Skip to main content
Log in

Generative design of decorative architectural parts

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

This paper presents a method for generative design of decorative architectural parts such as corbel, moulding and panel, which usually have clear structure and aesthetic details. The method is composed of two components: offline learning and online generation. The offline learning trains a 2D CurveInfoGAN and a 3D VoxelVAE that learn the feature representations of the parts in a dataset. The online generation proceeds with an evolution procedure that evolves to product new generation of part components by selecting, crossing over and mutating features, followed by a feature-driven deformation that synthesizes the 3D mesh representation of new models. Built upon these technical components, a generative design tool is developed, which allows the user to input a decorative architectural model as a reference and then generates a set of new models that are “more of the same” as the reference and meanwhile exhibit some “surprising” elements. The experiments demonstrate the effectiveness of the method and also showcase the use of classic geometric modelling and advanced machine learning techniques in modelling of architectural parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Koch, K.: Architectural Patterns for Woodcarvers. Fox Chapel Publishing, East Petersburg (2003)

    Google Scholar 

  2. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

  3. Cohen-Or, D., Zhang, H.: From inspired modeling to creative modeling. Vis. Comput. 32(1), 7–14 (2016)

    Article  MathSciNet  Google Scholar 

  4. Zhang, Y., Ong, C.C., Zheng, J., Lie, S.-T.: Creative corbel modeling using evolution principle. In: Sourin, A., Charrier, C., Rosenberger, C., and Sourina, O. (eds) International Conference on Cyberworlds, CW 2020, Caen, France, September 29–October 1, 2020, pp. 9–16. IEEE (2020)

  5. Funkhouser, T., Kazhdan, M., Shilane, P., Min, P., Kiefer, W., Tal, A., Rusinkiewicz, S., Dobkin, D.: Modeling by example. ACM Trans. Graph. 23(3), 652–663 (2004)

    Article  Google Scholar 

  6. Xu, K., Zhang, H., Cohen-Or, D., Chen, B.: Fit and diverse: set evolution for inspiring 3d shape galleries. ACM Trans. Graph. 31(4), 1–10 (2012)

    Article  MathSciNet  Google Scholar 

  7. Kalogerakis, E., Chaudhuri, S., Koller, D., Koltun, V.: A probabilistic model for component-based shape synthesis. ACM Trans. Graph. 31(4), 1–11 (2012)

    Article  Google Scholar 

  8. Sung, M., Su, H., Kim, V.G., Chaudhuri, S., Guibas, L.: Complementme: weakly-supervised component suggestions for 3d modeling. ACM Trans. Graph. 36(6), 1–12 (2017)

    Article  Google Scholar 

  9. Kingma, D. P., Welling, M.: Auto-Encoding Variational Bayes (2013). arXiv preprint arXiv:1312.6114

  10. Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J.: Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In: Advances in Neural Information Processing Systems, pp. 82–90 (2016)

  11. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3d outputs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2088–2096 (2017)

  12. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)

  13. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

  14. Qi, C. R., Su, H., Mo, K., Guibas, L.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

  15. Qi, C. R., Yi, L., Su, H., Guibas, L.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

  16. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5939–5948 (2019)

  17. Tan, Q., Gao, L., Lai, Y-K., Xia, S.: Variational autoencoders for deforming 3d mesh models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5841–5850 (2018)

  18. Groueix, T., Fisher, M., Kim, VG., Russell, BC., Aubry, M.: Atlasnet: a papier-mâché approach to learning 3d surface generation, p. 11 (2018). arXiv preprint arXiv:1802.05384

  19. Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L.: Grass: generative recursive autoencoders for shape structures. ACM Trans. Graph. 36(4), 1–14 (2017)

    Article  Google Scholar 

  20. Wang, H., Schor, N., Hu, R., Huang, H., Cohen-Or, D., Huang, H.: Global-to-local generative model for 3d shapes. ACM Trans. Graph. 37(6), 1–10 (2018)

    Google Scholar 

  21. Wu, Z., Wang, X., Lin, D., Lischinski, D., Cohen-Or, D., Huang, H.: Sagnet: structure-aware generative network for 3d-shape modeling. ACM Trans. Graph. 38(4), 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  22. Gao, L., Yang, J., Wu, T., Yuan, Y.-J., Fu, H., Lai, Y.-K., Zhang, H.: Sdm-net: deep generative network for structured deformable mesh. ACM Trans. Graph. 38(6), 1–15 (2019)

    Google Scholar 

  23. Chen, W., Chiu, K., Fuge, M.: Aerodynamic design optimization and shape exploration using generative adversarial networks. In: AIAA SciTech Forum, San Diego, USA. AIAA (2019)

  24. Chen, W., Fuge, M.: Synthesizing designs with interpart dependencies using hierarchical generative adversarial networks. J. Mech. Des. 141(11), 111403 (2019)

    Article  Google Scholar 

  25. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.-Y.: Mesh editing with Poisson-based gradient field manipulation. ACM Trans. Graph. 23(3), 644–651 (2004)

    Article  Google Scholar 

  26. Zheng, J., Wang, G., Liang, Y.: Curvature continuity between adjacent rational Bézier patches. Comput. Aided Geom. Des. 9(5), 321–335 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianmin Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Ministry of Education, Singapore, under its MoE Tier-2 Grant (2017-T2-1-076).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ong, C.C., Zheng, J. et al. Generative design of decorative architectural parts. Vis Comput 38, 1209–1225 (2022). https://doi.org/10.1007/s00371-021-02142-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02142-1

Keywords

Navigation