Skip to main content
Log in

A novel privacy-preserving outsourcing computation scheme for Canny edge detection

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

With the advancement of cloud computing technology, cloud servers are utilized to process large-scale data, especially multimedia data. However, concerns about leakage of private information prevent cloud computing from being further popularized. Thus, privacy-preserving computation for multimedia data is becoming increasingly important as a research hotspot. Edge detection plays an important role in image processing and computer vision. Different from previous researches on privacy-preserving computation, privacy-preserving edge detection faces new problems such as how to encrypt and represent edges. In this paper, we propose a privacy-preserving computation scheme for Canny edge detection. We first give an overview of our scheme, which involves one client and three cloud servers. Then, three key building blocks in the proposed scheme are put forward: pixel permutation; secure comparison and multiplication protocols; secure edge representation. Based on these building blocks, our scheme is carefully designed and constructed step by step. Furthermore, we analyze the correctness and the security of our scheme in detail. Finally, comparative experiments show that our scheme can maintain the quality of edge detection while meeting security requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zheng, P., Huang, J.: Efficient encrypted images filtering and transform coding with Walsh-Hadamard transform and parallelization. IEEE Trans. Image Process. 27(5), 2541–2556 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Song, Y., Wang C.X., and Tay, W.P.: Privacy-aware Kalman filtering. In: IEEE Int. Conf. Acoust. Speech Signal Process Proc., IEEE, pp. 4434–4438 (2018)

  3. Hsu, C.Y., Lu, C.S., Pei, S.C.: Image feature extraction in encrypted domain with privacy-preserving SIFT. IEEE Trans. Image Process. 21(11), 4593–4607 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Qin, Z., Yan, J., Ren, K., Chen, C.W., Wang C.: Towards efficient privacy-preserving image feature extraction in cloud computing. In: Proc. ACM Conf. Multimedia, ACM, pp. 497–506 (2014)

  5. Wang, Q., Hu, S., Ren, K., Wang, J., Wang Z., Du, M.: Catch me in the dark: effective privacy-preserving outsourcing of feature extractions over image data. In: Proc. INFOCOM, IEEE, pp. 1–9 (2016)

  6. Hu, S., Wang, Q., Wang, J., Qin, Z., Ren, K.: Securing SIFT: Privacy-preserving outsourcing computation of feature extractions over encrypted image data. IEEE Trans. Image Process. 25(7), 3411–3425 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhang, H., Zeng, K.: Pairwise Markov Chain: a task scheduling strategy for privacy-preserving SIFT on Edge. In: Proc. IEEE INFOCOM, IEEE, pp. 1432–1440 (2019)

  8. Jiang, L., Xu, C., Wang, X., Luo, B., Wang, H.: Secure outsourcing SIFT: Efficient and privacy-preserving image feature extraction in the encrypted domain. IEEE Trans. Dependable Secur. Comput. 17(1), 179–193 (2020)

    Article  Google Scholar 

  9. Bai, Y., Zhuo, L., Cheng, B., Peng, Y.F.: Surf feature extraction in encrypted domain. In: Proc. IEEE Int. Conf. Multimedia Expo, IEEE, pp. 1–6 (2014)

  10. Wang, Q., Hu, S., Wang, J., Ren K.: Secure surfing: privacy-preserving speeded-up robust feature extractor. In: Proc. IEEE Int. Conf. Distrib. Comput. Syst., IEEE, pp. 700–710 (2016)

  11. Wang, Q., Wang, J., Hu, S., Zou, Q., Ren, K.: SecHOG: Privacy-preserving outsourcing computation of histogram of oriented gradients in the cloud. In: Proc. ACM Asia Conf. Comput. Commun. Secur., pp. 257–268 (2016)

  12. Kitayama, M., Kiya, H.: HOG feature extraction from encrypted images for privacy-preserving machine learning. In: IEEE Int. Conf. Consum. Electron. - Asia, IEEE, pp. 80–82 (2019)

  13. Kitavama, M., Kiva, H.: Irreversible privacy-preserving images holding spatial information for HOG feature extraction. In: Proc. - Int. Symp. Intell. Signal Process. Commun. Syst., pp. 1–2 (2019)

  14. Xia, Z., Ma, X., Shen, Z., Sun, X., Xiong, N.N., Jeon, B.: Secure image LBP feature extraction in cloud-based smart campus. IEEE Access 6, 30392–30401 (2018)

    Article  Google Scholar 

  15. Sirichotedumrong, W., Kinoshita, Y., Kiya, H.: Privacy-Preserving Deep Neural Networks Using Pixel-Based Image Encryption Without Common Security Keys. In: Asia-Pacific Signal Inf. Process. Assoc. Annu. Summit Conf., pp. 1756–1761 (2019)

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Bay, H., Tuytelaars, T., Gool, L.V.: SURF: speeded up robust features. In: Lect. Notes Comput. Sci., pp. 404–417 (2006)

  18. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern Recognition, IEEE, pp. 886–893 (2005)

  19. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  20. Senel, H.G.: Gradient estimation using wide support operators. IEEE Trans. Image Process. 18(4), 867–878 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ziad, M., Alanwar, A., Alzantot, M., Srivastava, M.B.: CryptoImg: privacy preserving processing over encrypted images. In: IEEE Conf. Commun. Netw. Secur., IEEE, pp. 570–575 (2016)

  22. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Lect. Notes Comput. Sci., Springer, pp. 223–238 (1999)

  23. Rajput, A.S., Singh, P., Raman, B.: CryptFine: towards secure cloud based filtering in encrypted domain. In: ISEA Asia Secur. Priv. Conf., IEEE, pp. 1–8 (2017)

  24. Shamir, A.: How to share a secret. Commun. ACM. 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol for two-party computation. J. Cryptol. 22(2), 161–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Lect. Notes Comput. Sci., Springer, pp. 505–524 (2011)

  27. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Lect. Notes Comput. Sci., Springer, pp. 267–288 (1998)

  28. Bos, J.W., Lauter, K., Loftus, J., Naehrig M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Lect. Notes Comput. Sci., Springer, pp. 45–64 (2013)

  29. Wang, S., Bhandari, S., Chaduvula, S.C., Atallah, M.J., Panchal, J.H., Ramani, K.: Secure collaboration in engineering systems design. J. Comput. Inf. Sci. Eng. 17(4), 1–11 (2017)

    Article  Google Scholar 

  30. BSDS500. https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html (2013). Accessed from Jan 2013

  31. CVD-UGR. http://decsai.ugr.es/cvg/dbimagenes/ (2016). Accessed from 10 Aug 2016

  32. Caltech-256. http://www.vision.caltech.edu/Image_Datasets/Caltech256/ (2006). Accessed from 15 Nov 2006

  33. Luo, J., He, F., Li, H., Zeng, X.T., Liang, Y.: A novel whale optimization algorithm with filtering disturbance and non-linear step. Int. J. Bio-Inspir. Comput. (2020). https://doi.org/10.1504/IJBIC.2020.10036562

    Article  Google Scholar 

  34. Liang, Y., He, F., Zeng, X., Luo, J.: An improved Loop subdivision to coordinate the smoothness and the number of faces via multi-objective optimization. Integr. Comput.-Aided Eng. (2021). https://doi.org/10.3233/ICA-210661

    Article  Google Scholar 

  35. Luo, J., He, F., Yong, J.: An efficient and robust bat algorithm with fusion of opposition-based learning and whale optimization algorithm. Intell. Data Anal. 24(3), 581–606 (2020)

    Article  Google Scholar 

  36. Liang, Y., He, F., Zeng, X.: 3D mesh simplification with feature preservation based on Whale Optimization Algorithm and Differential Evolution. Integr. Comput. Aided Eng. 27(4), 417–435 (2020)

    Article  Google Scholar 

  37. Pan, Y., He, F., Yu, H.: Learning social representations with deep autoencoder for recommender system. World Wide Web 23(4), 2259–2279 (2020)

    Article  Google Scholar 

  38. Pan, Y., He, F., Yu, H.: A correlative denoising autoencoder to model social influence for Top-N recommender system. Front. Comput. Sci. 14(3), 143301 (2020)

    Article  Google Scholar 

  39. Zhang, S., He, F.: DRCDN: learning deep residual convolutional dehazing networks. Vis. Comput. 36, 1797–1808 (2020)

    Article  Google Scholar 

  40. Hamreras, S., Boucheham, B., Mollina-Cabello, M.A., Benitez-Rochel, R., Lopez-Rubio, E.: Content based image retrieval by ensembles of deep learning object classifiers. Integr. Comput. Aided Eng. 27(3), 317–331 (2020)

    Article  Google Scholar 

  41. Quan, Q., He, F., Li, H.: A multi-phase blending method with incremental intensity for training detection networks. Vis. Comput. 37(2), 245–259 (2020)

    Article  Google Scholar 

  42. Cai, E.J., Li, D.S., Li, H.N., Xue, Z.L.: Self-adapted optimization-based video magnification for revealing subtle changes. Integr. Comput. Aided Eng. 27(2), 173–193 (2020)

    Article  Google Scholar 

  43. Li, H., He, F., Chen, Y., Pan, Y.: MLFS-CCDE: multi-objective large-scale feature selection by cooperative co-evolutionary differential evolution. Memet. Comput. 13(3), 1–18 (2021)

    Article  Google Scholar 

  44. Chen, Y., He, F., Li, H., Zhang, D., Wu, Y.: A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration. Appl. Soft Comput. 93, 106335 (2020)

    Article  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Grant No 62072348, the Science and Technology Major Project of Hubei Province (Next-Generation AI Technologies) under Grant No 2019AEA170 and Translational Medicine and Interdisciplinary Research Joint Fund of Zhongnan Hospital of Wuhan University under Grant No ZNJC201917).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazhi He.

Ethics declarations

Conflicts of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., He, F. & Zeng, X. A novel privacy-preserving outsourcing computation scheme for Canny edge detection. Vis Comput 38, 4437–4455 (2022). https://doi.org/10.1007/s00371-021-02307-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02307-y

Keywords

Navigation