Skip to main content
Log in

High-order histogram-based local clustering patterns in polar coordinate for facial recognition and retrieval

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Local feature patterns are conspicuous and are widely used in computer vision, especially in face recognition and retrieval. However, a statistical descriptor that can be used in various scenarios and effectively present the detailed local discrimination information of face images is a challenging and exploring task even if deep learning technology is widelyspread. In this study, we propose a novel local pattern descriptor called the Local Clustering Pattern (LCP) in high-order derivative space for facial recognition and retrieval. Unlike prior methods, LCP exploits the concept of clustering to analyze the relationship of intra- and inter-classes of the referenced pixel and its adjacent pixels to encode the local descriptor for facial recognition. There are three tasks (1) Local Clustering Pattern (LCP), (2) Clustering Coding Scheme, (3) High-order Local Clustering Pattern. To generate local clustering pattern, the local derivative variations with multi-direction are considered and that are integrated on rectangular coordinate system with the pairwise combinatorial direction. Moreover, to generate the discriminative local pattern, the features of local derivative variations are transformed from the rectangular coordinate system into the polar coordinate system to generate the characteristics of magnitude (m) and orientation (\(\theta \)). Then, we shift and project the features (m and \(\theta \)), which are scattered in the four quadrants of polar coordinate system, into the first quadrant of polar coordinates to strengthen the relationship of intra- and inter-classes of the referenced pixel and its adjacent pixels. To encode the local pattern, we consider the spatial relationship between reference and its adjacent pixels and fuse the clustering algorithm into the coding scheme by utilizing the relationship of intra- and inter-classes in a local patch. In addition, we extend the LCP from low- into high-order derivative space to extract the detailed and abundant information for facial description. LCP efficiently encodes the feature of a local region that is discriminative the inter-classes and robust the intra-class of the related pixels to describe a face image. This study has three main contributions: (1) we generate the novel features with magnitude (m) and orientation (\(\theta \)) based on the pairs of the derivative variations to describe the characteristics of each pixel, (2) we shift and project the features from four quadrants of polar coordinate system into the first quadrant of polar coordinates to strengthen the relationship of intra- and inter-classes between pixels in a local patch, (3) we exploit the concept of clustering, which considers the relationship of intra- and inter-classes of the referenced pixel and its adjacent pixels, to encode the local descriptor in a polar coordinate system for facial recognition and retrieval. Experimental results show that LCP outperforms the existing descriptors (LBP, ELBP LDP, LTrP, LVP, LDZP, LGHP) on six public datasets (ORL, Extend Yale B, CAS PEAL, and LFW, CMU-PIE and FERET) for both face recognition and retrieval tasks. Moreover, we further compare the proposed facial descriptor with the popular deep convolutional neural networks to demonstrate the discrimination of the extracted features and applicability of our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kamgar-Parsi, B., Lawson, W., Kamgar-Parsi, B.: Toward development of a face recognition system for watchlist surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 33(10), 1925 (2011). https://doi.org/10.1109/TPAMI.2011.68

    Article  Google Scholar 

  2. Ekenel, H.K., Stallkamp, J., Stiefelhagen, R.: A video-based door monitoring system using local appearance-based face models. Comput. Vision Image Understand. 114(5), 596 (2010)

    Article  Google Scholar 

  3. Ijiri, Y., Sakuragi, M., Lao, S.: In: 7th International Conference on Mobile Data Management (MDM’06) (IEEE, 2006), pp. 49–49

  4. Patel, K., Han, H., Jain, A.K.: Secure face unlock: spoof detection on smartphones. IEEE Trans. Inf. Forensics Secur. 11(10), 2268 (2016)

    Article  Google Scholar 

  5. Chintalapati, S., Raghunadh, M.: In: 2013 IEEE International Conference on Computational Intelligence and Computing Research (IEEE, 2013), pp. 1–5

  6. Mao, Y., Li, H., Yin, Z.: In: 2014 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, 2014), pp. 1–6

  7. Turk, M.A., Pentland, A.P.: In: Proceedings 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1991), pp. 586–591

  8. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. (7), 711 (1997)

  9. Martínez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228 (2001)

    Article  Google Scholar 

  10. Kim, K.I., Jung, K., Kim, H.J.: Face recognition using kernel principal component analysis. IEEE Signal Process. Lett. 9(2), 40 (2002)

    Article  Google Scholar 

  11. Lu, J., Plataniotis, K.N., Venetsanopoulos, A.N.: Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans. Neural Netw. 14(1), 117 (2003)

    Article  Google Scholar 

  12. Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intelll. 15(10), 1042 (1993)

    Article  Google Scholar 

  13. Viola, P., Jones, M., et al.: Rapid object detection using a boosted cascade of simple features. CVPR 1 1(511–518), 3 (2001)

    Google Scholar 

  14. Heisele, B., Ho, P., Wu, J., Poggio, T.: Face recognition: component-based versus global approaches. Comput. Vision Image Understand 91(1–2), 6 (2003)

    Article  Google Scholar 

  15. Heisele, B., Serre, T., Poggio, T.: A component-based framework for face detection and identification. Int. J. Comput. Vision 74(2), 167 (2007)

    Article  Google Scholar 

  16. Lee, P.H., Hsu, G.S., Hung, Y.P.: In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2009), pp. 1613–1620

  17. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognit. Neurosci. 3(1), 71 (1991)

    Article  Google Scholar 

  18. Zhang, D., Zhou, Z.H.: (2D) 2PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 69(1–3), 224 (2005)

    Article  Google Scholar 

  19. Kong, H., Wang, L., Teoh, E.K., Li, X., Wang, J.G., Venkateswarlu, R.: Generalized 2D principal component analysis for face image representation and recognition. Neural Netw. 18(5–6), 585 (2005)

    Article  Google Scholar 

  20. Xie, X., Lam, K.M.: Gabor-based kernel PCA with doubly nonlinear mapping for face recognition with a single face image. IEEE Trans. Image Process. 15(9), 2481 (2006)

    Article  Google Scholar 

  21. Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face images. Josa a 14(8), 1724 (1997)

    Article  Google Scholar 

  22. Noushath, S., Kumar, G.H., Shivakumara, P.: Diagonal Fisher linear discriminant analysis for efficient face recognition. Neurocomputing 69(13–15), 1711 (2006)

    Article  Google Scholar 

  23. Noushath, S., Kumar, G.H., Shivakumara, P.: (2D) 2LDA: an efficient approach for face recognition. Pattern Recogn. 39(7), 1396 (2006)

    Article  Google Scholar 

  24. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51 (1996)

    Article  Google Scholar 

  25. Ojala, T., Pietikäinen, M., Mäenpää, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 7, 971 (2002)

    Article  Google Scholar 

  26. Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 12, 2037 (2006)

    Article  Google Scholar 

  27. Huang, D., Shan, C., Ardabilian, M., Wang, Y., Chen, L.: Local binary patterns and its application to facial image analysis: a survey. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 41(6), 765 (2011)

  28. Liu, L., Zhao, L., Long, Y., Kuang, G., Fieguth, P.: Extended local binary patterns for texture classification. Image Vision Comput. 30(2), 86 (2012)

    Article  Google Scholar 

  29. Lee, S.H., Choi, J.Y., Ro, Y.M., Plataniotis, K.N.: Local color vector binary patterns from multichannel face images for face recognition. IEEE Trans. Image Process. 21(4), 2347 (2012)

    Article  MathSciNet  Google Scholar 

  30. Davarzani, R., Mozaffari, S., Yaghmaie, K.: Scale-and rotation-invariant texture description with improved local binary pattern features. Signal Process. 111, 274 (2015)

    Article  Google Scholar 

  31. Zhang, B., Gao, Y., Zhao, S., Liu, J.: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans. Image Process. 19(2), 533 (2010)

    Article  MathSciNet  Google Scholar 

  32. Murala, S., Maheshwari, R., Balasubramanian, R.: Local tetra patterns: a new feature descriptor for content-based image retrieval. IEEE Trans. Image Process. 21(5), 2874 (2012)

    Article  MathSciNet  Google Scholar 

  33. Hung, T.Y., Fan, K.C.: In: 2014 IEEE International Conference on Image Processing (ICIP) (IEEE, 2014), pp. 239–243

  34. Fan, K.C., Hung, T.Y.: A novel local pattern descriptor-Local vector pattern in high-order derivative space for face recognition. IEEE Trans. Image Process. 23(7), 2877 (2014)

    Article  MathSciNet  Google Scholar 

  35. Chakraborty, S., Singh, S.K., Chakraborty, P.: Local gradient hexa pattern: a descriptor for face recognition and retrieval. IEEE Trans. Circuits Syst. Video Technol. 28(1), 171 (2018)

    Article  Google Scholar 

  36. Lin, C.W., Lu, K.Y.: In Pacific-Rim Symposium on Image and Video Technology, pp. 656–666. Springer, Berlin (2015)

    Google Scholar 

  37. Roy, S.K., Chanda, B., Chaudhuri, B.B., Banerjee, S., Ghosh, D.K., Dubey, S.R.: Local directional ZigZag pattern: a rotation invariant descriptor for texture classification. Pattern Recogn. Lett. 108, 23 (2018)

    Article  Google Scholar 

  38. Samaria, F.S., Harter, A.C.: In: Proceedings of 1994 IEEE Workshop on Applications of Computer Vision (IEEE, 1994), pp. 138–142

  39. Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intell. 6, 643 (2001)

    Article  Google Scholar 

  40. Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 5, 684 (2005)

    Google Scholar 

  41. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: In: Workshop on faces in’Real-Life’Images: detection, alignment, and recognition (2008)

  42. Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large-scale Chinese face database and baseline evaluations. IEEE Trans. Syst. Man Cybern. Part A: Syst. Humans 38(1), 149 (2008)

    Article  Google Scholar 

  43. Sim, T., Baker, S., Bsat, M.: In: Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition (IEEE, 2002), pp. 53–58

  44. Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090 (2000)

    Article  Google Scholar 

  45. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Advances in neural information processing systems 1097–1105, (2012)

  46. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 4700–4708, (2017)

Download references

Acknowledgements

This research was funded by the China Postdoctoral Science Foundation under Grant 2018M632565; the Channel Postdoctoral Exchange Funding Scheme; and the Youth Program of Humanities and Social Sciences Foundation, Ministry of Education of China under Grant 18YJCZH093.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Wei Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CW., Hong, S. High-order histogram-based local clustering patterns in polar coordinate for facial recognition and retrieval. Vis Comput 38, 1741–1758 (2022). https://doi.org/10.1007/s00371-021-02102-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02102-9

Keywords

Navigation