Skip to main content
Log in

SCVS: blind image quality assessment based on spatial correlation and visual saliency

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We propose a no-reference image quality assessment (NR-IQA) approach to predict the perceptual quality score of a given image without using any reference image. Our model consists of two steps and trains two similar convolutional neural networks (CNN) progressively. In order to consider the quality of different blocks in the whole picture, the first CNN takes the weighted average of the FR-IQA score of each patch and the differential mean opinion scores of the whole image as target output. The second CNN considers the interaction of the adjacent patches in an image. This paper not only uses visual saliency to address the importance of different patches, but also considers the spatial interaction of adjacent patches using Gaussian function. We compare the prediction results with several up-to-date proposed methods in six databases, and demonstrate the advance of our method. The source code can be found in https://github.com/busigushen/SCVS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbas, N., Saba, T., Khan, S., Mehmood, Z., Rehman, A., Tabasum, R.: Reduced reference image quality assessment technique based on dwt and path integral local binary patterns. Arab. J. Sci. Eng. 45(4), 3387–3401 (2020)

    Article  Google Scholar 

  2. Abdul, R., Rehman, Z.: Reduced-reference image quality assessment by structural similarity estimation. IEEE Trans. Image Process. 21(8), 3378–3389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ali, B., Sihite, D.N., Laurent, I.: Quantitative analysis of human-model agreement in visual saliency modeling: a comparative study. IEEE Trans. Image Process. 22(1), 55–69 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Anush Krishna, M., Alan Conrad, B.: Blind image quality assessment: from natural scene statistics to perceptual quality. IEEE Trans. Image Process. 20(12), 3350–3364 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment. SIViP 12(2), 355–362 (2018)

    Article  Google Scholar 

  6. Cheon, M., Yoon, S.J., Kang, B., Lee, J.: Perceptual image quality assessment with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 433–442 (2021)

  7. Fan, D.P., Li, T., Lin, Z., Ji, G.P., Zhang, D., Cheng, M.M., Fu, H., Shen, J.: Re-thinking co-salient object detection. IEEE Trans.Pattern Anal. Mach. Intell. (2021)

  8. Ghadiyaram, D., Bovik, A.: Massive online crowdsourced study of subjective and objective picture quality. IEEE Trans. Image Process. 25(1), 372–387 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ghadiyaram, D., Bovik, A.C.: Perceptual quality prediction on authentically distorted images using a bag of features approach. J. Vis. 17(1), 32 (2017)

    Article  Google Scholar 

  10. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. Proc. Neural Inf. Process. Syst. 19, 545–552 (2006)

    Google Scholar 

  11. Hosu, V., Lin, H., Sziranyi, T., Saupe, D.: Koniq-10k: an ecologically valid database for deep learning of blind image quality assessment. IEEE Trans. Image Process. 29, 4041–4056 (2020)

    Article  MATH  Google Scholar 

  12. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

  13. Huang, K., Gao, S.: Image saliency detection via multi-scale iterative cnn. Vis. Comput. 36(7), 1355–1367 (2020)

    Article  Google Scholar 

  14. Huang, Z., Chen, H.X., Zhou, T., Yang, Y.Z., Wang, C.Y., Liu, B.Y.: Contrast-weighted dictionary learning based saliency detection for vhr optical remote sensing images. Pattern Recogn. 113, 107757 (2021)

    Article  Google Scholar 

  15. Huang, Z., Liu, S.: Perceptual hashing with visual content understanding for reduced-reference screen content image quality assessment. IEEE Trans. Circuits Syst. Video Technol. (2020)

  16. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  17. Jayaraman, D., Mittal, A., Moorthy, A.K., Bovik, A.C.: Objective quality assessment of multiply distorted images. In: 2012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1693–1697 (2012)

  18. Jie, L., Lian, Z., Jia, Y., Deng, D., Tao, Q., Xie, G.: No-reference image quality assessment using prewitt magnitude based on convolutional neural networks. Signal Image Video Process. 10(4), 609–616 (2016)

    Article  Google Scholar 

  19. Joshi, P., Prakash, S., Rawat, S.: Continuous wavelet transform-based no-reference quality assessment of deblocked images. Vis. Comput. 34(12), 1739–1748 (2018)

    Article  Google Scholar 

  20. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1733–1740 (2014)

  21. Kim, J., Hui, Z., Ghadiyaram, D., Lee, S., Lei, Z., Bovik, A.C.: Deep convolutional neural models for picture-quality prediction: challenges and solutions to data-driven image quality assessment. IEEE Signal Process. Mag. 34(6), 130–141 (2017)

    Article  Google Scholar 

  22. Kim, J., Lee, S.: Fully deep blind image quality predictor. IEEE J. Sel. Top. Signal Process. 11(1), 206–220 (2017)

    Article  Google Scholar 

  23. Larson, E.C., Chandler, D.M.: Most apparent distortion: full-reference image quality assessment and the role of strategy. J. Electron. Imaging 19(1), 011006 (2010)

    Article  Google Scholar 

  24. Lin, H., Hosu, V., Saupe, D.: Kadid-10k: A large-scale artificially distorted iqa database. In: 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–3 (2019)

  25. Lin, W., Kuo, C.C.J.: Perceptual visual quality metrics: a survey. J. Vis. Commun. Image Represent. 22(4), 297–312 (2011)

    Article  Google Scholar 

  26. Lin, Z., Gu, Z., Liu, X., Li, H., Lu, J.: Training quality-aware filters for no-reference image quality assessment. IEEE Multimed. 21(4), 67–75 (2014)

    Article  Google Scholar 

  27. Lin, Z., Ying, S., Hongyu, L.: Vsi: a visual saliency-induced index for perceptual image quality assessment. IEEE Trans. Image Process. 23(10), 4270–4281 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, T., Yuan, Z., Sun, J., Wang, J., Zheng, N., Tang, X., Shum, H.Y.: Learning to detect a salient object. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 353–367 (2010)

    Google Scholar 

  29. Liu, X., van de Weijer, J., Bagdanov, A.D.: Rankiqa: Learning from rankings for no-reference image quality assessment. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1040–1049 (2017)

  30. Ma, K., Liu, W., Liu, T., Wang, Z., Tao, D.: dipiq: blind image quality assessment by learning-to-rank discriminable image pairs. IEEE Trans. Image Process. 26(8), 3951–3964 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moorthy, A.K., Bovik, A.C.: A two-step framework for constructing blind image quality indices. IEEE Signal Process. Lett. 17(5), 513–516 (2010)

    Article  Google Scholar 

  33. Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F.: Image database tid2013: peculiarities, results and perspectives. Signal Process. Image Commun. 30, 57–77 (2015)

    Article  Google Scholar 

  34. Rezaie, F., Helfroush, M.S., Danyali, H.: No-reference image quality assessment using local binary pattern in the wavelet domain. Multimed. Tools Appl. 77(2), 1–13 (2017)

    Google Scholar 

  35. Saad, M.A., Bovik, A.C., Christophe, C.: Blind image quality assessment: a natural scene statistics approach in the dct domain. IEEE Trans. Image Process. 21(8), 3339 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sheikh, H.R., Sabir, M.F., Bovik, A.C.: A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Trans. Image Process. 15(11), 3440–3451 (2006)

    Article  Google Scholar 

  37. Singh, V.K., Kumar, N.: Saliency bagging: a novel framework for robust salient object detection. Vis. Comput. 36(7), 1423–1441 (2020)

    Article  Google Scholar 

  38. Su, S., Yan, Q., Zhu, Y., Zhang, C., Ge, X., Sun, J., Zhang, Y.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3667–3676 (2020)

  39. Tang, H., Joshi, N., Kapoor, A.: Blind image quality assessment using semi-supervised rectifier networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2877–2884 (2014)

  40. Xu, J.: Blind image quality assessment based on high order statistics aggregation. IEEE Trans. Image Process. 25(9), 4444–4457 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, S., Jiang, Q., Lin, W., Wang, Y.: Sgdnet: an end-to-end saliency-guided deep neural network for no-reference image quality assessment. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1383–1391 (2019)

  42. Ye, P., Doermann, D.: No-reference image quality assessment using visual codebooks. IEEE Trans. Image Process. 21(7), 3129–3138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1098–1105. IEEE (2012)

  44. Ye, P., Kumar, J., Kang, L., Doermann, D.: Real-time no-reference image quality assessment based on filter learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 987–994 (2013)

  45. Yildiz, Z.C., Oztireli, A.C., Capin, T.: A machine learning framework for full-reference 3d shape quality assessment. Vis. Comput. 36(1), 127–139 (2020)

    Article  Google Scholar 

  46. Zhang, L., Gu, Z., Li, H.: Sdsp: a novel saliency detection method by combining simple priors. In: 2013 IEEE International Conference on Image Processing, pp. 171–175. IEEE (2013)

  47. Zhang, L., Zhang, L., Mou, X., Zhang, D.: Fsim: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, W., Ma, K., Yan, J., Deng, D., Wang, Z.: Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circuits Syst. Video Technol. 1 (2019)

  49. Zhou, T., Fan, D.P., Cheng, M.M., Shen, J., Shao, L.: Rgb-d salient object detection: a survey. In: Computational Visual Media, pp. 1–33 (2021)

  50. Zhou, W., Alan Conrad, B., Hamid Rahim, S., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  51. Zhu, H., Li, L., Wu, J., Dong, W., Shi, G.: Metaiqa: Deep meta-learning for no-reference image quality assessment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14143–14152 (2020)

  52. Zhu, H., Li, L., Wu, J., Dong, W., Shi, G.: Generalizable no-reference image quality assessment via deep meta-learning. IEEE Trans. Circuits Syst. Video Technol. (2021)

Download references

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant No. 52075483).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuanyin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Average PLCC,KROCC and RMSE results on KADID10k

Average PLCC,KROCC and RMSE results on KADID10k

See Tables 89 and 10.

Table 8 Average PLCC results of individual distortion types across ten sessions on KADID10k
Table 9 Average KROCC results of individual distortion types across ten sessions on KADID10k
Table 10 Average RMSE results of individual distortion types across ten sessions on KADID10k

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, J., Xiang, K. & Wang, X. SCVS: blind image quality assessment based on spatial correlation and visual saliency. Vis Comput 39, 443–458 (2023). https://doi.org/10.1007/s00371-021-02340-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-021-02340-x

Keywords

Navigation