Skip to main content
Log in

Evaluating virtual reality locomotion interfaces on collision avoidance task with a virtual character

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We have evaluated four locomotion interfaces, namely natural walking (NW), omnidirectional treadmill (OT), walk-in-place (WiP), and joystick (JS). In this within-group study, an avoidance movement task with a virtual character was performed by all participants for each examined interface. Our study considers that natural walking is the most realistic method for navigating in a virtual environment and explores the differences across the examined locomotion interfaces by collecting avoidance movement measurements (clearance distance, trajectory length, and trajectory curvature) and self-reported subjective ratings (simulation sickness, usefulness, satisfaction, ease of use, and task load). The results suggest that, despite the fact that the avoidance movement measurements of the WiP, JS, and NW interfaces share similarities, they, more often than not, differ from the measurements of the OT interface, which makes the OT interface unable to provide precise avoidance movement data for our participants. Moreover, the OT interface was rated lower by participants in terms of learning, usability, efficacy, satisfaction, physical demand, and effort. Our study shows that NW, OT, WiP, and JS as locomotion interfaces present several benefits and drawbacks concerning their application in avoidance movement behavior tasks with a virtual character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Al Zayer, M., MacNeilage, P., Folmer, E.: Virtual locomotion: a survey. IEEE Trans. Vis. Comput. Graph. 26, 2315–2334 (2018)

    Article  Google Scholar 

  2. Arechavaleta, G., Laumond, J.P., Hicheur, H., Berthoz, A.: Optimizing principles underlying the shape of trajectories in goal oriented locomotion for humans. In: IEEE-RAS International Conference on Humanoid Robots, pp. 131–136 (2006)

  3. Azmandian, M., Grechkin, T., Bolas, M., Suma, E.: The redirected walking toolkit: a unified development platform for exploring large virtual environments. In: IEEE Workshop on Everyday Virtual Reality, pp. 9–14 (2016)

  4. Bailenson, J.N., Blascovich, J., Beall, A.C., Loomis, J.M.: Equilibrium theory revisited: mutual gaze and personal space in virtual environments. Presence Teleoper. Virtual Environ. 10(6), 583–598 (2001)

    Article  Google Scholar 

  5. Bailenson, J.N., Blascovich, J., Beall, A.C., Loomis, J.M.: Interpersonal distance in immersive virtual environments. Personal. Soc. Psychol. Bull. 29(7), 819–833 (2003)

    Article  Google Scholar 

  6. Bakker, N.H., Passenier, P.O., Werkhoven, P.J.: Effects of head-slaved navigation and the use of teleports on spatial orientation in virtual environments. Hum. Factors 45(1), 160–169 (2003)

    Article  Google Scholar 

  7. Basili, P., Sağlam, M., Kruse, T., Huber, M., Kirsch, A., Glasauer, S.: Strategies of locomotor collision avoidance. Gait Posture 37(3), 385–390 (2013)

    Article  Google Scholar 

  8. Boletsis, C.: The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1(4), 24 (2017)

    Article  Google Scholar 

  9. Bonsch, A., Weyers, B., Wendt, J., Freitag, S., Kuhlen, T.W.: Collision avoidance in the presence of a virtual agent in small-scale virtual environments. In: IEEE Symposium on 3D User Interfaces, pp. 145–148 (2016)

  10. Bowman, D.A., Davis, E.T., Hodges, L.F., Badre, A.N.: Maintaining spatial orientation during travel in an immersive virtual environment. Presence 8(6), 618–631 (1999)

    Article  Google Scholar 

  11. Bozgeyikli, E., Raij, A., Katkoori, S., Dubey, R.: Point & teleport locomotion technique for virtual reality. In: ACM Annual Symposium on Computer–Human Interaction in Play, pp. 205–216 (2016)

  12. Brogan, D.C., Johnson, N.L.: Realistic human walking paths. In: IEEE International Workshop on Program Comprehension, pp. 94–101 (2003)

  13. Bruder, G., Lubos, P., Steinicke, F.: Cognitive resource demands of redirected walking. IEEE Trans. Vis. Comput. Graph. 21(4), 539–544 (2015)

    Article  Google Scholar 

  14. Calandra, D., Billi, M., Lamberti, F., Sanna, A., Borchiellini, R.: Arm swinging vs treadmill: a comparison between two techniques for locomotion in virtual reality. In: Annual European Association for Computer Graphics Conference, pp. 53–56 (2018)

  15. Cardoso, J.C., Perrotta, A.: A survey of real locomotion techniques for immersive virtual reality applications on head-mounted displays. Comput. Graph. 85, 55–73 (2019)

    Article  Google Scholar 

  16. Cerezo, E., Pina, A., Serón, F.J.: Motion and behaviour modelling: state of art and new trends. Vis. Comput. 15(3), 124–146 (1999)

    Article  Google Scholar 

  17. Chance, S.S., Gaunet, F., Beall, A.C., Loomis, J.M.: Locomotion mode affects the updating of objects encountered during travel: the contribution of vestibular and proprioceptive inputs to path integration. Presence 7(2), 168–178 (1998)

    Article  Google Scholar 

  18. Cinelli, M.E., Patla, A.E.: Locomotor avoidance behaviours during a visually guided task involving an approaching object. Gait Posture 28(4), 596–601 (2008)

    Article  Google Scholar 

  19. Cirio, G., Olivier, A.H., Marchal, M., Pettre, J.: Kinematic evaluation of virtual walking trajectories. IEEE Trans. Vis. Comput. Graph. 19(4), 671–680 (2013)

    Article  Google Scholar 

  20. Cirio, G., Vangorp, P., Chapoulie, E., Marchal, M., Lécuyer, A., Drettakis, G.: Walking in a cube: novel metaphors for safely navigating large virtual environments in restricted real workspaces. IEEE Trans. Vis. Comput. Graph. 18(4), 546–554 (2012)

    Article  Google Scholar 

  21. Cliburn, D., Rilea, S., Parsons, D., Surya, P., Semler, J.: The effects of teleportation on recollection of the structure of a virtual world. In: Joint Virtual Reality Eurographics Conference on Virtual Environments, pp. 117–120 (2009)

  22. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences. Routledge, London (2013)

    Book  MATH  Google Scholar 

  23. Collaboration, N.R.F., et al.: A century of trends in adult human height. Elife 5, e13,410 (2016)

    Article  Google Scholar 

  24. Cutting, J.E., Vishton, P.M., Braren, P.A.: How we avoid collisions with stationary and moving objects. Psychol. Rev. 102(4), 627 (1995)

    Article  Google Scholar 

  25. Darken, R.P., Cockayne, W.R., Carmein, D.: The omni-directional treadmill: a locomotion device for virtual worlds. In: ACM Symposium on User interface Software and Technology, pp. 213–221 (1997)

  26. Ducourant, T., Vieilledent, S., Kerlirzin, Y., Berthoz, A.: Timing and distance characteristics of interpersonal coordination during locomotion. Neurosci. Lett. 389(1), 6–11 (2005)

    Article  Google Scholar 

  27. Faul, F., Erdfelder, E., Buchner, A., Lang, A.G.: Statistical power analyses using g* power 3.1: tests for correlation and regression analyses. Behav. Res. Methods 41(4), 1149–1160 (2009)

    Article  Google Scholar 

  28. Federal Highway Administration: U.S. Manual on Uniform Traffic Control, Revisions 1 and 2 Incorporated Edition. U.S. Department of Transportation Federal Highway Administration, Washington (2003)

  29. Fink, P.W., Foo, P.S., Warren, W.H.: Obstacle avoidance during walking in real and virtual environments. ACM Trans. Appl. Percept. 4(1), 2-es (2007)

    Article  Google Scholar 

  30. Freitag, S., Rausch, D., Kuhlen, T.: Reorientation in virtual environments using interactive portals. In: IEEE Symposium on 3D User Interfaces, pp. 119–122 (2014)

  31. Frissen, I., Campos, J.L., Souman, J.L., Ernst, M.O.: Integration of vestibular and proprioceptive signals for spatial updating. Exp. Brain Res. 212(2), 163 (2011)

    Article  Google Scholar 

  32. Gérin-Lajoie, M., Richards, C.L., McFadyen, B.J.: The negotiation of stationary and moving obstructions during walking: anticipatory locomotor adaptations and preservation of personal space. Mot. Control 9(3), 242–269 (2005)

    Article  Google Scholar 

  33. Hale, K.S., Stanney, K.M.: Handbook of Virtual Environments: Design, Implementation, and Applications. CRC Press, Boca Raton (2014)

    Book  Google Scholar 

  34. Hall, E.T.: A system for the notation of proxemic behavior. Am. Anthropol. 65(5), 1003–1026 (1963)

    Article  Google Scholar 

  35. Hart, S.G.: NASA-task load index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 904–908 (2006)

  36. Hashemian, A.M., Riecke, B.E.: Leaning-based 360 interfaces: investigating virtual reality navigation interfaces with leaning-based-translation and full-rotation. In: International Conference on Virtual, Augmented and Mixed Reality, pp. 15–32 (2017)

  37. Hollman, J.H., Brey, R.H., Robb, R.A., Bang, T.J., Kaufman, K.R.: Spatiotemporal gait deviations in a virtual reality environment. Gait Posture 23(4), 441–444 (2006)

    Article  Google Scholar 

  38. Huang, J.Y.: An omnidirectional stroll-based virtual reality interface and its application on overhead crane training. IEEE Trans. Multimed. 5(1), 39–51 (2003)

    Article  Google Scholar 

  39. Huber, M., Su, Y.H., Krüger, M., Faschian, K., Glasauer, S., Hermsdörfer, J.: Adjustments of speed and path when avoiding collisions with another pedestrian. PLoS ONE 9(2), e89589 (2014)

    Article  Google Scholar 

  40. Hutchinson, J.C., Tenenbaum, G.: Attention focus during physical effort: the mediating role of task intensity. Psychol. Sport Exerc. 8(2), 233–245 (2007)

    Article  Google Scholar 

  41. Iachini, T., Coello, Y., Frassinetti, F., Ruggiero, G.: Body space in social interactions: a comparison of reaching and comfort distance in immersive virtual reality. PLoS ONE 9(11), e111511 (2014)

    Article  Google Scholar 

  42. Iachini, T., Coello, Y., Frassinetti, F., Senese, V.P., Galante, F., Ruggiero, G.: Peripersonal and interpersonal space in virtual and real environments: effects of gender and age. J. Environ. Psychol. 45, 154–164 (2016)

    Article  Google Scholar 

  43. Iwata, H.: The torus treadmill: realizing locomotion in VES. IEEE Comput. Graph. Appl. 19(6), 30–35 (1999)

    Article  Google Scholar 

  44. Iwata, H., Yano, H., Fukushima, H., Noma, H.: Circulafloor [locomotion interface]. IEEE Comput. Graph. Appl. 25(1), 64–67 (2005)

    Article  Google Scholar 

  45. Iwata, H., Yoshida, Y.: Path reproduction tests using a torus treadmill. Presence 8(6), 587–597 (1999)

    Article  Google Scholar 

  46. Karamouzas, I., Overmars, M.: Simulating the local behaviour of small pedestrian groups. In: ACM Symposium on Virtual Reality Software and Technology, pp. 183–190 (2010)

  47. Keedwell, A.D., Dénes, J.: Latin Squares and Their Applications. Elsevier, Amsterdam (2015)

    MATH  Google Scholar 

  48. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    Article  Google Scholar 

  49. Kitson, A., Hashemian, A.M., Stepanova, E.R., Kruijff, E., Riecke, B.E.: Lean into it: exploring leaning-based motion cueing interfaces for virtual reality movement. In: IEEE Virtual Reality, pp. 215–216 (2017)

  50. Koilias, A., Mousas, C., Anagnostopoulos, C.N.: The effects of motion artifacts on self-avatar agency. Informatics 6(2), 18 (2019)

    Article  Google Scholar 

  51. Koilias, A., Mousas, C., Anagnostopoulos, C.N.: I feel a moving crowd surrounds me: exploring tactile feedback during immersive walking in a virtual crowd. Comput. Anim. Virtual Worlds 31(4–5), e1963 (2020)

    Google Scholar 

  52. Koilias, A., Nelson, M., Anagnostopoulos, S., Mousas, C.: Immersive walking in a virtual crowd: the effects of the density, speed, and direction of a virtual crowd on human movement behavior. Comput. Anim. Virtual Worlds 31, e1928 (2020)

    Article  Google Scholar 

  53. Koilias, A., Nelson, M., Gubbi, S., Mousas, C., Anagnostopoulos, C.N.: Evaluating human movement coordination during immersive walking in a virtual crowd. Behav. Sci. 10(9), 130 (2020)

    Article  Google Scholar 

  54. Langbehn, E., Lubos, P., Bruder, G., Steinicke, F.: Bending the curve: sensitivity to bending of curved paths and application in room-scale VR. IEEE Trans. Vis. Comput. Graph. 23(4), 1389–1398 (2017)

    Article  Google Scholar 

  55. Langbehn, E., Lubos, P., Steinicke, F.: Evaluation of locomotion techniques for room-scale VR: joystick, teleportation, and redirected walking. In: Virtual Reality International Conference, pp. 1–9 (2018)

  56. Lapointe, J.F., Savard, P., Vinson, N.G.: A comparative study of four input devices for desktop virtual walkthroughs. Comput. Hum. Behav. 27(6), 2186–2191 (2011)

    Article  Google Scholar 

  57. Lee, C.H., Liu, A., Caudell, T.P.: A study of locomotion paradigms for immersive medical simulation environments. Vis. Comput. 25(11), 1009–1018 (2009)

    Article  Google Scholar 

  58. Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré, J.: Realistic following behaviors for crowd simulation. Comput. Graph. Forum 31(2), 489–498 (2012)

    Article  MATH  Google Scholar 

  59. Lund, A.M.: Measuring usability with the use questionnaire12. Usability Interface 8(2), 3–6 (2001)

    Google Scholar 

  60. Magnenat-Thalmann, N., Thalmann, D.: Virtual humans: thirty years of research, what next? Vis. Comput. 21(12), 997–1015 (2005)

    Article  Google Scholar 

  61. Marcora, S.M., Staiano, W., Manning, V.: Mental fatigue impairs physical performance in humans. J. Appl. Physiol. 106(3), 857–864 (2009)

    Article  Google Scholar 

  62. Matthies, D.J., Manke, F.M., Müller, F., Makri, C., Anthes, C., Kranzlmüller, D.: VR-stepper: a do-it-yourself game interface for locomotion in virtual environments. arXiv preprint arXiv:1407.3948 (2014)

  63. Medina, E., Fruland, R., Weghorst, S.: Virtusphere: walking in a human size VR “hamster ball”. In: Human Factors and Ergonomics Society Annual Meeting, pp. 2102–2106 (2008)

  64. Moghadam, K.R., Banigan, C., Ragan, E.D.: Scene transitions and teleportation in virtual reality and the implications for spatial awareness and sickness. IEEE Trans. Vis. Comput. Graph. 26(6), 2273–2287 (2018)

    Article  Google Scholar 

  65. Mousas, C.: Full-body locomotion reconstruction of virtual characters using a single inertial measurement unit. Sensors 17(11), 2589 (2017)

    Article  Google Scholar 

  66. Mousas, C., Anagnostopoulos, C.N.: Performance-driven hybrid full-body character control for navigation and interaction in virtual environments. 3D Res. 8(2), 18 (2017)

    Article  Google Scholar 

  67. Mousas, C., Kao, D., Koilias, A., Rekabdar, B.: Real and virtual environment mismatching induces arousal and alters movement behavior. In: IEEE Conference on Virtual Reality and 3D User Interfaces, pp. 626–635 (2020)

  68. Mousas, C., Koilias, A., Anastasiou, D., Hekabdar, B., Anagnostopoulos, C.N.: Effects of self-avatar and gaze on avoidance movement behavior. In: IEEE Conference on Virtual Reality and 3D User Interfaces, pp. 726–734 (2019)

  69. Mousas, C., Koilias, A., Rekabdar, B., Kao, D., Anastaslou, D.: Toward understanding the effects of virtual character appearance on avoidance movement behavior. In: IEEE Virtual Reality and 3D User Interfaces, pp. 40–49 (2021)

  70. Multon, F., Ménardais, S., Arnaldi, B.: Human motion coordination: a juggler as an example. Vis. Comput. 17(2), 91–105 (2001)

    Article  MATH  Google Scholar 

  71. Nabiyouni, M., Saktheeswaran, A., Bowman, D.A., Karanth, A.: Comparing the performance of natural, semi-natural, and non-natural locomotion techniques in virtual reality. In: IEEE Symposium on 3D User Interfaces, pp. 3–10 (2015)

  72. Neth, C., Souman, J., Engel, D., Kloos, U., Bülthoff, H., Mohler, B.: Velocity-dependent curvature gain and avatar use for redirected walking. In: Joint Virtual Reality Conference of EuroVR-EGVE-VEC, pp. 1–2 (2010)

  73. Oh, K., Stanley, C.J., Damiano, D.L., Kim, J., Yoon, J., Park, H.S.: Biomechanical evaluation of virtual reality-based turning on a self-paced linear treadmill. Gait Posture 65, 157–162 (2018)

    Article  Google Scholar 

  74. Olivier, A.H., Bruneau, J., Kulpa, R., Pettré, J.: Walking with virtual people: evaluation of locomotion interfaces in dynamic environments. IEEE Trans. Vis. Comput. Graph. 24(7), 2251–2263 (2017)

    Article  Google Scholar 

  75. Olivier, A.H., Marin, A., Crétual, A., Berthoz, A., Pettré, J.: Collision avoidance between two walkers: role-dependent strategies. Gait Posture 38(4), 751–756 (2013)

    Article  Google Scholar 

  76. Olivier, A.H., Marin, A., Crétual, A., Pettré, J.: Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers. Gait Posture 36(3), 399–404 (2012)

    Article  Google Scholar 

  77. Park, H.S., Yoon, J., Sudduth, A., Kim, J., Kang, Y.S.: Simulating overground turning in a VR-based linear treadmill. In: In: International Conference on Control, Automation and Systems, pp. 1436–1438 (2013)

  78. Patla, A.E., Rietdyk, S., Martin, C., Prentice, S.: Locomotor patterns of the leading and the trailing limbs as solid and fragile obstacles are stepped over: some insights into the role of vision during locomotion. J. Mot. Behav. 28(1), 35–47 (1996)

    Article  Google Scholar 

  79. Peck, T.C., Fuchs, H., Whitton, M.C.: An evaluation of navigational ability comparing redirected free exploration with distractors to walking-in-place and joystick locomotio interfaces. In: IEEE Virtual Reality, pp. 55–62 (2011)

  80. Perrinet, J., Olivier, A.H., Pettré, J.: Walk with me: Interactions in emotional walking situations, a pilot study. In: ACM Symposium on Applied Perception, pp. 59–66 (2013)

  81. Peters, C., Ennis, C.: Modeling groups of plausible virtual pedestrians. IEEE Comput. Graph. Appl. 29(4), 54–63 (2009)

    Article  Google Scholar 

  82. Pettré, J., Siret, O., Marchal, M., de la Rivire, J.B., Lécuyer, A.: Joyman: an immersive and entertaining interface for virtual locomotion. In: SIGGRAPH Asia 2011 Emerging Technologies, p. 1 (2011)

  83. Pham, Q.C., Hicheur, H., Arechavaleta, G., Laumond, J.P., Berthoz, A.: The formation of trajectories during goal-oriented locomotion in humans. II. A maximum smoothness model. Eur. J. Neurosci. 26(8), 2391–2403 (2007)

    Article  Google Scholar 

  84. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected Walking. Citeseer (2005)

  85. Razzaque, S., Swapp, D., Slater, M., Whitton, M.C., Steed, A.: Redirected walking in place. In: EGVE , vol. 2, 123–130 (2002)

  86. Riecke, B.E., Bodenheimer, B., McNamara, T.P., Williams, B., Peng, P., Feuereissen, D.: Do we need to walk for effective virtual reality navigation? physical rotations alone may suffice. In: International Conference on Spatial Cognition, pp. 234–247 (2010)

  87. Ruddle, R.A., Lessels, S.: For efficient navigational search, humans require full physical movement, but not a rich visual scene. Psychol. Sci. 17(6), 460–465 (2006)

    Article  Google Scholar 

  88. Ruddle, R.A., Lessels, S.: The benefits of using a walking interface to navigate virtual environments. ACM Trans. Comput.-Hum. Interact. 16(1), 1–18 (2009)

    Article  Google Scholar 

  89. Ruddle, R.A., Volkova, E., Bülthoff, H.H.: Walking improves your cognitive map in environments that are large-scale and large in extent. ACM Trans. Comput.-Hum. Interact. 18(2), 1–20 (2011)

    Article  Google Scholar 

  90. Ruddle, R.A., Volkova, E., Bülthoff, H.H.: Learning to walk in virtual reality. ACM Trans. Appl. Percept. 10(2), 1–17 (2013)

    Article  Google Scholar 

  91. Sanz, F.A., Olivier, A.H., Bruder, G., Pettré, J., Lécuyer, A.: Virtual proxemics: locomotion in the presence of obstacles in large immersive projection environments. In: IEEE Virtual Reality, pp. 75–80 (2015)

  92. Schrammel, F., Pannasch, S., Graupner, S.T., Mojzisch, A., Velichkovsky, B.M.: Virtual friend or threat? the effects of facial expression and gaze interaction on psychophysiological responses and emotional experience. Psychophysiology 46(5), 922–931 (2009)

    Article  Google Scholar 

  93. Schwaiger, M., Thuimmel, T., Ulbrich, H.: Cyberwalk: An advanced prototype of a belt array platform. In: IEEE International Workshop on Haptic, Audio and Visual Environments and Games, pp. 50–55 (2007)

  94. Silva, W.S., Aravind, G., Sangani, S., Lamontagne, A.: Healthy young adults implement distinctive avoidance strategies while walking and circumventing virtual human vs. non-human obstacles in a virtual environment. Gait Posture 61, 294–300 (2018)

    Article  Google Scholar 

  95. Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact. 2(3), 201–219 (1995)

    Article  Google Scholar 

  96. Souman, J.L., Giordano, P.R., Schwaiger, M., Frissen, I., Thümmel, T., Ulbrich, H., Luca, A.D., Bülthoff, H.H., Ernst, M.O.: Cyberwalk: enabling unconstrained omnidirectional walking through virtual environments. ACM Trans. Appl. Percept. 8(4), 1–22 (2008)

    Article  Google Scholar 

  97. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Vis. Comput. Graph. 16(1), 17–27 (2009)

    Article  Google Scholar 

  98. Steinicke, F., Bruder, G., Kohli, L., Jerald, J., Hinrichs, K.: Taxonomy and implementation of redirection techniques for ubiquitous passive haptic feedback. In: International Conference on Cyberworlds, pp. 217–223 (2008)

  99. Steinicke, F., Bruder, G., Ropinski, T., Hinrichs, K.: Moving towards generally applicable redirected walking. In: Virtual Reality International Conference, pp. 15–24 (2008)

  100. Suma, E., Finkelstein, S., Reid, M., Babu, S., Ulinski, A., Hodges, L.F.: Evaluation of the cognitive effects of travel technique in complex real and virtual environments. IEEE Trans. Vis. Comput. Graph. 16(4), 690–702 (2009)

    Article  Google Scholar 

  101. Suma, E.A., Bruder, G., Steinicke, F., Krum, D.M., Bolas, M.: A taxonomy for deploying redirection techniques in immersive virtual environments. In: IEEE Virtual Reality Workshops, pp. 43–46 (2012)

  102. Suryajaya, M., Lambert, T., Fowler, C.: Camera-based OBDP locomotion system. In: ACM Symposium on Virtual Reality Software and Technology, pp. 31–34 (2009)

  103. Tajima, Y., Takimoto, K., Nagatani, T.: Pattern formation and jamming transition in pedestrian counter flow. Phys. A Stat. Mech. Appl. 313(3–4), 709–723 (2002)

    Article  MATH  Google Scholar 

  104. Templeman, J.N., Denbrook, P.S., Sibert, L.E.: Virtual locomotion: walking in place through virtual environments. Presence 8(6), 598–617 (1999)

    Article  Google Scholar 

  105. Terziman, L., Marchal, M., Emily, M., Multon, F., Arnaldi, B., Lécuyer, A.: Shake-your-head: revisiting walking-in-place for desktop virtual reality. In: ACM Symposium on Virtual Reality Software and Technology, pp. 27–34 (2010)

  106. Terziman, L., Marchal, M., Multon, F., Arnaldi, B., Lécuyer, A.: Comparing virtual trajectories made in slalom using walking-in-place and joystick techniques. In: EuroVR/EGVE Joint Virtual Reality Conference (2011)

  107. Tregillus, S., Folmer, E.: Vr-step: Walking-in-place using inertial sensing for hands free navigation in mobile VR environments. In: ACM CHI Conference on Human Factors in Computing Systems, pp. 1250–1255 (2016)

  108. Usoh, M., Arthur, K., Whitton, M.C., Bastos, R., Steed, A., Slater, M., Brooks Jr, F.P.: Walking\({>}\) walking-in-place\({>}\) flying, in virtual environments. In: Annual Conference on Computer Graphics and Interactive Techniques, pp. 359–364 (1999)

  109. Vallis, L.A., McFadyen, B.J.: Locomotor adjustments for circumvention of an obstacle in the travel path. Exp. Brain Res. 152(3), 409–414 (2003)

    Article  Google Scholar 

  110. Van Basten, B.J., Jansen, S.E., Karamouzas, I.: Exploiting motion capture to enhance avoidance behaviour in games. In: International Workshop on Motion in Games, pp. 29–40 (2009)

  111. Waller, D., Hodgson, E.: Sensory contributions to spatial knowledge of real and virtual environments. In: Human Walking in Virtual Environments, pp. 3–26. Springer, Berlin (2013)

  112. Warren, W., Fajen, B., Belcher, D.: Behavioral dynamics of steering, obstacle avoidance, and route selection. J. Vis. 1(3), 184 (2001)

    Article  Google Scholar 

  113. Warren, W.H., Di, S., Fajen, B.R.: Behavioral dynamics of avoiding a moving obstacle. J. Vis. 3(9), 134 (2003)

    Article  Google Scholar 

  114. Warren, W.H., Kay, B.A., Zosh, W.D., Duchon, A.P., Sahuc, S.: Optic flow is used to control human walking. Nat. Neurosci. 4(2), 213–216 (2001)

    Article  Google Scholar 

  115. Wendt, J.D., Whitton, M.C., Brooks, F.P.: Gud wip: Gait-understanding-driven walking-in-place. In: IEEE Virtual Reality, pp. 51–58 (2010)

  116. Whitton, M.C., Cohn, J.V., Feasel, J., Zimmons, P., Razzaque, S., Poulton, S.J., McLeod, B., Brooks, F.P.: Comparing ve locomotion interfaces. In: IEEE Virtual Reality, pp. 123–130 (2005)

  117. Williams, B., Bailey, S., Narasimham, G., Li, M., Bodenheimer, B.: Evaluation of walking in place on a WII balance board to explore a virtual environment. ACM Trans. Appl. Percept. 8(3), 1–14 (2011)

    Article  Google Scholar 

  118. Wilson, P.T., Kalescky, W., MacLaughlin, A., Williams, B.: Vr locomotion: walking\({>}\) walking in place\({>}\) arm swinging. In: ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry, pp. 243–249 (2016)

  119. Wilson, P.T., Kalescky, W., MacLaughlin, A., Williams, B.: Vr locomotion: walking\(>\) walking in place\(>\) arm swinging. In: ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry, pp. 243–249 (2016)

  120. Zanbaka, C.A., Lok, B.C., Babu, S.V., Ulinski, A.C., Hodges, L.F.: Comparison of path visualizations and cognitive measures relative to travel technique in a virtual environment. IEEE Trans. Vis. Comput. Graph. 11(6), 694–705 (2005)

    Article  Google Scholar 

  121. Zielasko, D., Horn, S., Freitag, S., Weyers, B., Kuhlen, T.W.: Evaluation of hands-free HMD-based navigation techniques for immersive data analysis. In: IEEE Symposium on 3D User Interfaces, pp. 113–119 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Mousas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousas, C., Kao, D., Koilias, A. et al. Evaluating virtual reality locomotion interfaces on collision avoidance task with a virtual character. Vis Comput 37, 2823–2839 (2021). https://doi.org/10.1007/s00371-021-02202-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02202-6

Keywords

Navigation