisation · Virtual training evaluation

1 Introduction

As consumer-level virtual reality (VR) devices become
more powerful, affordable and widely available, VR-based
experiences find ever new applications in entertainment,
gaming and industry. Nowadays, VR devices provide an inte-
grated high-end tracking of head and bimanual motion off
the shelf, without resorting to any additional motion cap-
ture gear. These three basic tracking points alone already
provide rich information about a user’s motion and actions
performed in a VR experience. In fact, the incidental motion
data tracked during a VR session is of strong interest for
a multitude of VR-based motion analysis tasks, which are
relevant for various private, commercial, but also medical
and scientific use cases. Examples include the performance
analysis and optimisation in task-oriented VR scenarios, but
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also the evaluation and assessment in virtual training ses-
sions. The specific key quality of these kinds of use cases is
the strong link between rich and complex motion data and
the context of the virtual environment it was recorded in.
This poses a new challenge for the analysis of human motion
recorded in virtual reality.

In this paper, we present an immersive approach to analyse
such VR motion data. Our key intuition is that such motion
data should be analysed in the same perceptive context in
which it was recorded, that is, in the same immersive environ-
ment. This co-location of data acquisition and analysis allows
for several applications, ranging from accelerated improve-
ment cycles in VR training to real-time collaborative remote
analysis for VR-based task or game design. Our concept is a
first step towards co-located trajectory-based visual analysis
of user behaviour in VR environments.

A typical approach to provide a still overview of motion
data for analysis is to visualise the space-time trajecto-
ries of tracked reference points. However, human motion
data tracked in VR sessions comprises multiple semantically
linked trajectories (head and hands) per person, which is par-
ticularly challenging for comparative side-by-side analysis
of multiple user sessions. Moreover, the mapping of a user’s
real-world motion to its spatial embedding in a virtual world
is characteristically not restricted to usual continuity con-
straints. Typical established VR motion assisting paradigms
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Fig. 1 An immersive visualisation of human motion data that were
recorded from multiple VR sessions. Human motion paths are visu-
alised as trajectories, while specific temporal points of interest are
automatically detected and depicted as numbered motion key frames.

Via a settings tablet, effective interactive exploration and filtering of the
complex motion data is supported. Our approach allows for the visual
analysis and comparison of VRmotion data, facilitating the understand-
ing and evaluation of user behaviour patterns

like teleporting or erratic re-orientation introduce additional
complexity and semantics to the recorded motion data that
need to be accounted for. At the same time, an immersive
setting for the analysis process requires suitable user inter-
action techniques that support exploration, detail inspection
and comparison tasks with a suitable reduction of the data
complexity and visual clutter.

In our work, we create an immersive system for the anal-
ysis of VRmotion data that allows for a seamless integration
into existing VR engines and thus an immediate switch
between simulation or gaming sessions, where user motion
is recorded, and immersive visual analysis sessions, where
the motion data is evaluated. Our system specifically aims at
comparing themotion ofmultipleVR sessions, allowing, e.g.
assessment of performance improvements in training scenar-
ios or identification of efficiency bottlenecks in virtual design
reviews.We address the visual analysis problemboth by tools
providing a suitable data overview over the entire tempo-
ral domain and specific interaction techniques allowing for
a detailed assessment and exploration of the data. To this
end, we use a specific hybrid of trajectory-based motion path
visualisation and an avatar-based visualisation of key events
along the time line (key frames) to create an immersive 3D
storyboard of the motion sessions (Fig. 1). We demonstrate
and evaluate our immersive motion analysis system at the
example of a VR assembly game together with expert users.
The example shares many characteristics both with classic
objective-oriented VR games as well as serious VR-based
industrial training applications. Please note that the system
and its interactions are also demonstrated in an accompany-
ing video to this paper (Online Resource 1).

2 Related work

The visual analysis of human motion for performing vari-
ous tasks is a problem that goes back to the early twentieth
century [30]. Frank and Lillian Gilbreth invented Chronocy-
clegraphs for the optimisation of manufacturing in factories.
They captured the motion of workers by creating long-
exposure images showing workers’ trajectories, highlighted
by worn rings with miniature electric lights. This enabled
them to retrace the workers’ movements and analyse their
timing and efficiency. In accordance with the early approach
of Gilbreth et al., a fundamental technique for visualising the
space-time path of tracked objects is the depiction as trajec-
tories.

Existing visual analytics methods for trajectory data are
often based on 2-dimensional data displays. Application
areas cover, e.g. movement analysis in team sports [31], traf-
fic analysis [19] or time-dependent multivariate data analysis
[33], to name a few. Main analysis tasks in trajectory data
analysis include finding aggregations and generalisations of
movement patterns, to compare them, and to distinguish
groups and outliers. For an overview of methods for visual
trajectory analysis please see [4].

2.1 3D trajectory visual analysis

Buschmann et al. [10] note thatmany 3D trajectory visualisa-
tion approaches use two-dimensional movement data, while
using the third dimension to display additional information
[3,24,36].
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An important source of real 3Ddata are flight paths.Multi-
ple methods visualise these paths in three dimensions [2,10].
These approaches face similar problems as us concerning
visual clutter and conveying the direction of movement.
While 3D approaches need visual cues to improve position
and height perception [10], VR environments can make use
of stereoscopic vision.

Several task-specific analysis frameworks for motion data
have been presented in the past, requiring specifically tailored
tracking systems. Anagnostakis et al. [1] analyse motion by
visually tracking a stylus with reflective markers. By test-
ing on a constrained task, user actions can be classified and
visualised as a Chronocyclegraph. These graphs are used
as simple visualisation tools and offer limited to no inter-
action or filtering approaches to address visual clutter and
exploration. Tashiro et al. [35] use magnetic tracking to
record the movement of surgical instruments, to compare the
performance of experienced surgeons and trainees through
trajectory visualisation. Both approaches work well for short
tasks, while longer tasks would require addressing the prob-
lem of increasing visual clutter.

Visual analysis of motion data tracked in immersive envi-
ronments has been addressed in various previous works. Sas
et al. [32] visualise and cluster three-dimensional trajecto-
ries in two dimensions by creating self-organising maps.
The maps create clusters of movement patterns, allowing to
classify user movement on-line. Covaci et al. [15] use the
captured data to compare basketball throws in the real and
the virtual world, as well as the effectiveness of guidance in
the virtual world. Büschel et al. [9] use 3D trajectories to
analyse the movement of analysts using a 3D in-place data
visualisation on a mobile device.

Virtual training environments for manufacturing can also
benefit from motion analysis during training. As shown by
Gomes De Sá [16], these environments have been of inter-
est for commercial applications for several years. Multiple
assembly training systems have used Chronocyclegraphs to
visualise the motion of users in their immersive training set-
up [17,18,26]. These works focus on creating and evaluating
haptic VR assembly training systems built for specific tasks,
but provide only limited insight in their visualisation and do
not discuss more elaborated interaction with the data.

2.2 Immersive trajectory visualisation

An emerging research area for virtual reality is immersive
analytics (IA) applications [11]. As outlined in Marriott et
al. [27], virtual reality provides an immersive experience
with better spatial clues than 3D and with potential for more
intuitive interaction. Previous work has found that perfor-
mance inVR IA applications is similar to desktop 3D, despite
the unfamiliarity of test subjects. IA environments have also
shown greater immersion and a lower mental workload due

to more natural interactions [6,22,37,38]. Classic VR-based
IA research concerned with human motion analysis and tra-
jectory visualisation is receiving its data from outside the
virtual environment and mostly covers a single motion path
per actor in a large-scale context.

Zhang et al. [40] perform immersive trajectory stacking,
using the third dimension to encode additional informa-
tion into two-dimensional trajectories. The approach reduces
over-plotting issues present in traditional 3D renderings.
Similarly, Wagner Filho et al. [38] use the third dimension
to encode time in GPS tracking data to create a space-time
cube of trajectories. While our focus lies on virtual reality,
augmented reality research is also looking into space-time
cubes and is evaluating fitting interaction metaphors [34].

Hurter et al. [22] have created an interactive VR envi-
ronment for air-traffic visualisation, which uses trajectories
linked with traditional information visualisation graphs.
Hurter et al. have identified several significant challenges
for the visualisation of trajectory datasets. Some of these
challenges are also relevant for human motion analysis:
trajectories are inherently multidimensional and therefore
two-dimensional projections might lose important features;
trajectory visualisations can become dense and tangled,
necessitating mechanisms for reducing this visual clutter.
Nguyen et al. [29] use movement data from bee tracking
to visualise their flight paths as trajectories. The trajectories
are embedded in the natural 3D geo-spatial context of the
bees.

In contrast to the discussed methods, human motion
tracked in VR produces multiple trajectories per actor (head
andhands),which poses the additional challenge ofmaintain-
ing the visual association between corresponding trajectory
points. Since commercial head-mounted displays (HMDs)
have head and hand tracking built-in, we tailor our applica-
tion to these VR devices. Additionally, Cordeil et al. [14]
have shown that HMDs are a viable tool for (collaborative)
immersive analysis.

2.3 Motion tracking for motion analysis

With full-body tracking, more elaborate movement analyt-
ics is possible (e.g. [5,7,41]). These methods track many
points on the body, andwhile their analysis can bemore com-
prehensive, tracking set-ups for VR are more complex and
need additional hardware and wearable accessories, mostly
tomountmultiplemarkers. In contrast,we present an accessi-
ble consumer-level solution for which users need not change
their virtual reality set-up, which allows to make use of the
data that is already inherently tracked during a typical VR
session, i.e. the headset (head) and both controllers (hands).
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3 Immersivemotion analysis concept

In the following, we describe our concept for immersive
visual analysis of VR motion data, supporting analysis and
comparison of motion patterns of users in task-oriented VR
applications.Our analysis design is applicable to awide range
of training and/or learning applications, in whichmovements
of VR users need to be understood. In this paper, wewill con-
sider a VR-based automotive assembly/repair task.

3.1 Analysis objectives and challenges

The analysis of motion from gaming and training tasks in VR
environments share similar goals. We distinguish three main
high-level analysis tasks, which in our experience are impor-
tant for understanding user behaviour in VR-based training
applications:

T1 Analysis of change in behaviour of repeated motion
T2 Detecting anomalies in task solving
T3 Finding variations in user motion within single sessions

or between multiple session

Inspecting the motion data should reveal patterns and vari-
ances in repeated motion or highlight anomalies in how users
tackled the task. Furthermore, a fundamental task is the com-
parison of different sessions. Therefore, we need a way to see
variations in the movement of different users, like different
timings and sequences for common operations.

The realisation of the above-stated goals in an immer-
sive analytics system comes with a set of challenges. As
motion data are acquired in 3D VR space, we propose to
do the visual analysis also in 3D VR space, for (1) not hav-
ing to transform the data to, e.g. a 2D display and (2) to
retain the application context including the 3D application
environment. Direct visualisation of the raw trajectory data
can quickly become cluttered (cf. Fig. 2). To address this
issue, we allow for exploring the data both by giving a suit-
able overview (Sect. 3.2) and by enabling a detailed view
(Sect. 3.3) and implement a set of visualisation options to
further reduce visual clutter. The provided tools and options
need to support the exploration and provide an intuitive inter-
action with the data. Their utilisation must be clear, and they
have to be easily accessible.

Motion data are created by recording and tracking the
movement of individual users during a VR session. Since
flexibility and ease-of-use is important, we rely on common
sources of motion for commercial VR set-ups: the headset
for head motion and two controllers for hand motion. The
movement in VR environments comprises fluent motion and
teleport actions.

Fig. 2 Trajectory visualisation can be a powerful tool to gain insight
into humanmotion in VR environments. However, appropriate process-
ing and abstraction of trajectories is needed as visual clutter arises when
showing multiple trajectories

3.2 Overview visualisation

To provide an overview of the entire spatio-temporal motion
data domain,we employ a hybrid approach of trajectory visu-
alisation and avatar-based key frame depiction (Fig. 3). Our
approach allows analysts to navigate through the data in the
same immersive environment it was recorded in. Alterna-
tively, they can observe the entire spatial embedding of the
data. For this, it is important to create elevated vantage points
in the environment.

The main problem for providing a suitable data overview
and insight are different sources of visual clutter appear-
ing both in the data and in the embedded environment:
(i) the motion data of a single session already consists of
three trajectories per session (head and two hands), (ii) dur-
ing comparison, multiple sessions may be shown at once,
(iii) multiple visits to the same locations will lead to entan-
gled trajectories, iv. the environment itself can obfuscate the
visualisation especially when textured with high-frequency
patterns. Figure 2 shows a direct visualisation of raw trajec-
tory data that exhibits these types of clutter. The following
will describe our set of tools and measures that address these
problems for an improved data overview.
Visual Representation of TrajectoriesThe tracked data comes
in varying intervals and originates from natural motion in a
VR application context. To approximate the original motion,
we visualise the trajectories as tubes based on centripetal
Catmull–Rom splines [39]. They interpolate the original data
without creating loops and follow it more tightly when com-
pared to other Catmull–Rom schemes. These properties and
no pre-processing ensure that we retain the essential trajec-
tory information. To visually group the different trajectories,
we uniquely colour each session. Colours are chosen via
a repeated clockwise hue shift. The first four colours are
distributed over 90◦ angles, the next eight fill the angular
sections in between, and so on. Perceiving the trajectory
directions is important when directly looking at the trajec-
tories to gain a quick insight into the movement of the user.
We texture each trajectory tube with glyphs flowing in the
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Fig. 3 Pose triangle in a cluttered environment (left) and its particle
trail during the animation with hidden trajectories (right). The head
is represented as a headset, and the hands have corresponding hand
meshes. The particles of the trail spawn in fixed intervals. Their density
indicates the speed of the animated motion and their colour shows their
age

direction of movement, which we found the most fitting
due to its simplicity and low visual complexity. The glyphs’
speed varies based on the speed of the original motion, and it
encodes its motion source using a small symbol for head or
left/right hand. We refrain from using more complex colour-
ing or patterns (e.g. [24]), since we found that they are too
hard to see on thin trajectories in a room-scale set-up.

A particular type of clutter stems from teleportation events
present in the data, which leads tomany long linear trajectory
segments (see left half of Fig. 2). To visually discriminate
these path segments from the actual human motion data,
we reduce their tubular diameter and exclude them from the
spline interpolation. Analysts can also hide the tubes of tele-
portation events completely, if desired.
Average Trajectory Visualising all three sources of motion
(head, hands) is important to fully understand the motion of
users in interaction. However, when only the coarse move-
ment in the environment is important, it is beneficial to use
a more compact representation with only one representative
trajectory per motion session. To this end, we allow analysts
to switch to only one trajectory resulting from the average
motion of all three motion sources. This allows for a less
cluttered overview of the locations and order of user move-
ment. We use the average motion to ensure that we can still
see movement when one motion source moves vastly differ-
ent from the others. Reaching far forward with one hand or
bending down to change perspective,while remainingmostly
stationary with the rest of the body, are common examples
for this.
Key Framing and Storyboard To find a middle-ground
between animation and static trajectories, we use a key
framed storyboard metaphor, similar to [5,12,21]. The story-

Fig. 4 Acomparisonbetweenuniformly timedkey frames (top) andkey
frames based on our clustering (bottom). Pose triangles at the clustering-
based key frames have less overlap and have more geometrical spread
than the uniform key frames. The time axis on the bottom left of each
image shows the differing distributions over time

board comprises a set of key frames defined by a timestamp.
These key frames are displayed for all loaded sessions
as static pose triangles at the corresponding locations (cf.
Fig. 3). Pose triangles match the session’s colour and consist
of three meshes to represent the position and rotation of head
and hands, with a thin semi-transparent triangle connecting
them.

Key frames are chosen at timestamps around which
motion tracking points exhibit a high spatially concentrated
activity. This ensures a better spread between them (cf.
Fig. 4). We compute the clusters of concentrated activity
through centroid linkage agglomerative clustering [20] on
the 4d space-time locations of the tracking points, using the
Euclidean distance metric. Key frames are then defined by
the median timestamps of each cluster in the selected hier-
archy level. Since the clustering is fully automatic, we allow
analysts to choose the displayed level of the hierarchy (i.e.
the number of key frames).

For facilitating the comparison of timing and order
between sessions, we compute key frames for one user-
defined reference session and use them for all sessions. Pose
triangles for each loaded session are displayed with an over-
head number showing the index of the corresponding key
frame. These indices allow analysts to easily find correspond-
ing pose triangles from different sessions that represent the
same key frame.

Furthermore, analysts can apply a time-offset to all key
frames for additional insight into the movement around each
key frame. Figure 1 shows a storyboard for three sessions
with red as the reference session. It also shows how combin-
ing averaged trajectories and hidden teleportation segments
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Fig. 5 Difference between an unchanged environment (left) and an
environment with simplified texturing (right)

can highlight the storyboard visualisation. To the lower right,
we can see the settings tabletwith anoption to switch between
our clustered storyboard and the uniform one shown in Fig. 4.
Environment Displaying the environmental context of the
movement is important for understanding. However, high-
frequent textures or colourful backgrounds in environments
can contribute to visual clutter. To simplify the environ-
ment, we allow analysts to set all texturing to a uniform
white colouring. This does not destroy the context for the
movement since shadows and shapes are still perceivable.
Figure 5 shows the difference between a normal and a simpli-
fied environment, demonstrating the above-stated problems:
the high-frequent floor texture introduces visual unrest while
the red car body partially hides some trajectories.

3.3 Detail visualisation

While an exploratory visual analytics process needs an
overview of the data, measures for a more detailed, in-depth
view are equally important.
Filtering Motion can exhibit regions of locally overlapping
and entangled patterns, especially in scenarios with repeated
tasks in the same location. To address this, our analytics sys-
tem allows the filtering of trajectory ranges by time.
Detail Information If analystswant to seemoredetailed infor-
mation at a certain point on the trajectory, they can use a detail
popup. It displays information for a tracked object (head,
hand) at the specified location. It shows the session ID, the
interpolated position and rotation, the current time and the
source of motion (head, right or left hand).
Motion Animation Visualising motion as trajectories is a
static representation of spatio-temporal data. To enable bet-
ter insight into the movement of users, our system can show
a simplified replay of the movement. Similar to the story-
board, we use pose triangles to animate the motion. Each
of the meshes in the triangle has a short-lived trail of parti-
cles when moving, to indicate the path it has taken. Figure 3
shows the pose triangle and the trail of particles. The triangle
should give analysts enough insight to understand themotion
of users and the relative positioning of head and hand, but be
simple enough to not contribute to even more visual clutter.
Analysts can modify the animation speed but can also set the
time of the animation manually.

Fig. 6 Local interaction ball and its popup menu (left) and the settings
tablet together with the laser pointer (right)

3.4 Interaction

The described visualisation provides a variety of tools ana-
lysts can use for the exploration and analysis of the motion
data. To provide a flexible interaction concept, we offer three
types of interaction: pointing-based interaction, local interac-
tion and menu-based interaction. They cover different needs
and provide a mixture of shared and exclusive functionality.
Pointing-based Interaction This interaction uses the me-
taphor of a laser pointer. Analysts can interact with user
interface elements or show detail information of specific
points on trajectories. The interaction with user interface ele-
ments works well for all ranges, but accurately pointing the
laser at trajectories from range can be difficult. It can be seen
in Fig. 6 right and is triggered with its own button on the
controllers.
Local Interaction Local interaction gives analysts a more
tangible control when standing in front of a trajectory [13].
When gripping a trajectory, an interaction ball appears on
the trajectory. After being grabbed, the ball highlights the
trajectory it lies on and it can be moved along the trajectory
by hand movement or via thumbstick tilt. This gives a fine
control with the hands, but also allows for moving the ball
further than the personal reach of the analyst. By touching
the ball, analysts can open a menu to show detail information
or to display a pose triangle on the position of the ball. When
grabbed by both hands, the ball splits into two and creates a
filter to show only the trajectories in between the two balls.
This filter applies to all trajectories. The local interaction
is especially useful for many trajectories, where the laser
pointer cannot reach inside a cluster. Figure 6 shows the local
interaction ball and its menu.
Menu-based interaction / Settings Tablet Some introduced
tools are independent of positioning. For these tools, a tablet
is following the analysts until they grab and place it in the
world.When ‘thrown away’with enough force, itwill resume
following. This tablet is set up similar to the settings menu
of a video game for controlling the tools. Analysts can set
trajectory visualisation options, control the global time filter
and the global animation (disable/enable, speed and time) and
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set the hierarchy level and a time-offset for the storyboard key
frames. They can change settings either with the laser pointer
or by touching the controls with their virtual index fingers.
Figures 6 and 1 show it in use.

4 Implementation

We used the Unreal Engine1 to create our system. Ideally,
the VR environment producing the data is the same as in the
analysis process. However, using a game engine also allows
exporting and importing an environment from other sources.
We used the Oculus Rift CV12 and the HTCVive Pro3 in our
experiments.
Session Data We have created our own logging data format
and data logger. Since logging movement can lead to large
amounts of data, adaptive logging intervals reduce the num-
ber of needed log entries by pausing the logging of objects
that are notmoving. InVR, analysts can start and stop session
tracking, load and unload sessions, and can switch between
analysis and game. This functionality is provided by station-
ary user interface elements in the environment that can be
controlled either with the laser pointer or by touch.
Locomotion An important ergonomic aspect in any immer-
sive application is to minimise the amount of discomfort via
locomotion. In our system, analysts can either physically
move around or use teleportation. This ensures a minimal
amount of nauseawhenmoving further distances and follows
the recommendation of Jerald [23]. Analysts who prefer sit-
ting and are less prone to nausea can fly around using the
keyboard. We do not support locomotion methods that warp
the space or otherwise alter the correspondence between real
and virtual movement, like re-orientation or redirected walk-
ing, because we want to preserve the relation between real
and virtual movement for our industrial application context.
DataProcessingThe trajectories are computedwhen the data
is loaded. We use a custom mesh with one continuous tube
for each trajectory, which allows us to use lighting and shad-
owing.While it is not the most efficient method for rendering
trajectories, we found that this approach represents a fitting
trade-off between fidelity and performance for our visualisa-
tion.

Trajectories have a mesh structure and collision infor-
mation. Generally, their generation is executed within less
than half a second. When analysts load multiple sessions at
once, they might experience a short stutter. Since hierarchi-
cal clustering is a relatively slow algorithm (O(n2) [28]), we
compute and save it the first time a session is loaded. For
a session with 1400 tracking entries spanning over 13 min,

1 Unreal Engine www.unrealengine.com.
2 Oculus Rift www.oculus.com/rift/.
3 HTC Vive Pro www.vive.com/uk/product/vive-pro/.

creating the tubes and the collision takes 100 ms in total,
while the agglomerative hierarchical clustering takes about
5 seconds (on an Intel I7-4930K CPU).

5 Exemplary analysis workflow

To demonstrate the use of our system, we outline an exem-
plary workflow in an exploratory analysis session based on a
task-oriented car-shop game. The goal of the game is mount-
ing four wheels as fast and as precise as possible onto a race
car. This scenario expectantly produces interesting motion
patterns with different focus regions (wheels, wheel pickup)
and varying dwell times at different locations throughout the
session. The common objective allows for a comparable set
of motion data from different sessions, while giving users
enough freedom (e.g. mounting order) to observe significant
differences between individualmotion sessions.Avisual out-
line of the workflow is given in Fig. 7.

First, to gain an overview, the analyst teleports to an
overhead location and looks at the storyboard. From there,
differences in order andmovement-based anomalies can eas-
ily be seen. In Fig. 7a, we can see that the blue user has a
different timing for key frame 1 and seems to have a differ-
ent order according to key frame 4, while green is venturing
off the usual path (T2, T3). Then, to gain more insight into
the observed motion, the analyst looks at the animation for
the three sessions (b). The animation further supports the
observations concerning speed and order. Next, the analyst
can observe certain locations of interest in more detail. With
the local interaction, a more thorough investigation of the
assembly behaviour at wheel assembly spots can be per-
formed (c). In the shown case, the analyst has filtered the
trajectories to the time frame of the assembly of a specific
wheel. With a pose triangle, the movement can be studied,
while the filtering shows the locations of the other sessions
in the same timeframe (T3). Finally, to observe the pickup
behaviour of the different users, the analyst shifts their atten-
tion to the pickup spot (d). From the different heights of the
pickup, it appears that the users have different body heights
and change their stance when picking up the wheel (T1).
Using the laser pointer or local interaction, the analyst can
examine the timeframes of each pickup and the animation can
give more insight into the precise movement of the users.

6 Evaluation and results

We evaluate the validity of our approach based on a user
study to analyse our design choices andwhether the proposed
immersive analytics system can support the visual analysis
process to meet the analysis objectives stated in Sect. 3.1.
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Fig. 7 Examples for different stages in using our tool: a overview with
storyboard; b animation view; c local interaction animation (yellow,
right)with filter (orange, top), and detail (violet, left);d detail inspection
of wheel pickup

6.1 Evaluation

The data for the study comes from the simplified industrial
car-shop use-case mentioned in Sect. 5. Based on previous
demonstrations of the car-shop application at various events
to introduce students to VR, we have identified a set of inter-
esting motion patterns and features for our user study from
logged movement data. These include different assembly
order, mistakes when assembling, different behaviour and
stances while assembling and picking up a wheel, simulated
issues with the headset, and different behaviour concerning
movement / teleporting. To create a controlled dataset for the
user study, we have simulated and captured a set of assembly
sessions containing these patterns and features. One of these
sessions is shown in Fig. 8. In the middle, we can immedi-
ately make an observation pertaining to high-level task T2
by noticing the outlier in the visualisation, which depicts the
movement of a user re-adjusting their headset.
Evaluation tasks The primary evaluation of the system
comprised four analysis tasks: two detail tasks and two com-
parison tasks. Detail tasks include the analysis of the motion
for one session and comparison tasks compare three sessions
with each other:

Detail

1. How do repeated actions change over time?
2. Are there any outliers in the movement patterns of the

user? What happened/why?

Fig. 8 One of the session datasets used in the evaluation. In the middle
(green) we can quickly see an anomalous trajectory where all three
trajectories meet at head-level. In this case, it is from a user that is
adjusting their headset

Comparison

3. How does the order of actions for the three sessions dif-
fer?

4. Can you find differences in how the users performed the
assembly task? Which was the best strategy?

These tasks cover our range of high-level tasks (T1, T2,
T3) in Sect. 3.1 and are a mixture of different levels of speci-
ficity. This way, we can see how well experts find patterns
with varying guidance and how well patterns can ‘pop out’
within the scope of less specific analysis tasks. To analyse
the effect of the simplified environment, it was disabled in
Task 3 without giving the experts an explanation why this
was done.

6.2 Evaluation set-up

The evaluation is a qualitative, thinking-aloud user studywith
five experts: three experienced VR users from different fields
of VR research, one augmented reality researcher and one
expert in visual data analysis. All experts had previous expe-
riences with VR and quickly familiarised themselves with
this new VR environment. For an insight of where the data
came from, the experts first had a short session in the car
shop, in which they carried out the assembly for themselves.
Next, they were given a short presentation of the system and
the implemented tools. This presentation was followed by an
interactive session in the system in which they were guided
to try out all system features. We kept this introduction rel-
atively short, to gauge the intuitiveness of the system and to
evaluate the clarity of use for our implemented tools. The
main part of the evaluation comprised the four analysis tasks
to be solved. After completing these steps, the experts filled
in a System Usability Score [8] and we discussed their expe-
rience. On average, one evaluation session lasted for 1 h.
Solving each task ranged from 5 to 10 min and was cut short
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when experts could not find all objectives of the task after 15
min.

6.3 Evaluation results

This section will discuss the results and observations of the
evaluation. First, we discuss how well experts were able to
solve our tasks, followed by the results of the SystemUsabil-
ity Score. Next, we present our observations of how they
solved the given tasks and discuss the received feedback con-
cerning the implemented tools.
Task Completion Experts were able to find differences in
wheel assembly order (T3) and positional outliers (T2) con-
sistently and quickly. Positional outliers were identified by
the trajectory visualisation itself, while assessing the wheel
assembly order could not rely on only the trajectory visu-
alisation. Experts needed to use our implemented tools for
further insight to see the assembly order, like the motion
animation. Timing and related changes in wheel assembly
behaviour (e.g. wheel falling to the ground, or removing
and re-assembling a wheel) could also reliably be detected
by the experts (T1, T2). More subtle differences in stances
and specific movement patterns for single and multiple ses-
sions (T1, T2, T3) were less easy to detect, considering the
more general nature of these observations. An example is
the way wheels are assembled where some users do not bend
down to assemble the wheel, some are standing to the side
and others bend down with either their knees or upper body
for more precise fitting of the wheel. These differences in
behaviour can influence the speed and precision of assembly
between users. When asked more specific questions, experts
were able to also find suchmore subtle differences. Finding a
reason for outlier behaviour was prone to misinterpretations.
While all experts found the outlierwhere one user re-adjusted
their headset, only one expert stated the correct interpreta-
tion for this behaviour. Finally, the experts also found other,
non-planned, interesting movement patterns like a change in
handedness for picking up the wheel (T1).
System Usability Overall, the experts stated that the system
is intuitive after an initial familiarisation and expressed an
interest in continued use of the system for motion analy-
sis tasks. They judge that the immersive virtual environment
is advantageous for understanding the spatial data and that
it succeeds in immersing them into the motion. The Sys-
tem Usability Score (SUS) supports these statements with
an average of 76.25 points (σ = 4.87), which is slightly
above average compared to SUS scores in general [25]. A
prominent observation during the evaluation is that the imple-
mented system is created for analysts and not for novice
users. The experts expressed a need for a longer introductory
period than the given short introduction to fully grasp the
system. There were also minor comments on improvements
for some interactions, but they were not listed as major influ-

ences on the usability score. None of the experts had issues
with discomfort in the VR environment.
Task observations Experts showed different strategies in the
ways they solved the given tasks. In general, the trajectory
visualisation worked well for seeing positional outliers and
all experts used the animation for overview and detail obser-
vations. One expert focused mostly on the filter tool, while
another expert mainly used the detail information via laser
pointer for insight into the movement. Due to the short intro-
duction, some hints to existing tools were also necessary.
These hints were given as the question ‘would tool x help
you here?’. Once reminded, they saw its use and used it
more often. The settings panel was the primary interaction
method for all experts, while the local interaction was mostly
unused. This is due to experts forgetting about it and because
the settings panel offers similar functionality, albeit through
a potentially more convenient interaction metaphor. The sto-
ryboard was mostly used to see the order of operations, since
it provided a still overview of the clusters. Finally, experts
displayed vastly differentmovement patterns during the anal-
ysis themselves. Some remained mostly stationary, others
moved at ground level and looked at the data more closely.
Two experts used an overhead view, which is a roof-platform
surrounding the walls.
Tool feedback Experts appreciated the overall interaction and
visualisation of the implemented system. Their favourite tool
was the animation visualisation. According to them, the com-
bination of head/hand meshes for orientation and the triangle
in between is ideal and they do not need a more complex
avatar for the animation, since it might contribute further to
visual clutter. The experts liked the ability to hide teleports to
remove unnecessary visual clutter, since the teleport trajec-
tories represent instantaneous movement only. One expert
in particular disliked trajectories passing through the area
of their physical body, for whom hidden teleports increased
the available space. Our average trajectory visualisation did
not have the same acceptance, since only the expert with the
previously mentioned dislike used it extensively. While the
experts agreed on the potential usefulness of the storyboard,
two stated that they did not fully understand how it works
and that they had difficulties in interpreting the visualisation.
The others like the still-frame visualisation of key moments
and find the overhead numbers useful for in-session chrono-
logical order and for comparing between different sessions.
Experts constrained themselves to the first three levels of the
storyboard, as higher levels started to contribute to visual
clutter. We switched to the normal environment instead of
the simplified one in Task 3 without telling the experts why.
When asked, they did not notice a difference between both
environment styles. Finally, experts liked the interactionwith
the settings panel, but small improvements concerning its
behaviour were deemed necessary.
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6.4 Discussion

The presented results show that the implemented system is
a step in the right direction for providing an environment
for the intuitive and immersive visualisation and exploratory
analysis of motion data. Differing analysis behaviours sug-
gest that it is important for such systems to remain flexible
and provide users with a wealth of tools to cater to individual
preferences. While the storyboard was well received overall,
a clustering method that is easier to understand and with-
out the hierarchical nature might be an improvement. The
indifferent perception of normal and simplified environment
might be due to the relatively simple and reduced texturing
of the given car-shop environment. Other VR environments
with amore camouflaging and obfuscating appearancemight
make this texture-reductionmeasuremore essential. Another
factor is the way the environment change was set up in the
evaluation.Amore explicit changemight be necessary.Addi-
tionally, while our visualisation techniques can reduce visual
clutter to some extent, experts felt that visual clutter might
become too much for comparing more than the given three
sessions. Some experts mentioned they presume that their
analysis behaviourmight change once they havemore experi-
ence and a better routine for selecting certain tools for certain
tasks.

6.5 Changes after evaluation

From the feedback we have received, we added two improve-
ments after the evaluation. First, since the average trajectory
might not always be the ideal way of simplifying the trajecto-
ries, we allow analysts to hide the visualisation of anymotion
source (left/right hands and head) for all displayed sessions.
This way, they can decide to, e.g. view a singlemotion source
instead of the average trajectory. Second, while the numbers
over the storyboard’s key-frames indicate the temporal order,
they to not convey the time difference, which is of special
interest for our clustered, non-uniform distribution of key-
frames. Hence, we have added a circular time indicator next
to the numbers, to show the elapsed time of each key-frame
relative to its session.

7 Limitations and future work

We focus on analysis of up to a handful of sessions and
have opted in favour of visual fidelity for our trajectories.
Since a stable frame-rate is important, displayingmore than a
dozen sessionswould necessitate a different approach in their
rendering. Additionally, while we focused on three motion
sources in this work, we plan to evaluate whether additional
trackers or full body tracking could be supported or ifwe need
a different visualisation method due to too much visual clut-

ter. To give analysts the needed flexibility in how they interact
and visualise the motion, we have implemented several tools
and interactions. However, this flexibility necessitates that
analysts know the available options to make use of them as
there is little guidance concerning the choice of the right
tool for the desired exploration. While we focused on the
exploratory analysis of motion in this work, we want to add
more automated features for analysis and guidance in the
future. This includes automatic highlighting of interesting
locations and viewpoints, integration of events and tasks for
better semantic analysis, andmore performance statistics.We
focused on clustering the movement within one session, but
there are many avenues for clustering different aspects of the
motion data, based on different metrics. Clustering complex
moves entails a segmentation problem that would need to be
solved in an application-dependent way. A potential avenue
for the future is the addition of a distributed work environ-
ment. With this, users could play or train anywhere in the
world, while analysts see ongoing sessions and can analyse
them shortly after completion. Such a system can, for exam-
ple, enable manufacturing training on remote locations, with
short response times and feedback from experts and trainers.
Finally, we have evaluated our work as a first step towards
trajectory-based visual analysis of user behaviour inVRenvi-
ronments and are planning more task-specific designs and
more comprehensive evaluations in the future.

8 Conclusion

We have created and evaluated an immersive analytics sys-
tem for the explorative analysis of human VR motion data,
focused on task-oriented applications. The system provides
analysts with a wealth of tools for gaining an insight into
the data by analysing behaviour and finding patterns or out-
liers either in single sessions or when comparing different
sessions. The most prominent challenge in creating such
a visualisation is dealing with visual clutter and giving an
intuitive way of interacting with the data. To tackle the
visual clutter, we have implemented a range of improvements
to trajectory visualisations and offer several tools, giving
analysts the freedom of interacting in a way that fits their
preferences. Our evaluation demonstrates that it is possible
to uncover many interesting patterns and behaviours from
tracked motion.
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