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Many sophisticated solutions have been proposed
to reduce the geometric complexity of 3D meshes.
A slightly less studied problem is how to preserve
attribute detail on simplified meshes (e.g., color, high-
frequency shape details, scalar fields, etc.). We present
a general approach that is completely independent
of the simplification technique adopted to reduce the
mesh size. We use resampled textures (rgb, bump,
displacement or shade maps) to decouple attribute de-
tail representation from geometry simplification. The
original contribution is that preservation is performed
after simplification by building a set of triangular
texture patches that are then packed into a single tex-
ture map. This general solution can be applied to
the output of any topology-preserving simplification
code and it allows any attribute value defined on the
high-resolution mesh to be recovered. Moreover, de-
coupling shape simplification from detail preservation
(and encoding the latter with texture maps) leads to
high simplification rates and highly efficient render-
ing. We also describe an alternative application: the
conversion of 3D models with 3D procedural textures
(which generally force the use of software renderers)
into standard 3D models with 2D bitmap textures.
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Mesh simplification technology has evolved substan-
tially over the last few years, and many approaches
have been proposed for the controlled simplification
of simplicial meshes. Only a few papers are cited
here [5, 12, 16, 30]; comprehensive overviews can
be found in [15, 25]. Most of the methods proposed
offer no immediate provision to control accurately
the perceptual effect of degradation because in many
cases the simplification criterion adopted has no
immediate interpretation in terms ofvisual degra-
dation [27]. Perceivable visual degradation may be
caused either in visualizing a single simplified rep-
resentation (e.g., in the case of an excessively sim-
plified mesh, with loss of topology features and/
or fuzziness/bumpiness of the simplified surface),
or in changing the level of detail, the so-called
interframe flickering that is common if the meshes in
a level of detail (LOD) representation present large
visual differences.
Defining a methodology for measuring visual degra-
dation is not an easy task. Driving simplification
by preserving curvature and sharp edges gives good
control over the appearance of the shape, one rea-
son being that most renderers draw elementary
components by shading colors according to sur-
face normals [18, 27]. However, taking into account
only the pure geometric approximation is not suf-
ficient to ensure that the visual accuracy required
is fulfilled. Pictorial information (color or texture)
is an important factor in perception, and there-
fore preservation of color discontinuity has to be
managed carefully. This important issue has been
taken into account in a number of recent propos-
als [4, 10, 11, 13, 16, 18, 20, 24, 27, 31], as summa-
rized in Sect. 2. Although pictorial information is
probably the most common attribute, it is not the
only one. Another type of mesh attribute is the sam-
pling of a field over the mesh vertices (e.g., the sam-
pled value of physical variables, such as temperature,
potential or pressure). In order to use these field val-
ues in visualization (e.g., by mapping field values
to color or by computing isolines), a simplification
code should take into account the value of the field
while reducing the complexity of the mesh [16, 29].
A new, general approach is proposed in this pa-
per to preserve attribute information on simplified
meshes built on dense, triangular meshes, and it ex-
tends the preliminary results presented in [6]. The
approach we propose is orthogonal to previous solu-
tions, which take into account attribute values during
the simplification process. Conversely, we propose
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Fig. 1. The overall framework of our detail-preserving approach

a simple solution for preserving attribute informa-
tion that is independent of the simplification process
run on the input mesh (Fig. 1). Attribute preserva-
tion is conceived here as a postprocessing phase that
can be used in conjunction with various simplifica-
tion codes. A sampling process is applied to the sim-
plified mesh; i.e., each face is scan-converted into
object space. For each sampling pointpS, we find
the corresponding pointpM on the original mesh and
the original attribute value inpM. These retrieved at-
tribute values are then stored in a texture map, which
is used at rendering time to paint the pictorial detail
of meshM onto meshS. All of the triangular tex-
ture patches, computed by sampling the faces ofS,
are stored efficiently in a single rectangular texture
map. The quality of the texture produced obviously
depends on the sampling resolution adopted and the
accuracy in determining the (pS,pM) pairs. The latter
point depends mainly on thesimilarity between the
original mesh and the simplified one (i.e., the more
dissimilar the shapes, the higher the sampling error
may be).
This approach has a number of advantages. It can be
used with any simplifier that supports high-quality
simplification (if possible, topology preserving) be-
cause no assumptions on the simplification approach
are made. It can restore every type of mesh at-
tribute (examples on the restoration of color, other

scalar/vectorial fields and high-frequency surface
perturbations are shown at the end of the paper). It
is a geometrically robust technique since it works
on nonmanifold or degenerate meshes. Its time com-
plexity depends mainly on the simplified surface
area, which is measured in elementary sampling
point units. Finally, analogously to other approaches
based on textures [4, 19, 20, 31], modeling high-
frequency detail with texture maps allows highly
efficient rendering on modern graphics subsystems,
which generally support hardware texture mapping.
Obviously, it also has some disadvantages. Since we
encode detail through textures, the space occupancy
of the simplified mesh is increased by the need to
store the corresponding texture map. Attribute-aware
simplification approaches might thus produce a more
compact output on meshes that do not present a very
complex attribute field (see next section).
The approach proposed may also be used to solve
another problem; that is, how to convert an object
description that uses 3Dprocedural textures[9] into
a format that only supports image-based textures.
The paper is organized as follows. Section 2 out-
lines previous research in this area. Our approach
is described in detail in Sect. 3. Section 4 shows
how the proposed approach can be extended to man-
age procedural textures. The extension of the pro-
posed method to multiresolution meshes is described
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in Sect. 5. An evaluation of the results obtained is
presented in Sect. 6. Finally, conclusions are drawn
in Sect. 7.

2 Previous work

Attribute preservation is a very critical issue in mesh
simplification, with a direct impact on the actual use
of the simplified meshes. The approaches proposed
in the literature can be classified assimplification-
integrated, which adopt some attribute-preserving
strategy embedded in the simplification code, or
simplification-independent, as is the case of our
proposal.
Simplification-integratedapproaches can be classi-
fied as follows:

• Attribute-aware simplification. These methods
evaluate the impact of each atomic simplification
action on detail degradation. A threshold on at-
tribute degradation can then be introduced (and
a given atomic action is performed only if the
corresponding detail degradation is lower than
the given threshold). Alternatively, a multivari-
ate error evaluation function, which takes into
account not only the shape approximation but
also the attributes degradation [10, 11, 13, 16, 18]
can be adopted. More detailed, multivariate error
evaluation has been introduced in theprogres-
sive meshes[16] and thequadric error metrics
methods [10, 13, 18]. The latter approach works
in R3+m space (withm relative to the attributes
space considered, e.g.,m= 3 if we consider only
the color), and adopts a distance-to-hyperplane
metric. An improvement to this approach has
recently been proposed [18]. It adopts a more in-
tuitive measure of the attribute error based on
geometric correspondence. It produces more ac-
curate attribute-aware simplifications and is more
efficient.
A slightly different solution is based on the char-
acterization of the topology of the attribute field;
simplification is then constrained to preserve the
topology of the given attribute field [2].
All these solutions return in output the same type
of data read in input (a mesh with attributes).

• Texture-enhanced simplification. These ap-
proaches decouple shape and attribute represen-
tation and build a texture map to encode all the
detail lost in the simplification (either starting
from the removed vertices [20, 31] or by directly

managing available texture-based encoding of the
attribute to be preserved [7, 17, 19]). All these
solutions return in output a simplified mesh and
a detail texture.

A disadvantage of all attribute-aware simplification
approaches is that the simplification of the mesh de-
pends jointly on the shape and the attribute field.
This implies that attribute discontinuity may pre-
vent many decimation/collapsing actions that would
be valid if we only considered geometry/topology
degradation. When the input mesh has a very com-
plex attribute field associated with it, it is often im-
possible to produce a highly simplified model.
On the other hand, an advantage of these methods
is that the simplified mesh is very compact and ef-
ficient in all those cases where the attribute field is
either smooth or presents a small number of discon-
tinuities. In these cases, piecewise linear function-
als (shaded triangles) with detail mapped via vertex
attributes may be more space efficient than texture-
enhanced triangle meshes.
A disadvantage of the simplification-integrated meth-
ods that adopt a texture-enhanced approach is that
maintaining trace during simplification of all the re-
moved elements (and of the corresponding attribute
values) is rather costly both in memory and in time.
However, if for each simplified mesh face there is
complete information on the original mesh section it
is replacing, then texture construction may be more
robust than the method proposed here (see Sect. 3).
Most of the solutions consider only the color at-
tribute. High-frequency shape detail preservation
is considered in [19], which adopts B-splines sur-
faces to represent concisely dense irregular poly-
gon meshes and maps high-frequency shape detail
through displacement maps (for each spline mesh
section, a displacement map represents the error be-
tween the fitted surface and the original polygon
mesh section).
A completely different approach to surface simplifi-
cation and multiresolution representation is the one
based on wavelet decomposition. An attribute-aware
strategy has been proposed in [14]; both shape and
color of range images are represented, at multiple
resolutions, using nonorthogonal Gabor wavelets.
Decoupled multiresolution representation of geom-
etry and color via wavelets has also been proposed
[4]. In this approach, geometry and color are com-
bined only at display time to allow the dynamic se-
lection of independent levels of approximation for
geometry and color. The authors also represent color
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detail through texture mapping. Textures are built
dynamically, at the required resolution, by painting
the color wavelet coefficients on the texture map.
Finally, let us consider the interactive visualiza-
tion of complex scenes. Texture-mapped simplified
models are commonly used, either asimpostorsof
complex scene subsections [26] or as replacements
of single objects (e.g., using the LOD approach).
The adoption of simplified polygonal meshes, en-
riched by the representation of mesh detail through
standard texture mapping, is justified by the large
diffusion of hardware texture-mapping capabili-
ties in most graphics systems (from game stations
to graphics workstations) and by the forthcoming
inclusion of bump-mapping features in graphics
subsystems [21, 22].

3 Preserving detail on simplified
meshes

In general terms, we are interested in recovering onto
the [simplified] meshS the value of scalar/vectorial
attributesF defined on meshM. We assume that the
attribute value can be computed for each pointp∈ M
by means of a functionf : M ⊂ R3→ R/R3. Func-
tion f can either be a continuous function inR3, or
a function defined piecewise on the cells ofM (e.g.,
by interpolating a discrete set of samples ofF evalu-
ated on the vertices of meshM). We also assume that
meshesM andS are defined in the same geometric
space and have the same topology.
We start from the pair(M, S) and produce a texture
T that encodes the detail contained inM. TextureT
will then be used to render meshS, using standard
rendering tools for texture-mapped graphics, to pro-
duce images nearly identical to those produced using
the original meshM.
Our approach is composed by the following two
phases.

• Surface sampling.While discretely sampling
each face of the surfaceS, we detect for each sam-
pling point onS the corresponding point onM
and the associated attribute value. Therefore, for
each face we produce a discrete, triangular tex-
ture patch that encodes the detail mapped onto
the corresponding area of meshM. The size of
this texture patch directly depends on the size of
the triangular face and on the sampling step size
chosen by the user;

• Texture patches packing.All triangular patches
are packed (and stored) in a standard, rectangu-
lar texture, compatible with standard graphics li-
braries (e.g., OpenGL) and HW subsystems.

3.1 Sampling texture patches

The surface of the simplified meshS is sampled
by scan-converting triangular faces under a user-
selected sampling resolution. For each elementary
surface samplepS we detect the corresponding point
pM ∈ M by computing the point at a minimal eu-
clidean distance frompS (Fig. 2). In this way, no
knowledge of the simplification approach adopted to
build the reduced mesh is needed to find correspond-
ing point pairs.
For each sampling pointpS, the nearest point on the
original meshM is computed efficiently by evalu-
atingpoint-to-facedistances. Moreover, the compu-
tation of the minimal distance between pointp and
all the faces ofM is optimized (otherwise, com-
plexity will become quadratic). We adopted a bucket
representation of the faces ofM [1]: a regular grid
of cubes is built, covering the bounding box ofM.
Pointers to the faces contained/intersected are stored
in each bucket. For each pointp, we test faces ofM
in order of distance fromp, stopping the process as
soon as no more buckets closer than the nearest face
exist. The regular grid structure is defined according
to the mesh size (the number of cells is proportional
to the number of faces in the mesh) and to the bound-
ing box edges ratio.
Detecting corresponding point pairs by searching for
the nearest face is a valid choice if the two surfaces
M andShave the same topology and the geometric
error introduced during the simplification is not high.
In fact, the main goal of our approach is to produce
very accurate simplified models out of original com-
plex meshes, both in terms of geometry and attribute
detail (and not to build projective texture maps to
be stitched onto a very simple solid impostor, e.g.,
a simple cube).
In some cases choosing the nearest face may produce
aliasing. An example can be the case of a simplified
mesh that contains subareas with a very thin solid
section (see the bunny’s ear in Figs. 3 and 4). In this
case, given a sampling pointpS on S, the nearest
point pM on M might be on a face ofM that lies
on the other side of the mesh (Fig. 3). This prob-
lem can be detected and corrected, in some cases,
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Fig. 2. Mapping color detail on a simplified mesh by sampling color and constructing an rgb texture
Fig. 3. Incorrect selection of matching-point pairs
Fig. 4. An example of how a highly evident aliasing effect can be avoided by checking the compatible normals orientation

by accepting as the nearest point only a point on
a face whose normal has an orientation compati-
ble with that of pointp (i.e., a positive dot prod-
uct of the two normal vectors), such as pointp′′ in
Fig. 3. Figure 4 shows a section of the bunny’s head
(top view) with matching points incorrectly selected
on the left and correctly selected on the right (pro-
duced by checking normals while searching for cor-
responding pairs). Unfortunately, we cannot ensure
that this simple heuristic will always lead to the cor-
rect choice; for example, consider the case of mul-
tiple folding/twisting of the original meshM in an
area that corresponds to a simple section of the sim-
plified meshS. However, this is probably a very un-
common case, because we assume that we are start-
ing from a simplified model that should represent the
original mesh with some accuracy.
Another example is the case of a hand of a virtual
actor, where we might have a detailed model and
a very simplified model that consists of only a couple
of pentagonal faces. There are areas of the simpli-
fied mesh that should not be connected to an original

mesh area, but to the void space (for example, the
void space between each pair of adjacent fingers).
Using our approach, all the fingers in the simplified
model will be inflated, and the void space between
fingers will disappear in the rough model. Again, in
this case we are trying to produce an impostor rather
than a good simplified model, and therefore a stan-
dard projective technique is more adequate.
Once we have found a pair of corresponding points
pS and pM, the computation performed depends on
the particular attribute value we want to preserve:

• Pictorial data, or other scalar/vectorial val-
ues. For each sampling pointpS we retrieve the
scalar/vectorial value f(pM) of the associated
point on meshM. The value computed byf
can be: the color ofM in pM, either interpolated
from the colors of the vertices of the facef that
containspM or interpolated on the rgb texture as-
sociated withf ; the interpolated value of a scalar
field defined on the vertices off (e.g., a tempera-
ture or pressure field); etc.
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Fig. 5a,b.The rayr passing through the sampling pointpS on the simplified surfaceS and perpendicular to the facef of S
does not pierce any point of the original surfaceM (a), or pierces a very far point, which is not the best choice for the current
pM to be paired withpS (b)

• Shape detail. The distance between pointspS
andpM can be used to define displacement maps
[8, 32], normals evaluated inpS and pM can be
used to build bump maps (sampled normal pertur-
bations) [3] or preshaded maps.

In more detail,displacement, bump, or preshaded
maps can be produced to perform shape-detail
preservation. Storing shape detail into texture is
a very powerful resource to increase image qual-
ity without increasing geometric complexity, and
graphics subsystems with hardware bump-mapping
features are on the way [22].
Computing adisplacement mapfrom evaluated sur-
face distances is straightforward. However, these dis-
tances give only an approximation of a real dis-
placement map because displacements are generally
evaluated on the direction of the normal to the sam-
pled surface. However, computingcorrectdistances
along the surface’s normal directionr is not easy
because in some cases there may be no intersec-
tion between the original meshM and the rayr (see
Fig. 5a) or because the nearest intersection alongr
might be on a section of the mesh that is much far-
ther away than the section nearest to the sampling
point pS (Fig. 5b).
In our implementation we adopted minimal dis-
tances, and the line that passes through the corres-

ponding pair of points may not be aligned with the
normal in S. Our point-to-face distance evaluation
takes into account whether the original mesh is above
or below the surface of the simplified mesh, and
therefore we obviously store signed distances in the
texture. A number of experiments show that even
though we produced an approximation of the dis-
placement map, its visual quality was good.
To produce abump map, we must evaluate the nor-
mal perturbation on each sampled point. Analo-
gously to what we do to evaluate the color, for each
sampling pointpS we get the normalN(pM) on point
pM by interpolating normals onM. Once we have the
sampled normalN(pM), we store in the bump map
the normal interpolated on the simplified meshSon
point p, N(pS) (interpolation of per-vertex defined
normals).
The third case is that ofpreshaded maps, which can
be used to simulate bump mapping on any architec-
ture that provides rgbα texture mapping either in HW
or in SW (e.g., OpenGL). In this case, we evaluate
preshaded gray levels, taking into account for each
sampling point the normal onM and a given lighting
model (direction of the light, ambient factor). Then,
at rendering time we will simply use this gray-level
texture to modify the mesh base color, e.g., defined
per vertex or via an rgb texture. All images with pre-
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Mesh Fandisk Face Bunny Plane

Original (Number of faces) 12 946 10 000 69 451 87 002
Simplified (Number of faces) 100 1745 251 799

Detail preserved Color Color Shape Scalar field
(per-vertex) (from texture) (per-vertex)

Detail destination Color map Color map Normal map Color map
Sampling step used 0.5% 0.8% 0.5% 0.2%

Times (in seconds)

Initialization 0.971 0.838 4.820 7.059
Texture packing 0.003 1.273 0.008 0.024
Sampling 2.769 3.096 13.339 18.990
Total (no I/O) 3.743 5.207 18.2777 25.767
Total (with I/O) 6.277 8.833 30.683 90.534

Space overhead – regular packing

Total overhead: 373% 452% 316% 775%
Texture size: 1024×192 1024×64 1024×144 1024×512

Space overhead – irregular packing

Patch_exp +17% +62% +12% +11%
Patch_borders +23% +203% +39% +49%
Text_gaps +9% +0% +4% +10%
Text_tails +31% +1% +12% +23%

Total overhead: 83% 267% 67% 93%
Texture size: 594×128 681×64 462×128 903×128

Table 1. All data (mesh
resolution, sampling step,
times, space overhead, tex-
ture sizes) evaluated for the
four sample meshes

served shape detail were rendered using preshaded
texture, using OpenGL (Figs. 16, 17).

3.2 Choosing the right sampling step

The choice of the size of the sampling step is crucial.
In fact, it should be chosen such that significant de-
tail is not lost during texture resampling, and at the
same time the texture produced is of minimal size.
This is because both the visual quality of the result
and the cost in terms of space of the output, which are
both direct consequences of the length of the sam-
pling step, cannot easily be predicted.
To assist the user, one possible approach is to let
the user select the approximate size(Tu,Tv) of the
output texture map and then compute the sampling
stepss automatically. One possible heuristic is the
formula:

ss= P−1

√(AP
S ∗ povh

Tu ∗Tv

)  ,

whereAP
S is the surface area of the simplified meshS

measured in view-space pixels (that is, under a typi-

cal projection transformationP such that the bound-
ing box of the projected object approximately fits
into a standard window);povh is the empirical over-
head factor of the texture resampling and packing
method, see for example the values presented in
Table 1; andP−1 is the inverse of the projection
transformation.

3.3 Improving texture quality

The quality of the texture produced is crucial, es-
pecially for applications where the goal is to pro-
duce a simplified textured model that has to be
very similar to the original one. The tradeoff be-
tween the quality of the texture produced and the
space/time complexity of the approach proposed
will depend on a number of parameters or implemen-
tation choices.

Insufficient sampling rate (blocky textures). This
problem depends on the sampling step chosen by
the user, which may be too coarse on particular ar-
eas of the mesh. This problem is evident in the case
of surface patches where attribute values change
very abruptly (e.g., a face painted with a number of
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Fig. 6. Oversampling improves the quality of the texture produced
Fig. 7. A possible case where mesh detail is undersampled due to the selection of corresponding-point pairs based on minimal
distances

colored stripes). This problem cannot be solved by
simply decreasing the sampling step size because the
size of the texture cannot be enlarged too much (the
texture memory available on graphics subsystems is
often limited).
Our tool adoptsoversamplingto improve texture
quality, and the oversampling rate is a user-selected
parameter. Multiple samples are distributed regularly
in the small sampling area associated with each point
p and evaluated. The average of these samples is
stored in the texture (see Fig. 6).

Undersampled faces. This is the inverse of the pre-
ceeding problem. Given a sampling step, the mesh
may contain triangles smaller than the single squared
sampling step. However, aliasing may be introduced
if a given face is represented by only a single texel.
One possible solution (implemented in our system)
is to sample each face with at least a minimal num-
ber of sampling points (e.g., setting a minimal size
of 10 texels).

Aliasing on the adjacency border between differ-
ent textured faces. This problem is related to the
fact that, once packed (see next paragraph), texture
patches that are adjacent in the overall texture map
are generally associated with nonadjacent faces of
the mesh. During the scan conversion of a mesh
face at rendering time, discrete texture coordinates
might be produced that are not contained in the as-
sociated texture patch (this might occur frequently

while scan-converting the edges of a face due to in-
sufficient numerical precision). To prevent erroneous
color mappings due to imprecise computations of
texture coordinates, we produce, for each mesh face,
a texture patch that can be slightly wider (depend-
ing on the edge slope). This solution leads to some
texture space overheads (see Sect. 6), but solves this
aliasing problem.

Redundant texture. In some cases, faces may show
a nearly bilinear variation of the preserved attribute.
This might happen on meshes with nearly con-
stant color or detail values, or where only a few
discontinuity values are defined and the attribute
value changes linearly. In all these cases, simple
per-vertex coding of detail may be sufficient and ob-
viously much more space-efficient than storing detail
through texture patches.
To reduce texture size, a hybrid approach can be
implemented: the user can define aninterpolation-
accuracythreshold. At sampling time, for each face
the system will decide whether the recovered detail
has to be coded by explicitly storing the texture patch
or by producing only per-vertex attribute values. The
output in this case would be a subset of faces with
texture coordinates (and a texture map), plus a subset
of faces with direct per-vertex attribute values.

Under/over-sampled features in resampling. In gen-
eral, the adoption of a minimal euclidean point-to-
face distance and the use of a speed-up data structure
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(the uniform grid) ensures the efficiency of the sam-
pling method and prevents the singularities shown
in Fig. 5. However, in some particular cases some
mesh details might be under-/over-sampled. A pos-
sible aliasing case is depicted in Fig. 7, where the
original meshM presents a sort of small cavity that
has been completely washed out in the simplified
meshS. In this case, for all the points ofSthat ideally
correspond to this cavity inM, the minimal point-to-
face distance criterion returns points on the border of
the cavity (the points on the bold line in the figure).
Recovering from this type of aliasing is not easy, and
further research is needed.

3.4 Packing texture patches into rectangular
textures

The last step of our algorithm is to pack all the tri-
angular texture patches into a single rectangular 2D
texture. Various solutions can be designed.
A first approach,regular packing, may be based on
the use of half-square texture patches, which are very
simple to pack into a rectangular texture [20, 31].
The use of only half-square texture patches, with
a further limitation to square edges of size 2i in [31],
allows them to be packed easily: patches are stored in
order of magnitude (bigger first), equal size patches
are paired to form squares, and squares are stored in
adjacent texture areas (see Fig. 8).
The use of half-squared texture patches allows
space-efficient packing, but this approach has two
disadvantages: only a discrete number of patch sizes
is available and the shape of the texture patch is
fixed. In the case of the sampling-based approach
proposed in this paper, the first point implies that
we do not use exactly the sampling steps selected
by the user: given the sampled edgee, we divide
it into 2k chunks such that thelength(e)

2k ≤ s≤ length(e)
2k+1 .

The second limitation implies that the elementary
sampling area is a rectangular area (not a square) in
object space (see Fig. 8). The texture patch there-
fore only approximately takes into account the actual
size of the associated mesh triangle, and does not
consider its actual shape at all. Very thin faces are
sampled with very different sampling steps in the
two dimensions, and this introduces uneven sam-
pling. The actual sampling size selected by the user
is an upper bound of the sampling size that is effec-
tively used, since for very elongated faces we actu-
ally use a much finer sampling step on the shorter
edge.

To avoid these disadvantages, we designed a differ-
ent packing technique that allows the use ofnon-
rectilinear texture patches. Let us call thisirregular
packing. We maintain the limitation of using only
a discrete set of patch heights (all texture patches
have a height equal to 2i ), but we use the same sam-
pling step in the two dimensions. For each mesh face,
we are free to rotate it to select the best matching
height. The criterion is to select the “rotation” of the
face such that, once we have enlarged its height to the
nearest 2i discrete size, the corresponding discrete
surface will be the minimal one of the three possi-
ble rotations. Irregular texture triangles are therefore
generated, but because they still have only a dis-
crete number of different heights, we can store them
compactly.
Patches are divided into different buckets, one for
each different patch height (2i texels). Buckets are
processed in order of height (tallest first). Initially,
the first open edge is aligned to the left border of
the empty texture, and is equal in size to the tallest
bucket. We then proceed by iteratively selecting
among all the patches in the current bucket the one
whose slope is the most similar to the current open
edge (see Fig. 9). To allow compact packing, four
possible slopes are assigned to each face, obtained by
flipping the patch on the two axes. This is because we
can flip the texture patch before copying it in the final
texture. At each step, given the left-most open edge,
we scan the list of patches to find the one with the
best matching slope. Some gaps may be originated
in the texture (see Fig. 10), and we call this wasted
texture spacetext_gaps.
We also tried a slightly more complex packing strat-
egy based on the idea of shearing each texture patch
along thex-axis, in ordre to reduce text_gaps. The
example in Fig. 10 shows the borderline case, where
once we have found the best matching patch we also
shear it until its slope is identical to the open edge
one. Large shearing may introduce some aliasing,
while the use of small shearing angles is sufficiently
safe in terms of visual quality. The maximum angle
of shearing is one of the parameters of our imple-
mentation (the more we shear, the less texture space
is wasted, but the more aliasing is introduced).

Packing strategies evaluation.We implemented and
evaluated both packing approaches. Time complex-
ity is not a critical issue because texture packing time
is really short (a few milliseconds in the case of the
slightly more complex irregular patches packing, see
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for each texture patch, flip it to find best matching slope 
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Fig. 8. Half-square texture patches are very easy to pack into a rectangular texture, but due to the irregular-to-regular
mapping a different sampling step is used in the two axes

Fig. 9. Irregular patches packing: each patch has four possible slopes (patch flipping); given an open edge slope, we
detect and attach the best-matching patch
Fig. 10. Irregular texture patches are easy to pack into a rectangular texture and allow even sampling on the two axes
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Table 2.Processing times (in seconds) of the three subphases on the fandisk mesh (100 faces). Different attributes are preserved: rgb
Color; shape detail encoded either via normal maps (Shape1) or displacement maps (Shape2); and composed color and shape detail
(Both1 and Both2)

Detail preserved Color Shape1 Both1 Shape2 Both2 Color Shape1 Both1 Shape2 Both2

Sampling step 0.5%(High resolution) 1.%(Low resolution)
Texture size 594×128 341×64

Times (in seconds)

Initial 0.967 0.945 0.943 0.946 0.946 0.976 0.947 0.943 0.949 0.943
Sampling 2.782 2.992 3.038 2.892 5.986 0.982 1.042 1.082 1.014 2.107
Text. packing 0.002 0.002 0.002 0.002 0.003 0.002 0.002 0.003 0.002 0.003

Total (no I/O) 3.751 3.939 3.983 3.840 6.935 1.963 1.991 2.028 1.965 3.053
Total (with I/O) 6.357 6.500 6.547 6.380 9.501 4.489 4.498 4.522 4.457 5.536

Sampling step 0.2% 0.5% 1.% 2.%

Times (in seconds, no I/O)

Initial 0.971 0.971 0.973 0.972
Sampling –no multisampling 14.718 2.769 0.977 0.452
Sampling –multisampling2×2 58.438 10.470 3.456 1.558
Sampling –multisampling3×3 128.441 22.520 7.279 3.205
Texture packing 0.002 0.003 0.002 0.002

Space overhead

Patch_exp +20% +17% +15% +15%
Patch_borders +10% +26% +48% +95%
Text_gaps +12% +9% +11% +5%
Text_tails +47% +31% +37% +16%

Total overhead 89% 83% 111% 131%
Total texture size 962×512 594×128 341×64 184×32

Table 3. Results obtained
using various sampling steps
and multisampling values

Tables 1–3). Conversely, texture space complexity is
an important factor. Let us define the ideal texture
size as the mesh surface area divided by the squared
sampling step. Texture space is a critical resource on
most HW graphic subsystems; therefore, the lower
the overhead (e.g., the difference between the ideal
and the sampled texture), the better the quality (be-
cause, given a target size, we can increase the sam-
pling rate and obtain a more detailed texture).
On average, on a number of experiments our irregu-
lar packing leads to textures which are60%–120%
larger than the ideal size, while regular packing re-
turns textures300%–600% larger than the ideal
one. To compare in more detail the respective tex-
ture sizes (and overheads) we must introduce some
terminology.

• Patch_expis the patch expansion factor due to
the adoption of discrete 2i heights (or heights and
widths, in the case of regular packing).

• Patch_bordersare the patch expansion factor due
to the use of a slightly wider sampling (to pre-
vent aliasing on the border between different tex-
tured patches); this factor increases when we have
a large number of small faces.

• Text_gapsare the void spaces between pairs of
adjacent patches left by the irregular packing
strategy; this factor is reduced when the num-
ber of faces is large (and is generally lower
than 10%).

• Text_tailsare the void spaces at the end of each
horizontal run of patches in the detail texture;
again, this factor is reduced when the number of
faces is large.

All these components were evaluated as a percentage
of the ideal texture size. The space overheads were
evaluated on four sample meshes; the results are re-
ported in Table 1.
Given the irregular packing strategy, we also com-
pared the detail texture size obtained when shearing
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11a 11b

12a 12b

Fig. 11a,b. Texture maps produced with the regular patches (a) and with irregular patches (b) on the fandisk mesh
(see Fig. 14)

Fig. 12a,b.Mapping a stripelike 3D procedural texture on a highly simplified bunny model (251 faces). For each sam-
pling point p on the simplified mesh, the 3D procedural texture is evaluated directly onpS (a), or on the corresponding
point pM on the original high-resolution bunny mesh (b)

or when not shearing the texture patches. In a num-
ber of tests the text_gaps overhead was less than 10%
with the no-shearing mode, and reduced to1%–2%
when adopting patch shearing. However, because a
10% text_gaps overhead is not particularly high, and
because shearing may introduce some aliasing, we
generally prefer to use the no-shearing mode.
An example of the textures obtained with regular and
irregular packing approaches is shown in Fig. 11, rel-
ative to a very simplified model (100 faces) of the
fandiskmesh (12 946faces). The sampling step size
in this case is 0.25% of the mesh bounding box diag-

onal. The size of the texture maps obtained is 1024×
640 in the case of regular patches, and 978×256 for
our irregular packing method.

4 Extension to procedural textures

Static procedural textures are a very powerful tool
for the simulation of the realistic appearance of ma-
terials (e.g., marble or wood), and allow us to cir-
cumvent the image mapping problem that character-
izes 2D textures [9, 32]. The texture value can be
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computed in every 3D location using either fractal
noise basis functions [23] or functions based on the
computation of distances from a set of random fea-
ture points [28].
Procedural textures can easily be mapped onto a free-
form object, but are generally rendered by adopt-
ing software-only rendering approaches (e.g., ray
tracing). Many applications use procedural textures,
and one problem is how to preserve detail speci-
fication when standard scene description languages
(OpenGL, OpenInventor, or VRML) based on planar
2D textures are adopted, e.g., to ensure rendering ef-
ficiency or portability. An example is the conversion
of a complex model created with a commercial tool
that supports procedural 3D textures (e.g., 3DStudio
Max) into a format oriented to interactive CG (such
as VRML or OpenGL).
The reconstruction of a standard texture that encodes
the intersection between a given procedural 3D tex-
ture and a surface can easily be performed with our
approach. Sampling the procedural texture space at
rendering time is replaced by an off-line joint sam-
pling of the given mesh and of the texture space. Dur-
ing off-line mesh sampling we only need to compute,
for each sampling point, the associated procedural
texture value, and then to store it in the texture patch
associated with the current face. Patches are then
packed as usual into rectangular 2D texture maps. An
example of a 3D procedural texture encoded through
a 2D standard rgb texture is given in Fig. 19.
Clearly, we may get very different results if we
compute procedural texture values on the simplified
mesh sampling points, or if we compute texture val-
ues on the corresponding points on the original sur-
face (see Fig. 12 for an example). The “wooden”
bunny in Fig. 13 was obtained by sampling a very
simple bunny model and resampling a wooden pro-
cedural texture on the corresponding points of the
original bunny mesh (the image shows the composi-
tion of the bump and the color texture).

5 LOD Management

A well-known problem in texture mapping is that
texture rendering produces significant aliasing when
we apply a fixed resolution texture to areas of the ob-
jects that are a long distance from the observer, and
therefore map to only a few pixels (texture under-
sampling). In that case, only a few texels contribute
to the image, and the detail structure is generally cor-

rupted. Themip-mapapproach [33] was proposed to
solve this problem by storing a hierarchy of regularly
subsampled textures and using the correct level for
each screen pixel.
Unfortunately, mip-map cannot be applied to our
patched texture (regular subsampling will destroy
texture content). In general we need to use a smaller
texture when we observe the represented object from
a more distant viewpoint, and this is exactly the same
situation as the one that arises when we switch to
the following level of detail if an LOD data repre-
sentation model is adopted. Therefore, if we con-
sider the case of LOD representations, the problem
can be solved a priori by a keen construction of the
detail textures. In rendering environments that sup-
port LOD representation (e.g., VRML, OpenInven-
tor) we may produce one mesh and one texture map
for each different level of detail. These textures can
be sampled with different sampling steps, and each
sampling step can be set by taking into account the
projected size (in display pixels) of the given object
representation at the minimal distance that has been
defined in the corresponding range field specification
(using VRML terminology). The texture is therefore
produced at a resolution that is directly dependent on
the projection size forecasted. To ensure good tex-
ture quality, a wide sampling step has to be paired
with a high oversampling value (such that each texel
of a coarse texture will average the detail contained
in the corresponding section of the original high-
resolution mesh).
An example is shown in Fig. 14, where the same
mesh is represented with two different LODs and
the corresponding textures are computed either with
approximately the same sampling step (meshes 1
and 2a), or adopting different screen-size-dependent
sampling step (meshes 1 and 2b). More precisely,
given the screen-size projection of the level 2 mesh
at its minimal viewing distance, we built the level
2b of Fig. 14 using a much coarser sampling step
(five times coarser than the one used in level 2a); to
reduce aliasing in level 2b texture, we also adopted
multisampling (with a 5×5 pattern of samples per
sampling point).

6 Experimental results

The current prototype, preserving attributes by sam-
pled textures (PASTex), accepts in input meshes for-
mats OpenInventor, VRML V1.0 or raw (list of ver-
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Fig. 13. Two levels of an LOD model are shown; the second level was built by adopting nearly the same sampling
step as in the high-resolution level (see level 2a) or by using a coarser sampling step that depends on the screen-size
projection of the mesh at the ideal view distance (see level 2b)
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Fig. 14a–d. Mapping color from a per-vertex
colored mesh: the original fandisk mesh (12 946
faces) is rendered wire frame (a) and shaded
(c); the corresponding simplified model (98
faces) is rendered inb and, after mapping the
color texture produced ind

tices plus list of faces). Since it would have been
too expensive to get dynamically the required color
information from these formats, we convert input
data into an internal format that stores geometrical
data and colors or texture space coordinates associ-
ated with each vertex. The data structure has also
been designed to reduce space occupancy because
we may need to store a very complex original mesh
(the one before simplification) with all the associated
attribute values.
Results are currently being produced by adopting
the VRML format to store geometry, texture coordi-
nates, and texture images.
The system has been tested on many meshes. Here
we report some examples, which are representative
in terms of preserving various attributes. We show
a set of images referring to the preservation of vari-
ous types of detail:

• Per-vertex or per-face color.Figure 15 shows
an example where a CAD-style mesh (fandisk,
12 946triangular faces) is painted with a number
of very thin stripes (on average one face wide),
then simplified, and finally color-textured; the
two textures obtained using regular (on the left)
and irregular packing (on the right) are shown
in Fig. 11.

• Texture-encoded color.Figure 16 shows an exam-
ple on a textured mesh (face1, simplified to1745
faces from the original10 000faces).

• Shape.Examples concerning shape detail preser-
vation are presented in Figs. 17 and 18. Fig-
ure 17 shows the original bunny mesh2 on the
left (69 451faces) and a simplified representa-
tion (501 faces) with both enhanced edges and
preshaded bump mapping on the right. Figure 18
shows a section of a mesh that represents a re-
lief drip stone (cornice) from the facade of the
Duomo in Pisa (acquired with a commercial
range scanner). It was simplified (from70 050to
a few hundreds), and then a preshaded bump map
was computed for the simplified model (right-
most image).

• Scalar field. An example of preservation of
a scalar field (pressure on a plane body and
wings3 is shown in Fig. 19; the texture obtained
has been rendered using the same transfer func-
tion used to render the original mesh.

1 The face mesh was produced and distributed on the Web by
Headus (Metamorphosis), http://www.headus.com.au/.
2 The bunny mesh was range-scanned at Stanford University;
available at http://www-graphics.stanford.edu/data/.
3 The plane model is courtesy of Hans-Georg Pagendarm, Insti-
tute for Fluid Mechanics, German Aerospace Center (DLR).
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15a 15b 15c

15d

16b16a

Fig. 15a–d.Preservation of color: the texture-based color of the face mesh [10 000faces shown textured (a) and shaded (b)] is
preserved on the simplified mesh [1745faces, rendered wire frame (c) and color-textured (d)]

Fig. 16a,b.Mapping shape detail:a the original bunny mesh has69 451faces;b a simplified mesh (approximately 500
faces) with bump texture mapping and solid mesh edges

• Procedural textures.An example of coding 3D
procedural textures with standard 2D textures is
presented in Fig. 20, where a 3D procedural mar-
blelike texture is attached to a 3D vase, converted
into a 2D texture, and finally rendered with a stan-
dard OpenGL viewer.

The optimization techniques adopted guarantee the
efficiency of our approach. The time complexity of
the various process phases is as follows. The initial
phase, sorting of the original mesh faces and con-
struction of the uniform grid, isO(nMlog nM). Tex-
ture sampling is theoreticallyO(AS∗nM), with AS
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17a 17b 17c

18a 18b 18c

18d

Fig. 17a–c.Mapping shape detail:a the original mesh (70 050faces);b the simplified mesh;c a displacement texture is
mapped on the low resolution mesh
Fig. 18a–d.Preserving a scalar field (defined on a per-vertex base on the original mesh):a the original plane mesh (87 K
faces);b the simplified mesh (500 faces);c is mapped on the simplified mesh;d the sampled field texture (mapped to
color using the same transfer function)
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19

20

Fig. 19.Mapping a 3D procedural marble texture using stan-
dard 2D textures

Fig. 20. Mapping a 3D procedural wood-like texture using
standard 2D textures on a simple bunny model (251 faces)

the surface area of the simplified meshS, measured
in squared sampling step units, andnM the size of
the original meshM (number of faces). However
the use of the uniform grid reduces the impact of
thenM factor, and nearly constant times are required
for the detection of the face nearest to each sam-
pling point. Texture patches packing clearly depends
on O(nS), i.e., the number of faces in the simplified
mesh. The empirical results showed that the overall
process is sufficiently efficient (generally a few sec-

onds), and does not depend strictly on the size of
meshM.
An evaluation of the empirical time complexity of
our approach is reported in Tables 1–3. The times are
associated with the SGI O2, R5000180 MHz, sam-
pling step sizes are measured as percentages of the
mesh bounding box diagonal, and the texture sizes
are in pixels.
Table 1 reports all the data (mesh resolution, sam-
pling step, times, space overhead, texture sizes) mea-
sured on four sample meshes fandisk, face, bunny,
and plane. In particular, the space overhead is mea-
sured with respect to the ideal texture size, which
is the surface area of the mesh measured in squared
sampling step units. The texture overhead is gener-
ally lower than 100%, except for the face mesh. The
overhead of the face mesh, 267%, is rather big due
to the fact that the number of faces of the simpli-
fied mesh is not particularly compact (1745 faces)
and the size of the texture is very small (681×64).
Producing a larger resampled texture map made no
sense in this case because the original rgb texture
map associated with the input mesh is very small and
distorted (it is a cylindrical map). The large number
of small faces therefore leads to a rather large 203%
overhead for the patch_borders component.
Table 2 shows the processing times of the three
sub-phases (the initial phase is mostly due to the
initialization of the bucketing data structure, sam-
pling and texture packing) when various attributes
are preserved: Color; shape detail in the two modal-
ities, normal maps (Shape1) or displacement maps
(Shape2); or both the previous detail integrated into
a preshaded color texture (Both1, Both2). The mesh
used in Table 2 is fandisk, simplified to 100 faces
from the original12 946. Table 2 also highlights the
fact that the only phase that depends on texture res-
olution is the sampling time. Producing shape detail
via displacements is slightly more expensive because
we first need to evaluate displacements and then we
compute each normal from the displacements around
each sampling point.
Various sampling steps are used in Table 3 to mea-
sure the relative processing times and space over-
head. The mesh used is again fandisk, simplified
from 12 946to 100 faces. Obviously, the smaller the
sampling step, the higher the computing times and
texture space. However, note that using a smaller
sampling step causes a lower space overhead, mainly
because the relative size of the redundant borders is
reduced.
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Two final questions need to be asked. Does replacing
small triangles with larger textured elements real-
ly improve performance? What is the break-even
point?
If we consider the transmission time, the answer is
simple: we can measure the size of the original mesh
and the composed size of the simplified mesh and
the corresponding texture. To give an example, the
original bunny mesh is3.12 MB (SGI Inventor for-
mat) or2.26 MB (PLY format); the simplified mesh
in Fig. 17 requires43–56 kB (.ply or .iv) to repre-
sent the geometry and240 kBto represent the JPG-
compressed texture (256×936).
If, conversely, we consider the image synthesis time,
then the evaluation becomes much more difficult.
If we divide graphics processing into the usual two
phases, geometry stage and rasterization stage, then
the rasterization cost (scan conversion, bilinear color
and texture interpolation, Z-buffering) remains ap-
proximately the same and it is very efficient on most
graphics boards. The geometry computations (trans-
formations, lighting) cost is linear to the number
of faces, and therefore it is largely reduced when
a simplified model is used. Moreover, in a num-
ber of graphic systems the geometry stage is im-
plemented software on the main CPU. Therefore
the improvements guaranteed by the use of texture-
enhanced simplified model may become notable.
To give an empirical evaluation, we measured the
frame rate while rendering the two bunny models
on an SGI 320 NT PC. The original bunny runs
at 8 fps, while the simplified textured bunny runs
at 80 fps (which is the maximum refresh speed on
the SGI 320).

7 Conclusions

We have presented a general method for preserving
on a simplified mesh the detail (e.g., color, high-
frequency shape detail, scalar fields, etc.) that is
encoded in the original high-resolution mesh. Our
approach is very general because it allows us to
preserve any attribute value defined on the high-
resolution mesh and because it can be used with
any high-quality simplification code. The method
presented makes no assumptions about the simplifi-
cation process adopted to reduce mesh complexity,
but only assumes that the simplified mesh is a good
approximation (topologically and geometrically) of
the original mesh. Detail is decoupled from geome-

try and is encoded through texture mapping, which
is extremely efficient in many graphics subsystems.
A texture, which encodes the detail of the high reso-
lution mesh, is built by an efficient scan conversion
process of the simplified mesh. The results therefore
suffer as a result of some approximation: we preserve
surface detail with the use of discrete texture maps,
whose quality depends on both the sampling step
size used and the criterion adopted to locate match-
ing pairs of points on the two surfaces (which may
introduce aliasing if the two meshes are not suffi-
ciently similar in a geo-topological sense). Despite
this limit, the results can be considered of a suffi-
ciently high quality for a wide range of possible in-
teractive visualization applications. In synthesis, the
advantages of our approach are as follows: general-
ity (it can be used with any simplifier, and it may
restore every type of mesh attribute), computational
efficiency, and geometrical robustness.
The approach proposed has another possible applica-
tion: the conversion of models with attached 3D pro-
cedural textures into standard 2D-textured models.
This constitutes a really new approach to managing
3D procedural textures because it allows us to render
meshes with procedural detail on standard graphics
subsystems with standard libraries or API such as
OpenGL, VRML or Java3D.
Our approach should be compared with other so-
lutions that take into account high-frequency detail
during simplification. Our approach should be cho-
sen for the following reasons: simplification is de-
coupled from detail preservation; decoupling shape
simplification and detail preservation allow a much
more drastic simplification to be obtained, especially
in the case of meshes with a very complex detail
content or when multiple attributes have to be pre-
served; when operated as a post-processing action,
the task is generally more efficient in time and sim-
pler to implement (especially if different kinds of
detail have to be preserved); and finally, not all sim-
plification approaches can be simply adapted to pre-
serve the mesh attributes. However, our approach
may produce less compact results than other solu-
tions [13, 18] when the attribute field of the original
mesh is either smooth or presents a small number of
discontinuities. In these cases, the size of the detail
texture may compromise the space improvement due
to a more compact geometry.
A possible extension to our approach is as follows.
To reduce texture size, if we are able to detect those
texture patches whose detail varies bilinearly (ac-
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cording to a user-defined accuracy) with respect to
the value on the texture patch vertices, then we can
represent in a much more compact manner the same
information by simply assigning these values to the
associated mesh vertices. In this case, we will pro-
duce a hybrid representation where some faces are
linked to a texture patch (i.e., each vertex has texture
coordinates), while others have per-vertex encoded
detail values (and such values are interpolated dur-
ing shading and rasterization). This approach can be
highly effective in terms of space compression for
all those objects that present large areas of surface
where the detail is constant or varies smoothly and
linearly.
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