
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy subm itted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Aitor, Ml 48106-1346 USA

800-521-0600

UMI

Automated Generation of Control Skeletons
for Use in Animation

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University

By

Lawson Wade, B.A., M.S.

* * * * *

The Ohio State University

2000

Dissertation Committee:

Dr. Richard E. Parent, .A.dviser

Dr. Wayne E. Carlson

Dr. Rephael Wenger

Approved by

Adviser
Department of Computer
and Information Science

UMI Number: 9994950

Copyright 2000 by

W ade, Lawson

All rights reserved .

UMI'
UMI Microform 9994950

Copyright 2001 by Bell & Howell Information and Learning Com pany.
All rights reserved . This microform edition is protected against

unauthorized copying under Title 17, United S ta tes Code.

Bell & Howell Information an d Leaming C om pany
300 North Z eeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

© Copyright by

Lawson Wade

2000

ABSTRACT

The animation of an articulated figure is typically accomplished through the use

of a corresponding control skeleton. Although the control skeleton is an effective tool,

the manual construction of the skeleton can be a laborious process often requiring

several hours of work and a fair degree of proficiency with the animation software

used.

The focus of the research described here is the autom atic generation of such control

skeletons. To this end. two solutions to the problem are presented, one general and

one specific. In both cases, the input is required to be a set of polygonal data that

defines the figure, and the output is a description of a control skeleton to be used in

animating that figure.

The general solution is widely applicable: it makes very few assumptions about

the figure given as input or about the type of control skeleton that should be gener­

ated. .A system is described tha t divides the problem into a series of steps, each of

which is performed automatically. The basic process involves discretizing the figure,

approximating its medial surface, and using tha t surface to construct a control skele­

ton. The system can produce a reasonably good control skeleton for any of a variety

of figures in as little as one or two minutes on a low-end PC.

11

The specific solution builds upon the general one but is geared toward producing

more desirable skeletons for the very common case involving human-like and animal­

like figures. Certain assumptions are made about the figure and about the type

of control skeleton desired. In addition, heuristics based upon human and animal

anatomy are invoked to adjust the control skeleton so tha t it is more anatomically

appropriate. The motivation for this solution is the belief that a more anatomically

appropriate control skeleton allows for more natural looking movement of a human

or animal-like figure.

Partly to support that claim, the system can produce geometry for individual

bones that might function as the anatomical skeleton of the figure. This skeletal

geometry can form the foundation for additional anatom ical modeling that might

add more realism to the animation of the figure.

Ill

To Kathv

IV

ACKNOWLEDGMENTS

So many people have helped me in so many ways. I will always be grateful for

their insight, enthusiasm, support, and wisdom.

1 would like to thank my adviser. Rick Parent, for his assistance with this research

and for his support throughout my graduate studies. I have especially appreciated

his willingness to listen to my ideas and to share his vast knowledge and experience in

computer graphics. I also wish to thank the other members of my committee - Rafe

Wenger and Wayne Carlson. Rafe has been an excellent teacher and has been quite

helpful and supportive of my research efforts. Wayne introduced me to the ACC AD

environment and has provided me with a number of research assistantships: I have

greatly appreciated his encouragement and advice.

I especially want to thank Meg Geroch, M att Lewis, and Pete Carswell for count­

less lengthy discussions about the research. Meg has been tremendously helpful with

her careful review of the dissertation, and M att generously provided several humanoid

data models for my use. I also want to say thanks to Meg and M att for encouraging

me to continue the research when everything seemed so bleak. Pete has offered me

various research assistantships: it has been a joy to work with him and to join him in

so many intriguing conversations on mathematics.

I would like to thank all of the teachers I have had. Of special mention are

Kerm Almos. Kurt Anderson, David Block, Larry Booth, Harold Brockman. George

V

Carver, Joanne Dawson, John Detrick. Tom G earhart, Tirn Hildreth. Jerry Izzo.

Dennis Kapenga. Carol Krell. Larry McEhvee. Kevin Michael. Kelly Moody. Scott

Neal. Larry O’Flynn. Jordan Pollack. Peggy Rinehart. Gary Ross. Lou Schultz. Steve

Shaffer. Edie Sidwell. Nee lam Soundarajan. Ken Supowit. David Trowbridge, and

Howard Wilson.

I wish tu tlicink llie s t a f f ul the Cuiu put e i an d I i i fuiuiat iuu Sc iencn D epa iU ue nt ;

Tom Fletcher. Sandy Hill. Marty Marlatt. Elizabeth O'Neill, and Eleanor Quinlan.

Ellie was especially helpful during my time as a graduate teaching associate.

I would like to thank the staff and faculty at .A.CCAD. both current and pre­

vious: Chuck Csuri. .A.line Davis. \'ik i Dennis. Barb Heifer. Ruedy Leeman. Steve

May, Mike Miller. Phil Ritzenthaler. Elaine Hamilton Smith. Steve Spencer, and

Traci Temple. Steve May offered valuable comments and suggestions and created

the AL programming language. Many of the figures in this document and numerous

supporting animations were created with AL and rendered with RenderMan®.'

I would also like to thank the other graduate students I have known: from CIS.

Debashis Basak. Paolo Bucci. M att Camuto. A1 Fend, Mark Fontana. Neeraj Gupta.

Julie Hartigan. Scott King, Nathan Loofbourrow. Raghu Machiraju. Neal McDon­

ald, Torsten Moeller. Klaus Mueller. Saty Raghavachary, David Reed. Doug Roble.

Kevin Rodgers, Ferdi Scheepers. Carl Schuyler. Naeem Shareef. Ed Sindelar. Karan

Singh, Sara Susskind. Ed Swan. Suba \a rad ara jan , and Pete Ware: from Biome­

chanics, Kinda (Khalaf) Abdullah: and from .A.CCAD, Julie Apley. Ian Butterfield.

Wooksang Chang, Pete Gerstmann. John Gladden, Heath Hanlin. Wobbe Koning.

Heesung Koo, Melissa Kupper. Zil Lilas. Janet Lucroy, Brandon Morse. Todd Sines.

^RenderMan is a registered trademark of Pixar .Animation Studios.

VI

Clarke Stallworth, Scott Swearingen. Xathania \'ishnevsky. and .John Warren. Being

with such friendly, helpful, funny, intelligent, and inspiring people has been one of the

best things about graduate school. I particularly want to thank Pete Gerstmann for

creating a number of data models for the research and Ian Butterfield for helping to

make the last few months more enjoyable with his humor and conversation. .A. spe­

cial thanks goes to .John Warren for die informative and enlightening brain-storming

session from which this research was spawned.

Finally. I would like to acknowledge my family and friends - I greatly appreciate

their love and support. To .Mike and .Julie Reid and John and .Janene Metzger, thank

you for being such good friends and for cheering me on. To Larry and Charlotte. Mark

and -Angle, and .Jen and Bob. thank you for caring. To my parents. Robert and .Ann

Wade, thank you for your guidance and encouragement and for sharing the wisdom

that only one's parents seem to have. To Sam and Tina and to .John and Chrissy.

thank you for your unquestioning acceptance and unwavering confidence. To Michael,

thanks for allowing me the joy of being a parent. .And to my wife. Kathy, thank you

for your patience and understanding, your cheers and celebration, the occasional kick

in the bu tt, and for making the world a much happier place.

Vll

VITA

May 12. 1969 .. Born - Dayton. Ohio

1991 ..Computer Science/Mathematics
Suiiima Cum Laude
Capital University. Columbus. Ohio

1993 M.S. Computer and Information Science
The Ohio State University. Columbus. Ohio

PUBLICATIONS

Research Publications

Lawson Wade and Richard E. Parent. "Fast, fully-automated generation of control
skeletons for use in animation". In Proceedin(js of Computer Animation 2000. 2000.

Lawson Wade and Richard E. Parent. "Fast, fully-automated generation of control
skeletons for use in animation". Technical Report OSU-.A.CC.A.D-9/99-TR3. The Ohio
State University. Advanced Computing Center for the Arts and Design. 1999.

Lawson Wade and Richard E. Parent. “Practical issues for implementation of a DDT
algorithm for polyhedra” . Technical Report OSU-.A.CC.A.D-5/99-TRl. The Ohio State
University. .Advanced Computing Center for the .Arts and Design. 1999.

K..A. Khalaf, M. Parnianpour, L. Wade, and S.R. Simon. “Feature extraction and
modeling of the variability of performance in terms of biomechanical motion patterns
during MMH tasks'’. In Proc. Rocky Mountain Bioengineering Symposium, pages
35-40. 1997.

K..A. Khalaf. M. Parnianpour, L. Wade. P..I. Sparto. and S. Simon. “The impor­
tance of dynamic strength models for proper ergonomic task analysis". In Proc.
International Society for the Study o f the Lumbar Spine'\ pages 166-168. 1996.

viii

K.A. Khalaf, M. Parnianpour. L. Wade, and P..I. Sparto. "Biomechanical simulation
of manual multi-link coordinated lifting". In Proc. The Fifteenth Southern Biomedical
Engineering Conference, pages 197-198, 1996.

David M. Reed, Lawson Wade, Peter G. Carswell, and Wayne E. Carlson. "Particle
tracing in curvilinear grids'’. In Visual Data Exploration and Analysis II (Proc. SPIE
2410). Georges G. Grinstein and Robert F. Erbacher, editors, pages 120-128, 1995.

David M. Reed, Lawson Wade, Peter G. Carswell, and Wayne E, Carlson, "Particle
tracing in curvilinear grids". Technical Report OSL’-.\CC.A.D-6/94/TRl, The Ohio
State University, .Advanced Computing Center for the Arts and Design. 1994.

Peter Carswell, Wayne Carlson, David Reed, W. Seun. and Lawson Wade, "kitchen-
\ ’IEW; an interactive interface to heat flow solutions in commercial kitchens". Tech­
nical Report OSU-.A.CC.A.D-1/93/TR4, The Ohio State University, .Advanced Com­
puting Center for the ,\rts and Design, 1993.

FIELDS OF STUDY

Major Field: Computer and Information Science

Studies in:

Computer Graphics Dr. Richard E, Parent
.Algorithms Dr, Rephael Wenger
.Artificial Intelligence Dr, Jordan Pollack

IX

TABLE OF CONTENTS

P age

A b s tra c t .. ü

D edication... iv

Acknowledgments... v

V i t a ... viii

List of T a b le s .. xiii

List of Figures ... xiv

Chapters:

1. In troduction ... 1

1.1 Motivation ... 2
1.2 Problem D esc rip tio n .. 7
1.3 Overview of the S o lu tion ... S
1.4 Overview of the Document ... 10

2. B ack g ro u n d ... 13

2.1 Distance M a p s .. 13
2.2 Medial .Axis/Medial S u rfa ce ... 20

2.2.1 Continuous versus Discrete Geometrv- 25
2.3 Control Skeleton G eneration ... 32

2.3.1 Commercial P r o d u c t s ... 32
2.3.2 Control Skeleton R esearch ... 37

2.4 .A.natomically Based Modeling and A n im a tio n 46

3. Approximating the Euclidean Distance M a p ... 54

3.1 Overview of the A lgorithm ... 55
3.2 The Reference T a b l e ... 56
3.3 Propagation of R eferences.. 63
3.4 .\nalysis and D iscu ss io n ... 71

4. Constructing the Discrete Medial Surface.. 81

4.1 Overview of the A lgorithm ... 82
4.2 Local Exposure C a lc u la tio n .. 83
4.3 Extracting the DMA/DMS .. 88
4.4 Results ... 99
4.5 .\nalysis and D iscu ss io n .. 105

5. Automated Generation of Control S k e le to n s .. 110

5.1 G o a l s .. I l l
5.2 The A lg o r ith m .. 113

5.2.1 \blum etric D isc re tiz a tio n ... 113
5.2.2 Distance Map C o m p u ta tio n .. 115
5.2.3 Medial Surface E x trac tio n .. 116
5.2.4 Path Tree G e n e ra t io n ... 116
5.2.5 Control Skeleton Construction ... 126

5.3 Results ... 134
5.4 C o n c lu s io n ... 143

6. Comparative Anatomy of V erteb ra tes ... 145

6.1 Vertebrate Structure in G en era l.. 147
6.1.1 Bilateral Symmetry ... 147
6.1.2 Two Sets of Paired L im b s ... 148
6.1.3 Cylindrical Shape .. 148
6.1.4 Metamerism .. 149
6.1.5 Form Follows F u nction .. 149

6.2 Skeletal Anatomy of V e r te b ra te s ... 150
6.2.1 Differences .. 153

6.3 Muscular .Vnatomy of V ertebrates... 154
6.3.1 Muscle B asic s ... 154
6.3.2 The M u scu la tu re .. 155

XI

7. Automated Identification of Anatomical F e a tu r e s ... 158

7.1 C o n s tra in ts .. 159
7.1.1 Structural C o n stra in ts .. 159
7.1.2 Postural C o n stra in ts ... 161

7.2 Heuristics for Id e n tif ic a tio n .. 162
7.3 Implementation I s s u e s .. 163

7.3.1 Creating the Level G r a p h ... 163
7.3.2 Marking die Levei Graph vertices .. 166
7.3.3 Labeling the Level G r a p h ... 168

7.4 Results .. 170

8. Automated Generation of .A.natomically .Appropriate Control Skeletons . 173

8.1 The Axial Ske le ton .. 173
8.2 The .Appendicular S k e le to n .. 179
8.3 .A ttachm ent.. 184
8.4 Results .. 185

9. Creating .Anatomical Component M o d e ls ... 198

9.1 -A General Skeleton M o d e l... 198
9.1.1 Results and Discussion.. 200

9.2 .A General Musculature M odel... 208
9.3 Fatty Tissue and S k i n .. 210

10. C onclusion.. 211

10.1 S u m m a ry ... 211
10.2 C on tribu tions.. 213
10.3 Future Research .. 215
10.4 Final T h o u g h ts ... 217

•Appendices:

•A. Glossary of Anatomical T e rm s ... 220

Bibliography .. 228

XU

LIST OF TABLES

Table Page

3.1 Reference table for 2D distance map c o n s tru c tio n59

3.2 Reference table for 3D distance map c o n s tru c tio n 62

3.3 Execution times for 2D and 3D EDM approximation algorithms . . . 72

3.4 Observed errors for 2D and 3D EDM approximation algorithms . . . 75

4.1 Execution times for the DMA/DMS im p lem en ta tio n s 106

5.1 Execution results for the skeletonization a lgo rithm 136

5.2 Input parameters for the skeletonization a lgo rithm 137

6.1 Simplified skeletal components of v e rteb ra te s .. 151

8.1 Ratios used in segmentation of l i m b s ... 182

X lll

LIST OF FIGURES

Figure Page

1.1 The two classes of articulated f ig u r e s ... 4

2.1 The two forms of the 2D Euclidean distance m a p 14

2.2 Vector and grayscale displays of the distance m a p 15

2.3 The medial axis of a re c ta n g le .. 21

2.4 The medial surface of a b o x .. 21

2.5 The inverse medial axis tra n s fo rm .. 23

2.6 The discrete medial a x i s .. 27

2.7 The 2D distance map viewed as a height field in three dimensions . . 30

3.1 Reference grid for 2D distance map co n stru c tio n 58

3.2 Distance map computation (propagation steps 0 - 3) 65

3.3 Distance map computation (propagation steps 4 - 7) 66

3.4 Distance map computation (propagation steps 8 -1 1)............................... 67

3.5 Distance map computation (propagation steps 1 2 -1 5) 68

3.6 Pseudocode for the distance map algorithm (in itia liza tio n).................. 69

3.7 Pseudocode for the distance map algorithm (propagation) 70

XIV

3.8 Error example for computing 2D Euclidean distance m a p 77

3.9 Voronoi diagram for the error e x a m p le ... 78

4.1 The relative exposure of neighboring d i s k s .. 83

4.2 Exposure calculation in the DM .\/DM S algo rithm 86

4.3 Complete grid of exposure v a l u e s ... 87

4.4 Discrete medial axis computation (steps 0 - 3) ... 90

4.5 Discrete medial axis computation (steps 4 - 7) ... 91

4.6 Discrete medial axis computation (steps 8 - 1 1) .. 92

4.7 Discrete medial axis computation (step 12. output) 93

4.8 Discrete medial axis using other th resho lds ... 100

4.9 D.MAs produced by the a lg o rith m ... 101

4.10 Two D.MSs of a b o x .. 103

4.11 DMSs of a voxelized horse cis produced by the a lg o r i th m 104

5.1 The 2D Euclidean distance map for a discretized p o ly g o n 115

5.2 The heart and extreme points for a DMS of a h o r s e 119

5.3 Examples of coverage of three d i s k s .. 121

5.4 Forming path tree extensions .. 123

5.5 The completed path tree for the horse ... 124

5.6 Smoothing of a path tree chain .. 126

5.7 The smoothed path tree for the h o rs e ... 127

5.8 Error and splitting of a skeletal graph e d g e ... 129

XV

5.9 The skeletal graph for the h o r s e ... 1.30

5.10 The horse and a few random poses ... 135

5.11 .\n analysis of execution times for the skeletonization algorithm . . . 138

5.12 Control skeleton and pose for a human fig u re .. 139

5.13 Skeletons and poses for an octopus and a je l ly f is h 140

7.1 DMS and level graph of the horse shaded according to heart values . 165

8.1 Head-to-tail chains of horse and h u m a n ... 177

8.2 Girdle spheres for the horse control s k e le to n .. 181

8.3 .A.natomically based control skeletor for a h o r s e 187

8.4 The horse in various p o s e s ... 188

8.5 .\natomically based control skeleton for a human f ig u re 189

8.6 human figure in various p o s e s .. 190

8.7 .\natomically based control skeleton for a b i r d 191

8.8 Anatomically based control skeleton for a d o g 192

8.9 Anatomically based control skeleton for a cartoon-style human figure 193

8.10 Anatomically based control skeleton for a dragon 194

9.1 Bone models generated for the skeleton of a h o r s e 201

9.2 Anatomical illustration of the skeleton of a horse 202

9.3 Bone models generated for the skeleton of a human figure 203

9.4 Bone models generated for the skeleton of a cartoon-style human figure 204

XVI

9.5 Bone models generated for the skeleton of a d r a g o n 205

xvii

CHAPTER 1

INTRODUCTION

Articulated figures abound in computer graphics. They appear most frequently in

the areas of character animation [CHP89. Mae96. \'SCOO] and human figure modeling

and animation [BPW93. SPCM97. WG97j, and their study typically garners at least

a chapter or two in most books on computer animation in general [MTT90. \VW92].

Indeed, there is at least one book devoted entirely to the topic of articulated figures

[BBZ91j.

The animation of such a figure is generally accomplished through the use of a

control skeleton - an articulated structure of segments and joints combined with

information detailing how the surface geometry of the figure is anchored to that

structure. The control skeleton is sometimes referred to as the skeleton rig or the

IK skeleton. The latter term Is derived from the frequent use of inverse kinematics

when posing or animating the structure.

When an animator is faced with the problem of animating a complex model,

he or she can create a contiol skeleton that corresponds to the model, specifying

each individual segment and joint and attacliing parts or regions of the model to

nearby segments. Next, the anim ator can specify a set of joint values in order to

pose the control skeleton, and the attachm ent information is then used to re posit on

1

the original figure in a corresponding manner. Animation of the figure can thus be

performed by anim ating the figure's skeleton and updating the geometry of the figure

in turn.

1.1 Motivation

An nrtirninjpfl Rn>irp (nr artirulat'itd model) consists of two main components: the

figure to be anim ated and a control skeleton to be used to animate it. The figure to

be animated is usually some geometric model which, by itself, is a motionless object.

It is the control skeleton which imparts articulation and flexibility to that object.

Articulated figures can be divided into two basic classes according to how the

geometry of the figure is defined. In the first class, the geometry is a single model

that is usually a surface or shell considered to be the skin of the figure. When the

figure is animated, this skin is deformed to match the pose of the skeleton. .A figure

of this kind will be termed a continuous model. In the second class, the geometry

is a collection of component models. Normally each component is intended to be a

separate movable part of the articulated structure. During animation, each individual

component is typically transformed in rigid fashion to align with a related part of the

control skeleton, though occasionally some minor deformation of the components

is performed near the joints. Even though the separate components suggest the

structure of an articulated figure, a control skeleton still must be paired with the

geometry in order to form an articulated figure capable of hierarchical movement of

those components. .A figure belonging to this second class will be referred to as a

segmented model.

Figure 1.1 shows examples of the two classes. The human figure is modeled with

a single polygonal mesh. The robot model is a composition of primitive shapes: two

boxes for its trunk, a couple of cylinders for each of its arms and legs, and a few

ellipsoids to represent its head, hands, and feet. Note that these shapes are simply

transformed when the robot is posed, while in contrast the polygonal mesh for the

human figure is deformed when it is posed.

The control skeleton defines the movement capabilities of an articulated figure.

The control skeleton is composed of an interconnected structure of segments and

joints as well as a collection of attachm ent information that defines how the geometry

of the figure is anchored to that structure.

. \ segment is usually a rigid form that serves to provide locations for joints and

anchors. Segments are connected to each other by joints, which are the points of

articulation for the control skeleton. Typically, a joint is used to connect a pair

of segments. The exception is the root joint, which is the foundational joint for the

structure, providing a pivot point between the control skeleton and the world in which

it exists. .A. joint has a fixed position relative to each the segments it adjoins, and

it provides a set of degrees of freedom (DOFs) that constrains the relative motion

between its adjacent segments. To obtain a pose for the interconnected structure, a

user may specify a set of values for the DOFs at each joint; these values are then used

to compute the relative configuration for each connected pair of segments and thus

the overall configuration of the structure.

The attachm ent information is the means of connecting the surface of the figure

(that is, its geometry) to the structure of segments and joints. Although methods of

attachm ent var>', a common method uses special points which will be called anchors.

(a) Human model (b) Robot model (c) Skeleton

(d) Human (posed) (e) Robot (posed) (f) Skeleton (posed)

Figure 1.1: The two classes of articulated figures. The human (a), a continuous model,
is a single polygonal mesh, while the robot (b). a segmented model, is composed of
geometric primitives. Both models are anchored to a control skeleton structure (c).
When the skeleton is posed (f), the models are deformed accordingly (d, e).

An anchor is a point, defined in the local coordinate frame of a segment, tha t relates

to the position of a point on the surface of the figure. The local position of an anchor

is thus fixed, but the global (or world-space) position of an anchor will vary with the

movement of the segment containing that anchor. set of one or more anchors on one

or more segments may be used to attach a single surface point to the structure. Such

a Set can then be used to recompute the positiuii uf its cuiicapuudiiig surface puiuL.

when only one anchor is used, its global position is copied as the updated location

of the surface point: when two or more anchors are used, their global positions are

combined in a weighted average to obtain the updated location of the surface point.

Usually, if the surface geometry of the figure is defined as a set of polygons, then each

vertex will have a dedicated set of anchors: if the geometry is defined using spline

surfaces, then each control point will have a dedicated set of anchors. Whenever the

structure of segments and joints is posed in a new configuration, each set of anchors

is used to reposition its corresponding surface point, and thus the entire surface of

the figure is remolded accordingly.

Undoubtedly the control skeleton is a useful tool integral to the anim ation of

articulated figures. Its use simplifies the problem of posing or animating a complex

geometric object into the problem of specifying values for the joints of an easily

understood structure which has an obvious and inherent correspondence to the more

complex object.

It is unfortunate, then, tha t the construction of a suitable control skeleton for

use with a given geometric model can be such a tedious and time-consuming task.

Many sophisticated modeling and animation packages include support for working

with articulated figures, usually providing users with an interface that enables them

to construct a control skeleton for use in animating a model. Nonetheless, the creation

of a control skeleton can be a laborious undertaking sometimes requiring several hours

of work, and a user typically must possess a fair degree of proficiency with a package

to obtain even rudim entary motion via a control skeleton.

Equally unfortunate is the fact that so much of the monotonous work is often

needless!} replii-ated when euiistiuetiiig similar eontiul skdctuua fur diffctfuL ubjecLa.

Such is often the case when producing control skeletons for such common figures as

humans and animals, which make up a significantly large portion of the articulated

models created.

Examination of an articulated figure usually reveals a special relationship between

the figure's geometry and the underlying control skeleton. Notable protrusions of the

geometry are typically reflected in the control skeleton by segments that extend into

those protrusions, and junctions of geometric parts are generally marked by specific

joints within the skeleton. In addition, areas of branching in the geometry often

correspond to branching configurations of segments and joints in the control skeleton.

This is no coincidence. The effective manipulation of the geometry through use of

the control skeleton requires a similarity in the structure of both.

Such a close relationship between the geometry and the control skeleton suggests

tha t some type of autom ated process can be used to generate the control skeleton.

Furthermore, autom ation can alleviate the monotony and tedium and speed up the

creation process.

1.2 Problem Description

Depending on the ordering of construction tasks, there are two basic approaciies

to creating articulated figures. If an anim ator knows the articulation he or she desires

of the figure, then the animator can first build its skeleton - or rather the articulated

structure of segments and joints. The actual geometry of the figure is added later,

usually in conjunction with information as to its attachm ent to the structure. This

completes the construction of the control skeleton and the articulated figure as a

whole.

The other method, likely the more common of the two. involves creating the geom­

etry first. Most people are probably anxious to model a figure they have envisioned,

wanting quickly to realize the intricate details of the shape and quality of its sur­

face. and delaying the possibly more mechanical task of building segments and joints.

Or perhaps the model already exists, having been created by someone else at an

earlier time, possibly through some digitizing process, and now a person wishes to

animate the model. Presumably the animator already has a rough idea of how the

figure should move and a reasonable mental sketch of the placement of most of its

segments. If the shape of the figure is human-like or animal-like, then tha t mental

image of its movement capabilities is likely very clear, as the animator no doubt has

observed countless humans and animals in action.

The research presented here deals with the latter method and assumes that the

geometric model has already been created. Specifically, it addresses the problem of

automatically generating a control skeleton for a given model. It is applicable regard­

less of whether the model was created with the intention of articulated movement or

whether it was originally developed as only a static model.

The problem is confronted from two perspectives. In the general view, few restric­

tions are placed on the form of the given model. The objective is simply to produce,

in an autom ated fashion, a corresponding control skeleton for use in animating that

model. The control skeleton generated is expected to resemble the model both in

structure and complexity.

The specific view of the problem assumes that the model is human-like or animal­

like. as is often the case when creating articulated figures. Here, correspondence

between the model and the generated skeleton should be stronger, because certain

structural iissumptions can be made. The resulting articulated figure (that is. the

model in conjuction with the control skeleton) should be capable of more natural

looking motion - motion tha t one might expect of a human or animal.

1.3 Overview of the Solution

In response to the two views of the problem, both a general and a specific solution

are presented. Both solutions have been implemented within the context of a single

system which is described in the text. The input to the system is a set of polyg­

onal data that defines the geometry of the figure. The output is a set of files that

functions as a description of the control skeleton for the figure. Various methods for

visualization of the control skeleton are available within the system.

The general solution is widely applicable, because it makes verv' few assumptions

about the form of the figure given as input or about the type of control skeleton

that should be generated. The solution consists of a series of steps, each of which is

performed automatically. First, the figure is converted to a voxel representation, and

an approximation to its discrete medial surface is constructed. Next the medial surface

8

is simplified into a tree structure, and that tree is divided into an interconnected

structure of segments and connecting joints. Finally, the voxel representation and

the medial surface are used to generate anchors for attaching the vertices of the

polygonal data to the segments.

The specific solution builds upon the general one: however, it is geared toward

producing a more desirable skeleton for the case when a human-like or animal-like

model is provided as input. In this case, certain assumptions are made about the

model and its form - assumptions such as how it is posed and about the relative

sizes of its features. .Assumptions are also made about the structure of the control

skeleton that should be generated, leading the system to produce tree-structured

skeletons with some degree of bilateral symmetry. Many of the same steps involved

in the general solution are executed; but heuristics bcised upon human and animal

anatomy are also invoked to adjust the control skeleton so that its segments and joints

correspond more closely to the bones and joints of the anatomical skeleton that might

be expected in such a being. In short, the heuristics are used in an attem pt to make

the control skeleton more anatomically appropriate and thus capable of more natural

looking motion.

.Although the system is not without its shortcomings, it is shown to produce a rea­

sonably good control skeleton for any of a variety of figures in as little as one or two

minutes on a low-end personal computer (specifically, a PC with a 133 MHz Intel®

Pentium® processor).^ It is capable of producing a slightly better and more repre­

sentative control skeleton when allowed to run for a longer period, but this is mainly

•Pentium is a registered trademark of Intel Corporation.

the result of a trade-off between the execution time and the level of discretization of

the model.

When the input provided is a human-like or animal-like figure, then the system is

shown to produce a control skeleton with an observable anatomically justified quality.

In further validation of the anatomical basis, the system can generate geometric

models of bones for visual realization of an anatomical skeleton that corresponds tu the

anatomically based control skeleton. This skeletal geometry can form the foundation

for additional anatomical modeling, providing attachment points for layers of muscles,

fatty tissue, and skin. Such anatomically based modeling has been shown to add more

realism to the animation of the figure. Chadwick et al. appear to have acted as the

pioneers of the layered construction approach for articulated figures [CHPS9]. More

recent works by Scheepers et al. and by Wilhelms and \'an Gelder have demonstrated

the realism achievable through closer adherence to principles of anatomically based

modeling [SPCM97. WG97]. For further discussion of anatomically based modeling

in the literature, see Section 2.4.

The attem pt has been made to keep the implementation of the two solutions as

general as possible. Nevertheless, due to the complexity of the task at hand and

to further complications involved in creating a useful but general system, various

assumptions and simplifications have been made and are documented throughout the

text.

1.4 Overview of the Document

This chapter is a brief introduction to the material presented in this dissertation.

Section 1.1 defines the concept of the articulated figure, provides general information

1 0

about its key component, the control skeleton, and discusses factors which have moti­

vated this research. Section 1.2 describes the problem addressed by this research and

how it fits in to the methods by which articulated figures are created. Section 1.3 then

presents an overview of the general and specific solutions to the problem, introduc­

ing the concept of anatomically based modeling and its relationship to the research.

Finally, the current section gives a short summary of the contents of eaLu chapter of

the document.

Chapter 2 provides relevant background information. The geometric concepts of

distance maps and the medial surface are described, along with their relationship to

the general problem of automated control skeleton generation. O ther work in the

area of control skeleton generation and anatom ical modeling is also presented.

Chapters 3 and 4 discuss the discrete geometry algorithms developed for the re­

search. The first algorithm computes a close approximation to the Euclidean distance

map. and the second algorithm finds the discrete medial surface for a voxelized object.

These two algorithms are the main underlying components of the general solution.

Chapter 5 details the various steps involved in the general solution to the problem.

It describes the discretization of the model and how that discretization is used both

in the creation of the articulated structure of segments and joints as well as in the

appropriate anchoring of the geometric model to tha t structure.

Chapter 6 introduces the anatomical knowledge upon which the specific solution

to skeleton generation is based. Comparative anatom y of vertebrates is discussed,

specifically with respect to the structure of the skeleton and musculature.

In Chapter 7. the assumptions behind the specific solution are discussed. These

assumptions form the foundation for the heuristics developed to help identify the

11

anatomical features of the model. Implementation issues related to the application

of the heuristics are mentioned.

Chapter 8 describes further use of anatomical knowledge in the context of control

skeleton generation for human-like and animal-like figures. More heuristics are devel­

oped and applied in order to create more anatomically appropriate control skeletons.

Again, implementation issues are presented.

Chapter 9 discusses the creation of geometric models for anatomical components,

it describes a generalized model for component models of bones and proposes a gen­

eralized model for the musculature as well. In doing so. it demonstrates the visual

realization of the general anatomical skeleton as an enhancement to the specific so­

lution.

Chapter 10 summarizes the research and lists the main contributions. Possibilities

for extending or enhancing the research are suggested.

12

CHAPTER 2

BACKGROUND

This chapter describes various concepts related to the research, citing relevant

publications in each area. Section 2.1 introduces the distance map. and Section 2.2

presents the medial axis and medial surface. Together these two sections provide

the background for the discrete geometry forming the foundation of the research.

In Section 2.3. other work in the area of control skeleton generation is discussed.

Finally. Section 2.4 presents a brief look at the ever-expanding area of anatomically

based modeling.

2.1 Distance Maps

The distance map is a frequently used tool in computer graphics. It is especially

useful in areas such as image processing, image analysis, computer vision, and pattern

recognition, and it often arises wherever discretization is employed. The distance map

is sometimes referred to as the distance transform or the digital distance transform.

although it is more accurate to use these ‘‘transform’’ terms to refer to the process

used to generate the distance map.

The input to the distance transform is a grid of discrete points with each point

marked as being either a feature point or a background point. The output of the

13

_ t
_ 1 2
1 2 5
2 4 5

I I
__ 1 ! 1 t 1
1 2 4 4 4 4
4 5 # * # @
8 1 010 9 9 9

9 9
9 9

4 2
1 I

: ! ; 1 : I :
1 1 I 1 1 1 1 1 t _
4 4 4 4 4 4 4 4 2 1
9 9 9 9 9 9 9 8 5 2
9 9 9 9 10 13 1 8 1 3 8 4
4 4 4 4 5 8 1 3 1 7 1 0 5

J L L ̂ ± 2 5 8 1 3 1 3 8
' n 1 2 5 1 0 1 * 9

1

111111111111
1 2

_ 1 2
_ 1

1

1 1 CZi
4 2 1 1 2

8 13 9
5 10 9
4 9 9
4 9 9
4 9 9
4 9 9
5 10 9

1 I T

4 5 8 13 10 9 9 9 9 9
8 10 13 8 5 4 4 4 4 4
3 13 3 : : : : : : :
9 10 5 2
9 9 4 1
9 10 5 2 I I “ T r ['
9 13 8 5 2 1 1 1 1 1 1
8 1 3 1 3 8 5 4 4 4 4 4 4
5 8 1 3 1 3 10 9 9 9 9 9 9
2 5 8 9 9 9 9 9 9 9 9
1 2 4 4 4 4 4 4 4 4 41111111111

~ m ~ T I r

(a)

9 9 10 13 10 9 9 1 0 1 3 1 6 9
4 4 5 8 13 1 6 1 6 1 7 2 0 1 6 9
x_: z z z i Z i i i B i S l i i

n < 2 5 10 17 26 2 5 1 6 9
_ 1 4 9 1 6 2 5 2 5 1 6 9

n » 2 5 10 1 7 2 6 2 5 1 6 9
I 2 5 8 13 1 6 1 7 20 16 9
4 5 6 13 10 9 1 0 1 3 16 9
9 10 13 8 5 4 5 8 13 9
9 9 8 5 2 2 5 8 9
4 4 4 2 l _ 1 2 4 4 11111 111

1 ^
1

IE» _
2 1
2 1

85 7 2 61 52 4 5 40 3 7 36 37 40 45 52 61 52 41 32 25 20 17 16 17 20 2 5 32 41 S3 65 8 0 97
74 61 5 0 41 34 29 2 6 25 2 6 29 34 41 50 45 34 25 18 13 10 9 to 13 16 2 5 34 4 5 56 7 3 90
65 52 41 32 2 5 20 17 1 6 17 20 25 32 41 40 29 20 13 8
58 45 3 4 2 5 18 13 10 9 10 13 18 25 32 37 26 17 10 5
53 40 2 9 2 0 13 8 5 4 5 8 13 18 2 5 32 25 18 9 4

2 1 2 5 8 13 18 25 26 17 10 5
1 1 2 5 8 13 20 29 20 13 8

ZC'Z
2 1 1

5 4

50 37 2 6 1 7 1 0 5
49 3 6 2 5 1 6 9
4 9 3 6 2 5 1 6 9 4
50 3 7 2 6 17 10 5 _______
53 40 2 9 20 13 8 4 1 ,_____ 1
58 45 3 4 25 1 7 1 0 5 2 1 1 2
65 5 2 4 0 29 2 0 13 8 5 4 4 5

5 10 17 26 17 10 5 2 1
4 9 16 2 5 1 6 9 4 1
4 9 18 25 17 10 5 2 1
5 10 17 26 2 0 1 3 8 5 4
8 13 20 20 17 16 13 10 5

61 52 4 5 34 2 5 1 8 13 10 9 9 10 13 18 16 13 10 9 10 13 8
50 41 34 29 2 6 2 5 2 0 17 16 16 17 20 20 13 8 5 4 5
41 32 2 5 20 1 7 16 16 17 2 0 25 26 26 17 10 5 2 J 2
34 25 18 13 10 9 9 10 13 18 25 25 16 9 4 1 1
29 20 1 3 8 5 4 4 5 8 13 20 26 17 10 5 2 1122 6 1 7 1 0 525 1» » 4
26 1 7 1 0 5
35 16 9 4
2 6 1 7 1 0 5
29 3 0 1 3 8

2 1 2
5 10 17 26 20 13 8 5 4 5
* * 1 * 4 » 4 5 14 i J lU 4 4

4 9 16 25 2 5 1 8 13 8 5 2
5 10 17 25 18 13 8 5 2
8 13 20 20 13 8 5 2 1

2 1 1 , 1

2 12 5
5 4 5 6 1 3 1 8 25 17 10 5

34 2 5 1 8 13 10 9 10 13 18 25 2 5 16 9 4
41 32 25 20 17 16 1 7 2 0 2 5 32 2 5 16 9 4
50 41 34 29 26 2 5 26 2 9 3 4 3 7 2 6 17 10 5
61 52 4 5 40 37 36 3 7 4 0 4 5 4 0 29 20 13 8

8 13 20 29 4 0 53 68 86
5 10 17 26 37 50 65 82
4 9 16 25 3 6 49 6 4 61
5 10 17 26 37 50 61 74
8 13 2 0 25 3 2 41 52 66
5 1 0 1 3 18 2 5 34 45 58
4 5 8 13 2 0 29 40 53
1 2 5 10 17 26 37 50

1 4 9 16 25 36 49
1 2 5 to 17 26 37 SO
4 5 8 13 2 0 29 40 53

8 13 10 9 10 13 18 2 5 34 45 58
5 10 1 7 1 6 1 7 2 0 25 3 2 41 52 66
4 9 10 13 18 2 5 34 41 50 61 74
5 4 5 8 13 2 0 29 40 52 61 72
2 1 2 5 10 17 26 34 41 50 61
I __ 1 4 9 I» 40 4 5 4 241 52

5 9 10 13 18 25 34 45
4 4 5 8 1 3 2 0 2 9 4 0
1 1 2

1 1

— '
_ 1 2 1 j_ 2 5 10 17 26 37

2 1 I 1 1 1 . ■ 1 4 9 1 6 2 5 36
1 t 2 1 1 1 2 5 10 17 26 37
1 _ 1 4 2 1 1 2 4 5 8 1 3 2 0 29 40
2 1 2 5 5 4 4 5 8 10 13 16 25 34 45
5 4 5 8 10 9 9 10 1 3 1 7 20 2 5 32 41 52

74 6 S S 8 53 50 4 9 SO 53 58 45 34 25 18 13 10 9 10 13 17 16 16 17 20 2 5 29 34 41 50 61
80 6 0 7 3 66 6 5 6 4 66 68 66 53 41 32 3 5 20 1 7 1 6 17 2 0 2 5 2 5 2 5 2 6 29 3 4 40 45 5 2 6 1 72

(b)

Figure 2.1: The two forms of the 2D Euclidean distance map. The empty squares
represent the feature points, and the shaded squares represent the background points,
with each value being the square of the Euclidean distance to the nearest feature point.
In (a), the feature points form a boundary surrounding the background points, and
the distance map provides information about the internal area of a discretized letter a.
In (b), the feature points are contained within an array of background points: such a

buried beneath some terrain. Note that the two maps are unrelated: they merely serve
to illustrate the different manners in which the distance map typically appears.

distance transform is the distance map, which is a corresponding grid with a label

for each background point reflecting its relative distance to the nearest feature point.

Note that this “relative distance" may or may not be the Euclidean distance between

the points; if it is. then the map is called a Euclidean distance map (EDM).

Distance maps appear in either of two forms according to whether the feature

points form a simple boundary around the set of background points or whether the

feature points are contained amidst a field of background points. The formulations

14

-34 3.-3 2,-3 1.-3 0.-3 -1.-3-2.-3 2 4 1 4 0 4 -14 2 4 -34 -44 -54 -64

4,-2 3, 2 Z-2 1.-2 0.-2 -1,-2-2,-2-3,-2 1,3 0 4 -14 2 4 3 4 -44 -54 -6,3

4.1 3.-1 2.-1 1,-1 0.-1 -1.-1-2.-1-3.-1-1,-4 0.4 -1.4 2.4 -3.4 -4.4 -5.4 -6.4

4.0 3.0 2.0 1,0 -1.0 -2,0 0.-3-1.-3-2,-3-3,-3-4.-3-5,-3-44 -5.5 -6,5

4.1 3.1 2.1 1.1 0,1 -1.1 1. 2 0,-2-1.-2.2. 2-3.-2-4.-2-5.-2-6.-2-4,-6-5,-6

4 4 3 4 2 4 14 0 4 2.-1 1,-1 a -1 -1 .-1 -2,-1-3.-1-4.-14.-1-3,-5-4,-5-5,-5

4 4 3,3 24 14 2.-2 2,0 1.0____ -1.0-2 ,0-3 .0 -4 .0 -2.-4-3.-4-4.-4-5,-4

3.-4 3.-3 2,-3 2.-2 1,-2 1.-1 0.-1 0.1 -1.1 -2.1 0.-3-1,-3-2.-3-3,-3-4,-3-5,-3

3.-3 2.-3 2,-2 1.-2 1.-1 0.-1 -1.0 -2,0 0,-2 0.-2 -1. 2 -2,-2 -3,-2 -4,-2 -5,-2

3,-2 2,-2 I.-2 1.-1 0.1 -1.0 1,-1 0.-1 0,-1-1,-1-2.-1-3,-1 4.-1-6.-1

3.-1 2,-1 1,-1 0.-1 -1.0 0.1 0,-1 0,-11 j 1.0 -2.0 -34 4 .0 -5,0

3.0 2,0 1.0 -1.0 -1.1 1 4 : -1.0 0,1 -1,1 -2.1 -3,1 4 .1 -5,1

3.0 2.0 14 -1.0 -4 0 1,1 0.1 0,1 -1.1 0 4 -1 4 -24 -34 4 4 -54

3.1 2.1 1.1 0.1 -1.1 -2,1 1 4 0 4 0 4 -14 2 4 -14 2 4 -34 4 4 54

3 4 24 14 04 -14 2 4 1 4 0,3 0 4 -1,3 2 4 -M 2.4 -34 -4,4 -5,4

34 24 14 04 -14 -2 4 1.4 0,4 0.4 -1.4 2 4 4 .4 - 2 4 - 3 4 - 4 4 - 5 4

(a)

» : : s : s H » : : : s : s s s s s 7 " " »

i s : s £ i
IS S S i^ammmza jmamgBMB.'

HSSi
SSSKSSSSSlaaa^aæ m aaaa
'■1 %aaaaa as gaaaa-^

31saaaaaa
s s : : : : ::@oaaaa^maaaa

aaaaaasaas

ii'

aaaaaaaaaaaa^!

: : : : : : : : : :g a a a a . ^ a i

s : : : : = 1»:
________________ a a m a a a a â à a a à

(b)

Figure 2.2: Vector and grayscale displays of the distance map in Figure 2.1(b). In
(a), a portion of the map (roughly the lower right quadrant) has been relabeled using
vectors pointing to the nearest feature point: in (b). the entire map is redisplayed
using grayscale values.

have different uses, and the selection of which form to use is entirely dependent on

the application: the first form focuses on the internal structure of an object: the

second form perm its the examination of an object or objects in relationship to the

surrounding environment or to each other. The two formulations are illustrated in

Figure 2.1 along with the concept of the Euclidean distance map. ’

■A.S is the case with Figure 2.1. the distance map is often displayed as a grid of

values. .A.n alternative is to show the coordinates of vectors that refer to the nearest

^The design for Figure 2.1 was borrowed from one of the many excellent diagrams appearing in
a paper by Ogniewicz and Kiibler [OK95]; for a summary' of the paper, see page 31.

15

background points, as is done in Figure 2.2(a). The distance map can also be viewed

as a grayscale image (see Figure 2.2(b)).

How a distance map is displayed does not necessarily correspond to how it was

computed. The actual computation may involve the use of either scalar values or

vectors. Scalars suffice when only the magnitude of the distance is needed. If it is

also necessary to know the direction to the nearest feature point, then vectors die

typically used, in which case the computation is sometimes referred to as a vector

distance transform or a nearest-neighbor transform.

Integer operations are usually preferable in distance map construction. For maps

involving vectors, this comes naturally. For maps with scalars, however, simple tricks

are sometimes used: in the case of the EDM. for example, instead of working directly

with the Euclidean distance, it can be just as convenient to use the square of the

Euclidean distance (and this permits storage of the distance values as integers).

For many applications that utilize distance maps, working with the Euclidean

distance map is ideal. There are several potential pitfalls involved in the construction

of an exact Euclidean distance map. however, and this has caused many people instead

to use fast or easily-implemented algorithms tha t compute useful approximations

to the EDM. Some of these approximations utilize non-Euclidean metrics such iis

m anhattan distances, chessboard distances, octagonal expansions, or chamfer metrics

(for a discussion of these, see Paglieroni [Pag92]). Nevertheless, efficient algorithms

for correct computation of the EDM in two dimensions do exist, some even having

linear time complexity with respect to the number of grid points [BGKW9.5]. The

problem has also led people to use non-rectangular grids; for instance. Vincent offers

an effective solution for computing the EDM for a hexagonal grid [\'in91]. For an

16

extensive list of papers offering approximation techniques and a shorter list of papers

presenting exact construction methods, the reader is referred to Rosenfeld's massive

bibliography on digital geometry [Ros98|.

Most of the algorithms for computing the distance map use one of four approaches,

depending primarily on how distance values or vectors are propagated through the

grid. The following paragraphs describe each appiuach.

The first approach, one that can often take advantage of computer hardware, uses

raster scanning [DanSO. BorS6. .\Iul92]. This technique is sometimes referred to as

a sequential local transfonnation. In this method, the grid for the distance map is

initialized with either scalars or vectors - zeros for the feature points and sufficiently

large values or vectors for the background points. The grid is scanned two or more

times, usually in alternating directions (horizontally or vertically for 2D grids). .\s

each grid point is processed, a neighborhood of points around it is examined, and

the results can be used to update the value or vector of the grid point or those of its

neighbors in order to reflect shorter distances. For each scan, a different neighborhood

mask is used according to the directions in which the scan traverses the grid. .After

a sufficient number of scans (typically two or four), the resulting grid is a distance

map. This technique is generally applied only to rectangular grids, such as in the

formulation in Figure 2.1(b). For a discussion of the method as applied to more

complex domains, see Piper and Granum [PG87]. The main drawback of the raster

scanning approach is its inefficiency of computation - much of the propagation that

occurs in the grid is effectively wasted when the propagation from one scan overwrites

values or vectors from previous scans.

The second approach uses ordered propagation. It can be applied equally well to

either formulation for the distance map. and it involves propagating distance values

or vectors simultaneously in an outward direction from each feature point (initializa­

tion of the grid is performed as in the raster scanning method). Two styles of ordered

propagation exist. Piper and Granum [PG87|. Ragnemalm [Rag92b], and Vincent

[\ iiiQlj ptuvide ctlguiilums that exhibit the litsL style. This cuiisists of propagating

values/vectors throughout the grid in a slightly independent fashion somewhat rem­

iniscent of the particles in the simulation of a particle system. Each feature point

spawns an initial generation of values/vectors in the direction of neighboring back­

ground points. If a value/vector can be used to improve the value/vector stored in

the corresponding neighbor to which it is directed, then that neighbor point is up­

dated and it spawns values/vectors during the next generation of propagation. If a

value/vector cannot improve what is stored in the neighbor, then it effectively dies.

Successive generations of propagation are computed until no more values/vectors ex­

ist to be propagated, signaling that no further improvements can be made to the

distance map. Because a point potentially can be updated numerous times, there is

an inherent inefficiency associated with this style of propagation. Piper and Granum

[PG87] as well as Vincent [Vin91] note that the number of points that must be up­

dated more than once is typically low in practice: however, this does not rule out the

possibility of pathological cases. Neither group claims their algorithm to have linear

time complexity. Ragnemalm does claim linear time complexity of his algorithm,

though no formal proof is given.

The second style of the ordered propagation approach ensures tha t each point of

the grid is processed only one time through the use of bucket sorting. Algorithms

18

by \'erwer, Verbeek, and Dekker [\'\'D 89] and by Ragnemalm [Rag9‘2a] fall into this

category. Each grid point, when its distance value is computed, is placed into a

bucket with other points sharing th a t value. The buckets are processed in increasing

order, and as a bucket is processed, the points it contains can propagate values to

neighboring points. The propagation develops as a single contour from each feature

puiiiL. and coiiLuuib fiu iu ad jacen t ui d is ta n t featu re p o in ts ca n m erge in iu a s in g le

contour as the propagation unfolds.

The third approach to distance map computation involves a two-step process.

First, each row of the grid is scanned independently to computing the ID distance

map within that row. Next, each column of the grid is scanned independently in order

to transform those ID distance maps into a 2D distance map for the entire grid. The

technique allows for the efficient use of memory during the computation, since only

one row or column is being processed at any time. Examples of this method include

the works of Paglieroni [Pag92] and Salto and Toriwaki [ST94].

For each of the three approaches already described, the given method can operate

in linear time when computing non-Euclidean distance maps or approximations to

the EDM. When an exact EDM is required, however, none of the above methods has

yielded a linear time algorithm (a possible exception to this is Ragnemalm's algorithm

[Rag92b]. though nothing other than experimental verification of certain test cases is

given to prove that the algorithm computes the exact EDM in all cases).

The fourth approach to computing the distance map is apparently the first prov­

able method to operate in linear time complexity when computing the exact EDM.

The approach is due to Breu et al. [BGKW95], and it achieves linear time by com­

puting portions of the Voronoi diagram as it processes each row of the grid.

19

The task of distance map computation lends itself to parallel implementation.

Yamada presents a massively parallel algorithm for computing the EDM that uses

one processor for each background or feature point [YamS4j. He shows that parallel

propagation of distance map values can resolve the approximation errors that plague

sequential algorithms and that make correct computation of the EDM so difficult.

Just as the concept of distance extends to higher dimensions, the concept uf the

distance map is easily extended to three or more dimensions.’ The first three ap­

proaches to computing the distance map also generalize, though the particulars of

creating efficient algorithms are more intricate. It is unclear whether the fourth ap­

proach can be extended to three dimensions. Linear time computation of exact 3D

Euclidean distance maps is apparently still unresolved.

2.2 Medial Axis/Medial Surface

The medial axis (also called the symmetric axis) can be thought of as a sort of

branching geometric centerline of a 2D object. When the concept is applied to a 3D

object, the centerline can become a centralized surface, so the term medial surface

is used instead. More precisely, the medial axis (MA) of a 2D object is defined as

the locus of the centers of all maximal disks interior to the object that touch the

boundary of the object at two or more points. Figure 2.3 demonstrates this definition

as applied to the MA of a rectangle. In like manner, the medial surface (MS) of a

3D object is defined as the locus of the centers of all maximal spheres interior to the

object that touch the surface of the object a t two or more points. Figure 2.4 shows

■’.A.gain. see [Ros98] for a listing of relevant papers.

2 0

(b)

Figure 2.3: The medial axis of a rectangle. In (a), several maximal disks interior to
the rectangle are shown, along with their centers (marked with "x"). The centers are
points on the medial axis, which is shown in gray in (b).

Figure 2.4: The medial surface of a box. It consists of 13 sheets: four triangles and
eight trapezoids - each of which extends to a particular edge of the box - and one
centrally located rectangle. The visible edges of the box are drawm in black.

2 1

the MS of an elongated box. The concept of the medial axis and medial surface can

also be extended to higher dimensions.

Interestingly enough in the context of this research, the medial axis or medial

surface is often referred to in the literature as the geometric skeleton, or more simply,

as the skeleton. In order to avoid confusion with the control skeleton, though, only

the terms medial azcis and meilial smfcn_e will bt- used licie.^

Data structures for storing the .\I.\/M S are often equipped to hold additional

information - in particular, the radii of the maximal disks or spheres. The motivation

is simple: in conjuction with such radial information, the MA/MS can be used to

reconstruct the original object. This operation is termed the inverse transform, the

inverse distance transform, or the inverse medial axis/surface transform: an example

is shown in Figure 2.5. The power of the inverse transform and the simplistic but

representative structure of the M.T/MS has prompted many to argue for the use of

the MA/MS as an alternative shape representation (see the paper by Blanding et al.

[BBGS99] for an example of a solid model editing system based on altering the MS of

an object). O ther arenas for application of the MA/MS include pattern recognition,

robot navigation, and offset surface construction.

The MA/MS arises from the generalization of the Voronoi diagram. Whereas the

Voronoi diagram is usually defined for a set of points in a domain, dividing the domain

into regions according to the closest point of the set. the generalized Voronoi diagram

can be defined for sets of points, line segments, curves, polygons, surfaces, shapes,

or any combination thereof. The domain is thus divided into regions according to

the closest point, line segment, curve, and so forth. The MA/MS is a subset of the

■’The acronyms MA and MS will also be used, and when the discussion holds regardless of the
dimensionality, the acronjun MA/MS will be used.

99

0

0

(a) (b)

Figure 2.5: The inverse medial axis transform. In (a), the medial axis from Fig­
ure 2.3(b) is shown with radial information at endpoints and junction points (to be
linearly interpolated). From this representation, the original rectangle can be recon­
structed. In (b). several maximal disks have been reconstructed using the information
in (a), and their images have been merged (the centers of the disks are marked with
"x"). Reconstructing more disks will improve the approximation to the original rect­
angle: in the limit, the original rectangle will be obtained.

boundaries between the Voronoi regions. In the event that the defining components

of the generalized Voronoi diagram form a boundary for some 2D or 3D object, then

usually only the Voronoi regions interior to that boundary are considered. As an

example, the MA in Figure 2.3(b) can be seen as dividing the interior of the rectangle

into four regions according to which edge of the rectangle is closest to each interior

point. Similarly, in Figure 2.4, the MS can be viewed as dividing the interior of the

box into six regions corresponding to the six faces of the box: points in each region

have the same closest face.®

®Note that in both examples, the objects are convex, so the medial axis/surface uses all boundary
edges/surfaces between adjacent regions of the generalized Voronoi diagram. When concavities are
involved, some of the Voronoi boimdaries may not appear in the medial axis/surface.

23

The Delaunay triangulation (D T)' is the dual of the \b ronoi diagram. For a

\bronoi diagram and a DT defined on a common set of points, the structural com­

ponents correspond in a one-to-one fashion such that, for instance, each edge of the

2D \bronoi diagram (or each face in the 3D \bronoi diagram) has an associated

perpendicular edge in the DT.

Thp rriangles of the 2D DT (and the tctrahcdra of the 3D DT) have a special

property: for any particular triangle of the 2D DT (or any particular tetrahedron of

the 3D DT). the circumscribing disk (or sphere) does not contain any point of the set

in its interior. This property is typically the basis for algorithms for the construction

of the DT.

Because of the duality mentioned earlier, the construction of the DT is often used

as a stepping stone in the construction of the \bronoi diagram. This is especially true

for the 3D case. .A.Iso. methods used to construct the Voronoi diagram can sometimes

be modified to produce the MA/MS. Thus, it is not surprising to see algorithms for

the construction of the MA/MS based upon triangulation.

Kirkpatrick presents a medial axis algorithm based directly on the construction

of the 2D generalized Voronoi diagram [Kir79]. Gold discusses a method for MA

construction using both the Voronoi diagram and the DT [Gol99]. Some other 2D

constructions use algebraic techniques instead of triangulation [Boo79. \'R91]. For

the 3D case. Goldak et al. describe a method for medial surface approximation based

on constructing the DT of a discrete set of points scattered on the surface of an object

[GYKD91]. Sheehy et al. present a similar but more thorough construction technique

tha t uses a special type of DT known as the domain Delaunay triangulation ISAR95].

'In three dimensions, the DT is often referred to as the Delaunay tetrahedralization. For sim­
plicity, the term Delaunay triangulation (or DT) will be used for either the 2D or 3D case.

24

Other, more algebraic methods for generating the medial surface are due to Dutta

and Hoffmann [DH90] and to Sherbrooke et al. [SPB95] In a paper describing an

efficient way to represent a 3D object as a union of spheres. Amenta and Kolluri

[AKOO] show that the set of sphere centers of their approximation converges to the

MS of the object as the number of spheres used in the approximation increases.

2.2.1 Continuous versus Discrete Geometry

The previous discussion of the M .\/M S and the construction techniques just men­

tioned are given in the context of continuous geometry. In continuous geometry, the

object is defined using a continuous representation, usually as a polygon, polyhedron,

or some closed curve or surface: and the MA/MS is defined using curves, surfaces, or

continuous approximations to either (for example, polylines or polygonal meshes).

When the same ideas are applied in the realm of discrete geometnj (also called

digital geometry), there is more approximation involved. (For the purposes of this

research, discrete geometry will refer to applications on a regular, rectilinear grid

such as is formed by the integer points in a Cartesian coordinate system.) .An object

defined in a continuous space must be approximated as a set of discrete grid points (in

two dimensions, the object is said to have been pixelized. whereas in three dimensions,

the object is said to have been voxelized). The medial axis or medial surface of the

object must be approximated as well: typically it takes the form of a subset of the

pixels or voxels tha t comprise the discretized object. In this formulation, the MA or

MS is sometimes referred to as the discrete medial axis (DMA) or the discrete medial

surface (DMS). respectively.

25

Whereas the mathematical definition of the continuous MA or MS results in the

existence of a unique MA or MS for any given 2D or 3D object (respectively), approx­

imation methods vary for constructing the DMA or DMS. Since there is no precise

mathematical definition, there can be very noticeable differences between the DM.\s

or DMSs of the same object as constructed by different algorithms. Furthermore,

while the continuous MA/MS has the same topological structure as the continuous

object, the topological structure of a DM.A./DMS as constructed may be radically

different from that of the discrete object. Nevertheless, certain desirable properties

for DM.A.S or DMSs are suggested in the literature. The list that follows is based on

properties mentioned by Ge and Fitzpatrick [GF96] and by Staunton [Sta96]:

• Similar Topology: The DM.A./DMS should have the same basic connectivity,

or topology, as the object.

• C en te rin g : The DMA/DMS should be centered with respect to the boundary

of the object.

• Exact Reconstruction: The set of points generated by the inverse distance

transform - that is, by using the distance values at the points of the D.M.\

(or DMS) and plotting discrete disks (or spheres) with corresponding radii (see

Figure 2.5) - should be identical to the set of points of the original discretized

object.

• Rotational Invariance: The general appearance of the DMA/DMS should be

the same regardless of how the object might be rotated before being discretized.

• Immunity to Noise: Even in the presence of surface noise (defined as the

presence or absence of individual pixels or voxels near the boundary of the

26

_L

EIDOEIOOEIEIODEIEIEI
BODüEQElElQElElDDOODŒlIBiSIB Lj □□BOO om

ŒIEB

 ̂ z c z c : ̂ ^ ' = ^ i n :

_____________ z II :
--- :---------- L _ _ BD

:z mu :
OOOODDDEIBB EBB

ŒSBBBBBBBBBBŒSB IB
BIBIB IB IB ^IB
□IB OOBS
BIB _> i : _ BE
B B _ _ BB
BIB ! . I B B
□IB IBB B B

IBIB B B B
[Q B B B B B B B B B B B B B B

B B B B B B B B B B B B B
_ a

Figure 2.6: The discrete medial axis (DMA) of the object from Figure 2.1(a). The
DMA cells are drawn in black with white distance map values. This DMA exhibits
three desirable properties from the list on the previous page of the text: it has the same
topolog}' as the object, it is well-centered, and the presence of radial information (in
this case, the distance map value for each DMA cell) allows for an exart reconstruction
of the object via an inverse distance transform.

object), the DMA/DMS for an object should be ver\' close in appearance to the

DMA/DMS of the object without the surface noise.

Note that the last two items are actually desired properties of an algorithm for

producing a DMA/DMS, rather than desired properties of a specific DMA/DMS; of

course, the first three items would be desired in the output of such an algorithm.

Figure 2.6 shows a specific example of a DM.A. that possesses the first three charac­

teristics.

Note that there is another characteristic that is sometimes sought: th in n ess .

Sometimes it is desirable to have a DMA/DMS that is as thin as possible, having

only the bare bones required to be in topological agreement with the original object

and thus providing the most concise description of the object. The goal of thinness,

however, almost always conflicts with the goal of exact reconstruction, and it can

occasionally undermine the goals of centering and rotational invariance in subtle

ways. In order to present a coherent list of desirable qualities, thinness has been left

A i i t n f f h n l i c t

Closely related to the DMA and DMS and to the goal of thinness is the topic-

known as thinning. Thinning refers to the process of removing pixels or voxels from a

discretized object in an attem pt to whittle the object down in topological fashion to a

more simple representation consisting of connected, unit-width pathways of pixels or

voxels. In three dimensions, the simplified representation may also include unit-width

surfaces of voxels. The pathways and surfaces of the simplified structure typically

have a centralized location with respect to the corresponding part of the object. The

main focus of thinning algorithms is the preservation of topolog}-. with the primary

purpose being to aid in the identification of basic structure. In application, thinning

algorithms are frequently used in fields such as medical imaging in order to visualize

networks of blood vessels or branching patterns of air passageways in the lungs.

Thinning algorithms often make use of information from a distance map of the

object to be thinned. Such a distance map can aid in the gradual, even thinning of the

object: however, the use of the distance map is not absolutely necessary. Depending on

how well distance information is used, the result of the thinning process can be a fairly

close approximation to a DMA or DMS of the object. Not surprisingly, thinning is a

fairly common technique for computing the DMA or DMS. Lee. Kashyap. and Chu.

for example, present a parallel algorithm for constructing the DMS of a discretized

2 8

object, employing several concepts from digital topology [LKC94], Their algorithm

uses specially constructed tables for preserving the Euler characteristic of a discrete

3D object as it is thinned, .\fter finding the DMS. the algorithm can be reapplied

to the DMS in order to find the DM.A. of the DMS itself. Lee et al. call this DM.A

the medial a.\is of the 3D object, though the use of the term medial iuxis (or discrete

m Ari i I t o r o f o r t o t l i o t 5 i m n l i f i r * * > t i o n o f t l i o m o r U o l v’nr*f*>f‘o # nr) i n I

surface) of an object does not appear to be standard terminology.

For a presentation of thinning algorithms as applied to hexagonal grids, see

Staunton [Sta96]. .Along with their work in designing a solid model editing sys­

tem around modihcation of the MS of an object. Blanding et al. [BBGS99] provide a

comparison between Delaunay-based methods and thinning methods for medial sur­

face construction, weighing such issues tis etise of implementation, execution speed,

and memory usage. Rosenfeld [Ros98] provides a list of over 160 papers dealing with

thinning of 2D and 3D objects, and he also lists numerous papers specifically geared

toward DM.A or DMS construction: note, however, tha t the vast majority of these

papers deal with the problem in two dimensions.

.Another approach frequently used to construct the DM.A or DMS is the direct

extraction of the DM.A or DMS from the (Euclidean) distance map of the object. The

2D distance map can be interpreted as a height field and viewed as a 3D landscape:

the ridges of the landscape represent branches of the DM.A. Thus, extracting the

DM.A (or DMS) from a 2D (or 3D) distance map amounts to finding and following

the ridges implied within the map: the main difficulty comes in handling saddle points

along the ridges. Figure 2.7 shows the distance map from Figure 2.1(a) viewed as a

landscape.

29

Figure 2.7: The distance map from Figure 2.1(a) viewed as a height field iu three
dimensions. The center point of each cell in Figure 2.1(a) has been raised to a height
equal to its (unsquared) Euclidean distance: black lines connect the raised center
points. Compare the ridges of the resulting landscape with the discrete medial axis
shown in Figure 2.6.

In implementing the extraction approach, some sort of filtering is performed, either

on a local or a global scale, in order to identify points that are the centers of maximal

disks (in two dimensions) or spheres (in three dimensions). In effect, these maximal

center points dot the ridges of the distance map. .Additional, intermediate points are

typically added in order to link the maximal center points, completing the ridges and

forming a connected DMA/DMS for the object. In this context, Danielsson proposes

an easy extension to a raster scanning implementation of a 2D distance map algorithm

th a t utilizes a simple 3 x 3 filter for identifying points of the DMA [DanSOj.

30

Ge and Fitzpatrick take the approach a step further [GF96]. After constructing

the 2D Euclidean distance map. they take each locally maximal center as detected

by Danielsson's algorithm and perform a gradient-based search to weed out center

points according to whether the corresponding discrete disk is contained in any other

discrete disk implied by the distance map. In the process, saddle points are identified.

The remaining centers, which are the true centers uf maxinial disk» (CMDs) as uuuld

be found by global filtering, are then connected by paths of points generated from

steepest ascent searches from the CMDs and saddle points. Their results are very

good, and their algorithm and the DMAs it generates exhibit the first four of the

desirable properties mentioned on page 26. The extension of their algorithm to three

dimensions, however, is problematic due to the difficulties in defining and identifying

saddle points in the 3D Euclidean distance map.

Perhaps the most interesting work in the context of 2D DMAs is tha t of Og-

niewicz and Kiibler [OK95]. Their approach is a hybrid combining ideas from both

continuous and digital geometry. From the boundary points of a discrete 2D object, a

Voronoi diagram is constructed. The boundary edges of the Vbronoi diagram are then

intersected with the discrete object to form the DMA. Ogniewicz and Kiibler define

various measures of importance of DM.A. points, depending on the size of the point's

corresponding disk and how important the point is for the connection of the DMA.

Measurements are computed automatically and assigned to the points of the DMA:

these same measurements are used to decompose the DMA into a layered structure -

a hierarchical DMA. .A range of threshold values can be applied to the hierarchical

DM.A in order to realize a specific DM.A at a particular level of detail. A high thresh­

old will result in a very simple DM.A that relates to the basic overall structure of the

31

object; a low threshold will result in a more detailed DMA that corresponds better to

all of the protrusions and intrusions of the object's boundary. In a further paper by

Ogniewicz. an algorithm is demonstrated whereby a good, representative threshold

can be calculated automatically, thus allowing for autom atic pruning of the DMA

[Ggn95]. In the paper, several examples are shown which illustrate the effectiveness

of the technique in automatically generating a specific DM.V at a level of detail ap­

propriate to the object as a whole. It is certainly possible that a similar approach

could be taken for 3D objects and that the same benefits would be seen: however,

none of the importance meiisures defined in the first paper has a clear and obvious

extension when applied to a 3D object.

2.3 Control Skeleton Generation

.As noted at the beginning of Chapter 1. a control skeleton is a fundamental

component of an articulated figure and includes a hierarchical structure of segments

and bones together with information detailing how the surface geometry, or skin, of

the figure is connected to that structure. This section will describe various commercial

and non-commercial systems or methods that can aid a user in the steps involved in

constructing a control skeleton for a given model.

2.3.1 Commercial Products

Several commercially available modeling and anim ation packages include support

for working with articulated figures and their control skeletons. For the most part,

control skeleton creation within these packages is a manual task performed via the

user interface, though certain features are often provided as convenience routines to

help speed up the process. .A complete discussion of the control skeleton related

32

aspects of commercial software is beyond the scope of this dissertation: the following

paragraphs merely serve to present the reader with a basic understanding of the

skeletal apparatus in each of a few well-known packages and to highlight some of the

special convenience tools they contain.

Maya®

Maya is a very popular modeling and animation package, and character animation

is only a small arena of its possible applications.^ Facilities in Maya allow a user

to build a control skeleton for an object by modeling individual segments (termed

"bones" within Maya) and joints as part of a connected hierarchy [Tea98. Tea99|.

Each joint possesses three rotational degrees of freedom about a set of orthogonal

axes, though joint parameters can be set to limit movement about any of the three

axes. .A. segment acts as a spacer between the two joints it connects and indicates

which of the two joints is the parent (that is. which joint is the closer of the two to

the root joint). The interface also provides numerous means for creating skeletons,

such as for creating chains of joints and segments by specifying a set of points, for

inserting or removing joints within a skeleton, for splitting a skeleton into two by

disconnecting it at a particular joint, for merging two skeletons into one. and for

changing the direction of the hierarchy by specifying a different joint to be the new

root joint. .A feature called "mirroring” allows a user to duplicate a portion of the

skeleton, possibly to make a reflected copy - this is especially useful for creating

symmetric skeletons, for example, allowing a user to build a skeletal subhierarchy for

the left arm of a character which is then automatically mirrored and duplicated to

^Maya is a registered trademark of Silicon Graphics. Inc.. and exclusively used by
.Alias[Wavefront, a division of Silicon Graphics Limited.

33

create a skeletal subhierarchy for the right arm. O ther features allow for the autom atic

setting of certain joint parameters, such as having the program guess Joint limits or

orient joint axes either to align with the world axes or instead to align relative to

each joint's first child joint.

Attaching a figure's surface geometry to the skeleton is known as "skinning" in

Maya. user may invoke Maya's myriad sele-ction tools to choose the points defining

a portion of the object and then bind those points to specific bones/joints of the skele­

ton. .Alternatively, each point can be bound autom atically to the closest bono/joint,

though a user may have to re-bind points that are grouped incorrectly. Maya offers

two btisic methods of skin binding: rigid skinning and smooth skinning. Under rigid

skinning, each point is bound to only one bone/joint: under smooth skinning, each

point may bo bound to multiple bones/joints, with the influence of each bone/joint

determined by sets of weights. Whereas the weighted influencing of bones/joints in

smooth skinning allows for automatic flexing and deforming of the skin around joints,

such effects are not possible under rigid skinning without the use of additional tools

such as "flexors" or "deformers". Flexors, which are used only with rigid skinning, are

free-form deformation (FFD) tools that allow for smoothing, rounding, and creasing

of the skin surface around a bending joint. Deformers, of which there are several

varieties, can be used with either skinning method and provide more options for skin

deformation. Wrinkle-formation and muscle bulging effects, for example, are often

performed through the use of deformers. Posing or animating the skeleton can be

accomplished through the use of forward or inverse kinematics toolkits. For more

information regarding Maya, see the references [Tea98. Tea99. HKGLOO. \'SCOO].

34

3D Studio MAX®

Another popular modeling and animation package is 3D Studio MAX.'^ In addition

to having several other graphics tools, this package presents a reasonable interface for

creating control skeletons and attaching surface points of the object to the control

skeleton. Many people who use 3D Studio M.AX for character animation, however,

choose to use a special plug-in for the package called Character Studio®.

Character Studio provides a more advanced interface for creating control skeletons

[DisOO]. It consists primarily of two components: Biped® and Physique®. Biped is

specially geared towards modeling and animating two-legged characters. It contains

an interface to allow quick creation of a skeleton structure consisting of segments

and joints. The interface acts as a template of sorts for producing bipedal skele­

tons. containing boxes that a user can check to generate various additional parts of

the structure (such as a skeletal chain for a tail) or to specify how many joints and

segments should be used in a particular limb. Biped will automatically produce a

generically-posed skeleton structure conforming to the user's requests. The structure

has the additional advantages that values for various segment and joint parameters

have been defined in meaningful ways for a humanoid skeleton, and miscellaneous

additional aids such as inverse kinematic chains have been produced to help in the

animation of the skeleton. Not everything is done automatically, however. The user

must still reposition the generically-posed skeleton so that the joints and segments

align with the figure the user is trying to animate. Also, the user must use other parts

®3D Studio MAX is a registered trademark of .\iitoDesk. Inc. Character Studio is made by
Discreet, a division of .\utoDesk. Inc. Character Studio. Biped, and Physique are all registered
trademarks of the company.

35

of the interface to anchor the geometry of the figure to the skeleton structure. Never­

theless. Biped does streamline the process of generating articulated, bipedal figures.

In addition. Biped provides a sophisticated system for animating the locomotion of

the figure by allowing a user to specify footprints for the movement and also for han­

dling dynamically realistic motion of the figure, not to mention facilities for importing

ÎuOliûu Capture u c i t a . A u O t u c r fêatUiè culovcS ciUiiilciLiOU SC^UdiCeS u c S i ^ î i è u fo l ' o i i t r

figure created in Biped to be mapped to another figure created in Biped, effectively

separating the animation from the figure and making it reusable.

Physique is the other main part of Character Studio. It contains the tools that

allow a user to attach the surface geometry to the skeletal structure. In addition,

it provides means for producing muscle bulging effects, including the apparent ac­

tion of tendons, based on the bending of the skeleton. .A. user may even define the

profile at various points along a muscle for more control of the details. Tools for

other skin altering effects such as creasing and vein deformations are also present in

Physique. More information on 3D Studio .M.A.X and Character Studio is available at

the company’s web site [DisOO] or in books such as [.IBD'OO].

Poser

•A. product specifically designed for the purposes of modeling, posing, and rendering

articulated characters is Poser. Poser provides libraries of predesigned characters,

complete with surface geometry, shading information, and control skeletons [FS99].

It also contains libraries for various props, shading models, and lighting models tha t

can be used during scene design and construction. If a user is satisfied with one of

“̂MetaCreations Poser™ had been a trademark of MetaCreations Corporation, the former owner
of Poser. In .April 2000, Poser was purchased from MetaCreations by a company named egi.sys and
is now a product of Curious Labs, an egi.sys company [EgiOO. CurOO].

36

the predesigned characters, he or she may proceed straight to the task of posing the

character or creating anim ation sequences for the character. Poser even possesses a

library of some common anim ation sequences (walk cycles, for instance) that a user

can apply to a character. Custom design of a character is more cumbersome. .A. user

can either modify one of the predesigned characters or can import some geometry for

a figure from an external source. If the geometry is impui tcd. thmi the uaei must wuik

systematically with Poser's Hierarchy Editor in order to set up a control skeleton for

the figure, specifying which parts of the geometry are parents of which other parts,

specifying how the geometry should be deformed when the skeleton moves, and setting

various parameters to ensure that the joints are placed and oriented appropriately. If

various parts of the geometry are named according to a standard used by Poser, then

part of the process can be performed automatically during importation: nonetheless,

much is still required on the part of the user. In fact, if a user wants to take advantage

of certain animation tools provided by Poser, then the geometry must adhere to

Poser's standard naming convention. Poser can propel a possibly novice user into the

world of articulated character manipulation, but it seems best suited for users who

are willing to work with libraries of predesigned characters. For more information on

Poser, see [MorOO].

2.3.2 Control Skeleton Research

As exemplified during the discussion of commercially available software, several

steps have been taken to autom ate a few of the more mechanical tasks involved in

creating a control skeleton for a given object. Still, some research has been done

which has yet to be incorporated into commercial packages.

37

Perhaps the earliest work on autom atic skeleton generation is that of Tsao and

Fu [TF84]. Their method operates entirely in the domain of discrete geometry. It

begins with a 2D or 3D bitmap representing the object, upon which they perform

a distance transformation that yields an approximation to the Euclidean distance

map. The distance map is then processed using a local filtering method to iden­

tify individual puinla of the discre te m ed ia l cLxis or surface. These scattered DM.A.

or DMS points are preserved in a subsequent thinning operation which results in a

connected DM .\/DM S. The DMA/DMS is then converted into a graph whose ver­

tices are the DM.A./DMS points and whose edges indicate adjacent pairs of those

DM.A./DMS points. Once formed, the graph can be randomly manipulated through

vertex modification, insertion, and deletion. During modification, the vertices of the

graph may move to other grid points so long as the adjacency relationships are main­

tained. The vertex modification routines thus permit the bending and repositioning

of the DM.A./D.\IS within the confines of a Cartesian grid. Since distance map values

are stored for each vertex of the graph, an inverse distance transform can then be

used to construct a new bitmapped representation of the object that corresponds to

the modified DM.A./DMS.

In effect, the graph in Tsao and Fu s program functions as the control skeleton for

the original bitmapped object, with the graph vertices being the joints and the graph

edges being the segments (though Tsao and Fu themselves never use the terms joint

or segment). In fact, it is not clear tha t Tsao and Fu ever think of their modeling

technique in the context of creating an anim atable articulated figure: nowhere do they

mention anim ating the graph or the object. .Apparently, they only intend for their

system to be used to create random but similar objects based on simple repositioning

38

of the skeleton graph. Xote also that their graph has two basic differences from

the control skeleton as presented in Chapter i. First, the control skeleton segments

(the graph edges) are not rigid. Their lengths are the distances between neighboring

voxels, and these lengths can change, such as when two diagonally adjacent vertices

are repositioned to be orthogonally adjacent. This means that the skeleton joints (the

graph vertices) are nut necessarily fixed in the local courdlnare space uf rhe skeleton

segments. Second, the boundary of the object is not preserved. Instead of being

attached to the control skeleton in some fashion, it is completely re-created during the

inverse distance transformation. This fact, combined with the simplicity of the graph

modifications, causes many of the resulting reconstructions of their example objects

to have a somewhat blobbv appearance. Hard edges and sharp convex or concave

corners of the original boundary are almost always rounded over in the randomly

posed instances. Perhaps this is why Tsao and Fu comment that their method might

work best for stochastic modeling of natural objects such as clouds and trees.

Tsao and F us research dates back to 1984. Recently there have been other efforts

to provide tools that autom ate parts of the control skeleton creation process.

A method somewhat similar to tha t of Tsao and Fu is one by Gag\ani. Kencham-

mana-Hosekote, and Silver [GKHS98]. It also operates entirely in the discrete domain

and contains steps to compute a distance map and a discrete medial surface for an

object. The distance map is constructed using a quasi-Euclidean 3-4-5 distance metric

(this is a specific type of chamfer metric which is named according to the initial

distance values assigned to boundary voxels: use of this metric results in a distance

map that has properties similar to those of the Euclidean distance map, hence the term

“quasi-Euclidean"). After the distance map is constructed, a local filter is applied to

39

each of its voxels to identify DMS points. A "thinness" param eter may be supplied

by a user to influence the thickness and connectedness of the DMS - a lower value

results in better connectivity but a thicker DMS; a higher value results in a thinner

DMS with poorer connectivity. The DMS is converted into a fully-connected graph

with one vertex for each DMS point. Each edge is assigned a weight according to its

length and to the difference between the distance map values uf the twu DMS puinla

it connects. Based upon these edge weights, a minimum spanning tree is constructed.

Here again, a user may specify a "connectivity" parameter that indirectly influences

the resulting spanning tree by changing the calculation of the edge weights. The

authors of the paper suggest that the spanning tree can be converted into a control

skeleton by marking certain vertices as joints and using those joints to divide the

tree into sections: each section of unmarked vertices and edges would form a rigid

segment of the control skeleton. No details are provided as to how joint vertices

might be marked as such, and only very simple examples are provided showing any

articulation of the spanning tree control skeleton, with each example demonstrating

only a single joint. .A.s with Tsao and Fu s method, the inverse distance transform is

used to generate new voxelized instances of the object for various poses of the control

skeleton.

Gagvani and Silver have also implemented their method as a plug-in for Maya

[GS99]. This plug-in can be used to convert the spanning tree into a control skeleton

in Maya's internal format; however, simple, straightforward conversion with each

DMS point being used to form a joint usually results in a control skeleton tha t is

entirely too complex. Instead. G ag\ani and Silver suggest tha t a user merely view

the discrete medial surface while manually constructing a control skeleton whose

40

segments run along stretches of medial surface voxels. They show how the animation

of the control skeleton within Maya can be exported and used to drive the animation

of the voxelized figure.

Teichmann and Teller have presented a system for assisting in the generation

of control skeletons [TT98]. Given a closed polyhedral model, their algorithm first

LomputcS a 'vOiullui dictglaiii fur actiuple puinta un the aurface uf the pulyhedrun. T h is

set of sample points must be sufficiently dense in order to ensure that the \bronoi

vertices interior to the polyhedron lie approximately on its medial surface. The user

then selects \'oronoi vertices tha t should be endpoints of branches of the control

skeleton, and the Voronoi graph (that is. the graph made from the vertices and edges

of the Voronoi diagram) is simplihed in order to produce a spanning tree whose

leaf nodes are those Voronoi vertices the user has .selected. The \bronoi graph is not

necessarily connected, and only the largest connected component of the Vbronoi graph

is simplified; any other components are ignored. Next, the user specifies nodes of the

spanning tree as points of articulation: these nodes become the joints of the control

skeleton. The user is also provided with tools tha t allow manual reorientation of the

coordinate frame for each Joint. Segments of the control skeleton are constructed by

simplifying portions of the spanning tree lying between joints and/or endpoints; thus,

each segment corresponds to a chain of spanning tree vertices.

A sophisticated network of springs is created for the purpose of attaching the

polyhedral model to the control skeleton structure. To achieve this, a 3D Delaunay

triangulation is performed on the combined set of polyhedron vertices and spanning

tree vertices. Edges of the tetrahedra formed are examined, and any edge connecting

a polyhedron vertex to a spanning tree vertex is converted into a spring. If any

41

polyhedron vertex is not adjacent to any such edge, then a spring is created to attach

it to the closest spanning tree vertex. Each edge of the polyhedron is also converted

into a spring. Thus, the polyhedral edges form a network of springs that is connected

to the control skeleton using additional springs. When the control skeleton is posed,

the vertices of the spring network are first repositioned along with their corresponding

LuiiLiul s e g m e n ts , a simuIaLiuu is then p etfu i in ed to a l low the network o f sp r in g s to

reach a stable configuration. .\ t that point, the vertex positions can be used to redraw

the surface polygons. Teichmann and Teller include a table of results in their paper

indicating that the time required to create a control skeleton using their system ranges

from about 13 minutes to 6 hours, depending on the complexity of the polyhedral

model. They also mention tha t models consisting of large numbers of polygons should

probably be simplified beforehand. The original model may be used for animation

once the control skeleton has been generated, but Teichmann and Teller do not state

how the spring network, as constructed for the simplified model, should be extended

to work with the original, complex model.

In a method proposed by Bloomenthal and Lim. a control skeleton for an object

is automatically produced from the medial surface of an object [BL99]. First, the

medial surface itself is automatically produced using an implicit method Bloomenthal

and Lim have developed based upon examining how the direction to the nearest

surface point changes as a point of examination is moved within the object - large

or obvious changes in the direction signal the presence of the medial surface. For

each point in a grid of sample points, the direction to the nearest surface point

is computed. .-Adaptive subdivision is employed along grid edges whose endpoints

have substantially different directions (as determined using a threshold parameter).

42

The medial surface is constructed as a polygonal mesh of the points resulting from

the subdivision processes. .Additional information is stored with the mesh as to the

distance from the mesh points to the surface of the object. The control skeleton

structure can be derived automatically from the medial surface mesh, though no

details are provided as to how this is accomplished. The points of the medial surface

l ucal i t l i c LUeli c t u c u u t e d Lu Luc cul iLtul akelcLuU a t l U c L u i c . L a i u g Liic cui iLiul skc l eLu u

to reform the surface of the object involves a two-step process: first, the control

skeleton is used to modify the position of the medial surface mesh: then, an inverse

distance transformation is applied to the mesh in order to reconstruct the surface. The

reconstructed surface is thus defined implicitly but approximated using a polygonal

mesh. Note that here, as with Tsao and Fu s method (see page 38). the original

surface is not preserved: rather, the surface is completely reconstructed for each new

pose - such is typical of the use of the inverse distance transform, whether in the

discrete case or the continuous case.

Few details are provided by Bloomenthal and Lim with respect to the construction

of the control skeleton, the quality of the results, or the time required to execute the

algorithm. Their method appears to restrict the input object to be a single, closed

surface. Also, implicit methods typically require more computation time than non-

implicit methods. Bloomenthal and Lim apparently plan to release a commercial

version of their algorithm in a product called Actionizer.

Stalpers and van Overveld also use an underlying polygonal mesh in connection

with the control skeleton [Sv097]. Their method focuses on the problem of attaching

the surface of the object to the control skeleton. It starts with two pieces of input: a

closed polygonal surface model for the object, and a polygonal mesh representing the

43

structure of the control skeleton - in reality, the polygonal mesh is itself anchored to

an articulated structure consisting of a hierarchy of hinge joints. A dual-connectivity

search is performed, examining vertices of the surface mesh in conjuction with those

of the skeleton mesh and determining a mapping of the one set to the other. The

mapping is constructed according to the vertex-polygon adjacencies of the surface

mesh and the skeleton mesh. Two surface vertices adjacent to the same surface

polygon are mapped either to a single skeleton mesh vertex or to two skeleton mesh

vertices that themselves are adjacent to a shared skeleton mesh polygon. In order

for there to be an effective mapping. Stalpers and van Overveld mention that the

skeleton mesh should resemble the surface mesh in its general structure. Once the

mapping is completed, it is used to construct a weighted anchoring of surface mesh

vertices to skeleton mesh vertices. In order to prevent undesired surface creases from

forming during deformation of the skeleton mesh, additional hinge normal vectors

can be computed and integrated into the weight averages. Unlike Bloomenthal and

Lim’s approach. Stalpers and van Overveld's method preserves the surface mesh of

the object but deforms it based on the positioning of the skeleton mesh, which itself

is deformed and posed via the specification of the hinge joint angles for the control

skeleton. The authors of the paper recommend that the hinge jo in t axes of the control

skeleton should be aligned with the shared edges of the skeleton mesh, noting that

otherwise, non-planar skeleton mesh polygons can adversely affect the shape of the

deformed surface. They also recommend the alternative use of free-form deformation

(FFD) methods for relatively spherical objects, where a polygonal skeleton mesh may

not adequately correspond to the basic structure of the surface mesh, or the use

44

of other skeleton-skin attachm ent schemes in the event that hinge joints alone are

insufficient for the motion of the control skeleton.

A concept potentially useful for automated control skeleton generation is that of

level set diagrams as applied to polyhedral objects, such as in the work of Lazarus and

\ erroust [L\'99]. In their work, the construction of the level set diagram (LSD) begins

by selecting a source vertex of the object and. for each other vertex, computing the

shortest distance along surface edges to the source vertex. The field of distance values

at surface vertices becomes the domain for the generation of isocontours of particular

distance values. Through analysis of the isocontours on either side of vertices with

local maximum values (at which point the topology of the isocontour set may change),

a tree-shaped structure can be generated whose root is the source vertex and whose

branching points and leaves are local maximum vertices. This structure approximates

the branching shape of the object's interior by viewing only the boundary’ of the

object. .A.S such, it is a fairly rough approximation that may or may not correspond

well with the medial surface (although contour centers can be used to centralize the

limbs of the tree, the branching points of the tree lie on the surface of the object

and thus not on the medial surface). Nevertheless, the construction does offer some

possibilities for control skeleton generation: it provides a one-dimensional branching

structure with possible articulation points (that is. the branching points): and the

surface polygons, by virtue of the distance values at their vertices and their use in

the generation of isocontours, can be readily divided into sets corresponding to the

limbs of the tree, leading to a fairly straightforward anchoring of surface to skeleton.

45

2.4 Anatomically Based Modeling and Animation

Anatomically based modeling and animation can be described as modeling and

animation whose goal is a close and apparent similarity to anatomical shape and

movement of that shape, especially with regard to outward appearance of the skin,

and possibly with regard to the simulation of underlying anatomical forms. Work in

anatomically based modeling and animation is driven by people’s desire for increased

levels of realism in computer graphics. This realism with respect to the way characters

should look or behave may be motivated by such goals as the demand for more

immersive virtual worlds similar to our own. the quest for seandess integration of

digitally created characters into real-life photography and cinema, or the need for

better modeling and simulation for purposes of medical research such as in the areas

of biomechanics and ergonomics or visualization of surgical planning. W hatever the

motivation, anatomically bcised modeling and animation appears in various forms,

and the topic has been a growing focus of graphics research for some time.

Because human and animal anatomy are subject to the laws of physics, physically

based modeling as applied to character anim ation can be viewed as an extension

of anatomically based modeling and anim ation within a simulated physical world.

Physically based modeling contributes in two basic manners to anatomical modeling

and animation. The first is the application of simulated dynamics to articulated

figures, as exemplified by the works of Armstrong and Green. Wilhelms. Forsey and

Wilhelms, and the Gascuels [AG85, W1187, FW88, GG94]. The second is the role of

simulated dynamics in the modeling and anim ation of anatomical components, such

as with spring-mass systems used to attach the surface to the skeleton for the purpose

46

of modeling fatty tissue or the integumentary system. Some examples of this role will

be noted in the works described in the remainder of this section.

Early research in articulated figure modeling involves two basic layers: skeleton

and skin. The skeleton is the articulated structure of segments and joints and is the

layer controlled by the animator. The skin represents the object to be animated.

i t io t V p icc ti i V ci g , t ,o ii ic t t it, ai i i icict. vvicippt.tj. cliwiiiiLi Liie u i t i c u i c t t c u j^rtUiCLtvii.

with the skeleton as the structure is moving. Occasionally a third layer is mentioned,

consisting of a behavioral model used to drive the animation of the skeleton. This

third layer, which might also involve dynamic simulation or inverse kinematics for

positioning the figure, has the effect of further distancing the animator from the

shaping of the skin as the figure moves.

Chadwick. Haumann. and Parent were apparently the first to incorporate an ad­

ditional anatomical layer into articulated figure creation and animation [CHF89].

Pioneering a more advanced notion of layered construction, they insert a muscle and

fatty tissue layer between the layers of skeleton and skin. This muscle and fatty tissue

layer allows for such interesting deformations as muscle bulging and secondary motion

effects on the skin, like the swinging of fatty deposits. The foundation for this middle

layer is provided by FFD lattices in which the points of the skin are embedded. For

the muscle model, the control points of the FFD lattice are repositioned based upon

the angles of corresponding joints so that the skin appears to be affected by an under­

lying muscle which can be flexed or extended. For the fatty tissue, the control points

of the FFD lattice become mass points of a spring-mass system, some of which are

rigidly attached to segments of the skeleton. The motion of the spring-mass system

47

is dynamically simulated based on the kinematic movement of the skeleton and the

dynamic movement of the mobile mass points from frame to frame.

Chen and Zeltzer have created a finite element model of a muscle [CZ92|. In their

implementation, a muscle is modeled as a polyhedral mesh comprised of multi-node

finite elements together with spring-like generators imparting both active and passive

forces on the model. Although they do not attend to the problem of skin attachment

to the muscle, they do provide a model that is both biomechanically accurate and

well suited for realistic graphical display.

Laser scanning of humans, which typically has the purpose of creating more re­

alistic skin geometry for human data models, also falls in the realm of anatomically

based modeling. Related research that takes this scanning concept even further is

due to Kakadiaris and Metaxas [K.\19.5]. In their work, which employs image process­

ing techniques using multiple camera views, the goal is to construct an articulated

data model for the human subject. The human is taken through a scripted set of

poses that allow for automatic identification of body parts from the appearance and

disappearance of limb silhouettes in the images. In addition, automatic segmentation

of flexed limb silhouettes is performed and checked for frame-to-frame coherence in

order to identify joint locations for the figure. In this way, a segmented model of a

human subject is constructed. The surface constructed for each limb section appears

to be rigidly attached to the corresponding segment of the control skeleton: special

skin deformation around flexed joints is not performed, though that appears not to

be a goal of their research.

Much research in modeling and animating virtual humans has been done under the

direction of Norman Badler in the Center for Human Modeling and Simulation at the

48

University of Pennsylvania [BPW93]. The hub of this research is a software package

known as Jack.^‘ Jack provides an interface for human modeling and animation

suited for such diverse purposes as ergonomics research, applications involving inverse

kinematics, and goal-directed behavioral simulation of virtual humans. ,A.s input for

dynamics simulations on human models. Jack's Spreadsheet .\nthropomorphic Scaling

System permits the specification of anthropometric parameters such as segment mass,

segment dimensions, joint type, and Joint limits. .Animation of a human model in

Jack involves scripting or simulating movement of its control skeleton [.\BH'^94|.

The surface of the model is deformed based on FFD meshes whose control points are

anchored to the skeleton, though it appears the FFD meshes are used primarily for

the continuity of skin across multiple skeleton segments and not for the simulated

appearance of muscle effects.

Various work in the modeling and animation of anatomical components has been

spearheaded by Jane Wilhelms at the University of California. Santa Cruz. Starting

with a tree-structured skeleton. Wilhelms shows how various anatomical layers can

be constructed for modeling animals [W1194. W1197]. Bones and muscles are modeled

as combinations of ellipsoids. ‘‘Stuffing" - meant to represent soft tissue and useful

for adding features such as the nose and ears - is also modeled using ellipsoids. Bones

(which for the most part are elongated ellipsoids with spherical knobs a t each end)

are rigidly anchored to corresponding segments of the skeleton. The same is true of

the ellipsoids used for stuffing. Each muscle is a scalable combination of three linearly

arranged ellipsoids, with the outer two representing tendons. The linear arrangement

“ Jack is a registered trademark. Originally developed at the University of Pennsylvania, Jack was
acquired in 1996 by Transom Technologies. Inc.. which was itself acquired by Engineering .Animation,
Inc. (E .\I) in 1998 and is currently part of the Digital Human Group of E.AI. The softw-are is now
available commercially under the trade name Transom Jack [TraOO. EngOO].

49

spans from a point of origin on one segment to a point of insertion on a distal seg­

ment. After the control skeleton is has been posed, each muscle model is rescaled to

fit between its transformed points of origin and insertion. Since the transformation

is designed to preserve the volume occupied by the model, the model will appear to

bulge or stretch appropriately. For these intermediate layers, a user has the option of

starting with a default configuration before making modifications or spcLifyiug addi­

tional bones, muscles, and stuffing. .A. polygonal mesh skin is automatically generated

to cover the anatomical components. First, the entire set of ellipsoidal component

models is voxelized: then, repeated filtering is applied to blur the voxelization: finally,

a marching cubes algorithm is employed to generate a polygonal mesh for an Isosur-

face of the voxel grid. This resulting mesh contains the set of ellipsoids while also

allowing a small gap between itself and the components. Each point of the skin mesh

is anchored to the closest underlying ellipsoid. When animated, vertices of the skin

mesh are initially situated after their corresponding ellipsoids are positioned: then the

vertices of the mesh are repositioned during a spring based simulation tha t allows the

mesh to approach an equilibrium. .A, user may change the anchoring of the skin for

different portions of the figure, producing a larger or smaller gap between anatomy

and skin: in addition, a user may change spring constants for the skin mesh to change

the apparent flexibility of the skin model.

In work with Van Gelder, Wilhelms has improved the muscle model [WG97].

Instead of three linearly arranged ellipsoids, a muscle and its tendons are modeled

as a single, generalized, deformable cylindrical mesh with an elliptical cross section.

W ith two origin points and two insertion points, the mesh allows for a wider spectrum

of muscles, including broad muscles as in the chest or the back: furthermore, a pivot

50

point allows the mesh to be bent, such as when a tendon of one of the quadriceps bends

over the front of the knee. During animation, the length of the mesh is computed

based upon the kinematic positioning of the two bones to which it is attached, and

this length is used to scale the thickness and width of the mesh for approximate

volume preservation. In an interesting twist to the skin surface creation, parts of an

a n im a l m o d e l su ch as the hands a n d feet can be Lem purarily sca led up b efore sk in

generation in order to generate larger number of polygons in highly flexible regions.

.A.S an example of the complexity of modeling an entire animal this way. a monkey

is modeled from a hierarchy of 85 skeletal segments, with layers of 156 bones. 52

muscles, and 52 generalized tissue components. The skin generated for the monkey

model has about 75.000 vertices and 150.000 triangles; nevertheless, the system is

capable of interactive speeds when a user is working with the model.

O ther work at the University of California. Santa Cruz, has been geared toward

hybrid modeling. Instead of the autom atic generation of a skin mesh for an anatom ­

ically modeled animal, the work of Schneider and Wilhelms involves starting with

a skin mesh and constructing the underlying anatomical components to fill in the

volume of the figure [SW98]. This approach provides the benefit of working with

existing polygon mesh models (which typically have fewer polygons than the auto­

matically generated skin meshes); however, the authors note that manual placement

of underlying component models is a tedious process, even though they can start

with an existing set of component models for a similar animal figure and make mod­

ifications. Lapierre and Wilhelms have taken several steps to speed up the process,

adding various features to the interface for helping to match an underlying animal

anatom y model with a predefined polygonal skin mesh [LW99. Lap99]. Lapierre has

51

demonstrated the effective use of super segments, which are groupings of the anatomy

hierarchy into connected chains (such as a hind leg) that can be conveniently rescaled

or repositioned using such techniques as the application of inverse kinematics to the

super segment applied after the user has moved the end-effector for the chain.

Turner and Gobbetti have developed an interactive system for constructing and

animating layered deformable eharaeters [TGOS], user may create a character

within the system by building successive layers representing the control skeleton,

bones and muscles, and fatty tissue and skin. The system provides a virtual environ­

ment with interactive tools, and users don head-mounted stereo displays and operate

3D input devices while creating layered figures and producing keyframed animation

of those figures.

With the goal of providing more visual realism. Scheepers et al. have modeled mus­

culature in more detail [Sch96. SPCM97]. From thorough analysis of muscles from

an artistic perspective. Scheepers has developed several muscle models according to

the different kinds of muscles present in the human body. The set of available models

includes fusiform muscles, which have a simple, ellipsoidal shape and are attached us­

ing one or two tendon models: multi-belly muscles, which approximate wide muscles

through convenient spacing of a lateral sequence of simple ellipsoidal muscles: and

general muscles, which can bend or twist around other anatomical structures. Each

muscle model is designed with animation in mind and allows for approximate volume

preservation during animation. The muscle models are implemented as classes in a

procedural modeling language known as AL.^~ Although the models are generalized

enough to be used for a human figure or any animal with similarities in musculature.

^'AL, short for Animation Language, was developed by Steve May at ACCAD [May93].

oz

Scheepers has chosen the upper, right limb of the human as a testbed for the models.

He has also shown how implicit forms of the component models can be used to help

offset the skin surface over a portion of the testbed so that the skin reacts appro­

priately to deformations of the underlying bone and tissue during animation. The

results of both the musculature modeling and the skin modeling are impressive and

demonstrate a remarkable level of realism.

53

CHAPTER 3

APPROXIMATING THE EUCLIDEAN DISTANCE MAP

This chapter and the one that follows describe the discrete geometry algorithms

developed for use in this research, specifically, algorithms for computing the distance

map and the discrete medial iixis/siirface for a discretized object. The concepts of the

distance map. the medial axis (MA), and the medial surface (.MS) were introduced

in Sections 2.1 and 2.2 in the previous chapter.

This chapter focuses on the algorithm designed for computing an approximation

to the Euclidean distance map (EDM). Section 3.1 presents a general overview of

the algorithm. Sections 3.2 and 3.3 then detail the data structures and various steps

involved in propagating distance values through the map, which is biisically how the

algorithm works. The algorithm is then analyzed in various ways in Section 3.4.

Chapter 4 presents a similar discussion with regard to the algorithm for construct­

ing the discrete medial axis (DM.A) or discrete medial surface (DMS) of a discretized

object. In both chapters, numerous figures and tables are provided to help explain the

data structures and to demonstrate execution of the algorithms in step-by-step fash­

ion. Although the descriptions for both algorithms are illustrated using the 2D case,

implementation for the 3D case is very similar (some particulars will be mentioned),

and indeed, the algorithms are easily extended to higher dimensions.

54

Exactly how these algorithms are used in the rest of the research will be discussed

in Chapter 5. For now. simply note tha t for the purposes of this research, it is

not necessary to compute the exact EDM. nor is it necessary to compute a precise

DMA/DMS. The algorithms presented here and in Chapter 4 are designed to provide

close approximations and are optimized for efficiency.

3.1 Overview of the Algorithm

.As alluded to in the introduction above, the algorithm works by propagating dis­

tance information through the grid. The propagation is performed in a layered fashion

moving outward, away from the feature points of the grid. During processing, each

grid point receives distance information from its processed neighbors; later, it can

pass distance information along to its unprocessed neighbors as they are processed.

Because distance values are assigned to grid points in increasing order of distance

value, the grid points are essentially processed as a series of broken contours corre­

sponding to each iissigned value. .A clearer understanding of these contour layers can

be obtained by jum ping ahead temporarily to examine Figures 3.2 through 3.5 on

pages 65 through 68.

.As with any distance map algorithm, the input to the one described here is a grid

where each cell is clearly marked as being either a feature point or a background point.

The output of the algorithm is a labeling of each background point with a distance

map value corresponding to the square of the Euclidean distance from its center to

tha t of the closest feature point. The vast majority of the values assigned will be

equal to values for an exact EDM: in a few cases, however, the value computed is

slightly greater than the square of the shortest Euclidean distance to a feature point.

00

though typically the error is negligible. Reasons for the errors are mentioned in the

analysis and discussion which follows the presentation of the algorithm.

Because this research deals with voxelized objects and because it involves com­

puting distance map values for interior voxels, instead of being presented in terms

of feature points and background points, the algorithm will be presented in terms of

exterior voxels and interior voxels, respectively. Furthermore, for the sake of euusis-

tency. the term voxel will also be used when the discussion involves 2D grids, even

though the term pixel is perhaps more appropriate. Xote too that although the algo­

rithm is described for the set-up where the feature points surround the background

points (as in Figure 2.1(a) on page 14). the algorithm can be applied - without mod­

ification - in order to compute the distance map for the alternate set-up where the

feature points are amidst a field of background points (as in Figure 2.1(b)).

3.2 The Reference Table

The initial step of the process is the construction of a look-up table for use in

propagating distance values through layers of interior voxels. .A.ctually. instead of

propagating distance values directly, the algorithm works by propagating reference

numbers, each of which has an associated distance value. These reference numbers

and their corresponding distance values are available in a look-up table known as

the reference table. To aid in the creation of the reference table, an array called the

reference grid is constructed which will contain all possible reference numbers and

distance map values that might appear in a particular EDM.

The reference grid is an array with each cell containing two items: a distance map

value and an associated reference number. Figure .3.1 on page 58 shows the first eight

56

rows of the reference grid for the 2D implementation. The distance map value for a cell

(Ax. Ay) is calculated using the expression (A x)' + (Ay)‘ . where Ax and Ay represent

the relative distances along each of two orthogonal directions from a particular interior

voxel to a particular exterior voxel. Note that when direction is important, as in the

construction of a vector distance map such as shown in Figure 2.2(a) on page 15. there

arc four cases to consider, as given by (A A x. _c A</). Fui tlie purposes of this icseaiLh.

however, where the magnitude of the distance is the main item of interest, it suffices

to ignore direction to some degree. The symmetric nature of the sc^uared distance

calculation collapses the four cases into one: furthermore, the diagonal symmetry

that results from transposing Ax and Ay makes it necessary to use only the diagonal

cells and the cells of either the upper or lower triangle of the reference grid. In the

case of Figure .3.1. for instance, this can be stipulated by applying three constraints:

Ax > 0. Ay > 0. and Ax < Ay. For the reference grid in the 3D implementation, the

squared distance for a cell (Ax. Ay. Ac) is given by (A x)' -r (A y)' + (A c)', and only

a tetrahedral portion of the 3D array is used, with the constraints being as follows:

Ax > 0. Ay > 0. Ac > 0, and Ax < Ay < Ac.

Reference numbers are assigned to the cells of the reference grid in increasing

order according to the squared distance values. In the event of a tie (for example,

cells (0. 5) and (3, 4) both have the distance value 25). reference numbers for the

tying cells are awarded in order of increasing maximum coordinate (continuing the

example, since 4 < 5. cell (3, 4) is labeled a s r lS and cell (0. 5) is labeled as rI4). The

motivation for favoring the cell w ith the smaller maximum coordinate is that fewer

propagation steps are required to reach that cell from the representative exterior cell,

cell (0. 0) of the reference grid.

01

r24 r26 r28 r29 r32 r37 r41
49 50 53 58 65 74 85
rl9 r20 r21 r23 r27 r30 r35
36 37 40 45 52 61 72
rl4 rl5 rl6 rl8 r22 r25 ^ 1
25 26 29 34 41 50 B H

Ax 0

Figure 3.1: The reference grid for use in approximating the 2D Euclidean distance map
(only the first eight rows are displayed). Although the reference grid may resemble
a distance map, note that it is not a distance map. It is merely an array of the
potential relationships between an interior and an exterior voxel that may occur in
a distance map. and its sole purpose is to aid in the creation of the the reference
table (Table 3.1). In the reference grid above, each cell’s distance map value (shown
in boldface type) is computed as (Ax)^ -i- (Ay)^, which is simply the square of the
Euclidean distance from the center of th a t cell to the center of the lower left cell
labeled rO (which represents the nearest exterior cell). Reference numbers (shown in
italics directly above each distance map value) are assigned in increasing order based
on distance map values, with ties broken as described in the text.

58

4 -ad jacen t 8 -ad jacen t
R eference S q u a red G e n e ra tin g G e n e ra tin g
N u m b er D is tan ce R eferen ce R eferen ce

rO 0 — —
rl 1 rO (0) -
r-2 2 — rO (0)
r.3 4 r l (1) -
r4 5 r2 (2) r l (1)
ro » - r-2 (2)
rO 9 r3 (4) -
r~ 10 r4 (5) r3 (4)
rS 13 ro (8) r4 (5)
r9 16 r6 (9) —

rlO 17 r7 (10) r6 (9)
r l l IS - r5 (8)
rl2 20 rS U3) r7 (10)
rl3 25 r l l (18) rS (13)
rl4 25 r9 (16) —
rl5 26 rlO (17) r9 (16)
rl6 29 rl2 (20) n o (17)
r l7 32 - r l l (18)
rIS 34 r l3 (25) r l2 (20)
rI9 36 r l4 (25) —
r20 37 rl5 (26) r l4 (25)
r21 40 rl6 (29) r l5 (26)
r22 41 rl7 (32) r l3 (25)
r23 45 r l8 (34) r l6 (29)

Table 3.1: The reference table for construction of the 2D distance map (the first 24
references are displayed in increasing order). Each row corresponds to a labeled cell in
Figure 3.1. The first two columns show the reference number and distance map value
from the corresponding cell. The third column lists the 4-adjacent reference (and. for
convenience, its associated distance map value) that can generate the row’s reference
number; likewise, the fourth column lists the 8-adjacent reference tha t can generate
the row’s reference number. These generating references correspond respectively to
the cells directly below and diagonally below and to the left of the row’s associated grid
cell. As an example, for the eighth row (for r7), the corresponding cell in Figure 3.1.
labeled r7, has 10 as its distance map value. The cell labeled r4 is directly below it.
and the cell labeled rS is below and to the left.

59

To jump ahead for Just a moment, note that as the distance map is computed,

many different voxels may be labeled with the same reference number. .A.s an exam­

ple. any interior voxel whose closest exterior voxel is precisely a knight's move away

(using chess terminology) will be labeled with an r4 reference. This illustrates an­

other important point mentioned two paragraphs earlier, namely, that each reference

number represents a class of similar directional distance relationships: for instance,

even though it appears in cell (I. 2) of the reference grid, the r4 reference corresponds

to any of the following eight directional relationships between an interior voxel and

its closest exterior voxel, as measured from the exterior voxel: (2.1). (1.2). (-1 .2) .

(—2.1). (—2. —1). (— 1. —2). (1. —2). and (2. —1).

.\s reference numbers are assigned within the reference grid, the reference table is

created. Each separate assignment causes a single, corresponding row to be appended

to the reference table. Table .3.1 shows the hrst 24 rows of the table for the 2D

implementation; these rows can be created using the grid in Figure 3.1.

Each row of the reference table consists of a reference number, the distance map

value associated with tha t reference number, and references to the cells of the reference

grid that can generate that row's reference number during the propagation process.

These latter items are termed generating references. If a reference ri is a generating

reference for reference rj, then is called a descendant reference of r .̂ Reference rf.

for instance, is a descendant reference of rl and r2: conversely, rl and r2 are the

generating references for rf.

Fundamentally, in the 2D case, propagation of the reference from a given voxel

can occur in two basic directions heading away from the nearest exterior voxel: or­

thogonally or diagonally. In the context of the reference grid in Figure 3.1, orthogonal

60

propagation occurs when the reference in cell (Ax. Ay — I) is used to generate the

reference in cell (Ax, Ay), and diagonal propagation occurs when the reference in cell

(Ax — 1. Ay — 1) is used to generate the reference in cell (Ax. Ay). In the former

case, the two voxels involved in the propagation must be 4-adjacent. sharing a com­

mon edge; in the latter case, the two voxels must be 8-adjacent. sharing a common

vertex. The generating references for the reference in grid cell (Ax. Ay) are stuied iii

the appropriate columns of the corresponding row of the reference table. Obviously,

the cells along the diagonal of the reference grid will not have 4-adjacent generating

references; likewise, the cells along the left edge of the reference grid will not have

8-adjacent generating references.

Construction of the reference table for the 3D implementation is similar, though

since there are three fundamental directions of propagation in the 3D case, there are

three columns for generating references. These correspond to 6-adjacency (when the

two voxels involved in the propagation share a common face). 18-adjacency (when

the two voxels share a common edge), and 26-adjacency (when they share a common

vertex). The respective generating references corresponding to the reference number

in cell (Ax. Ay, Az) of the 3D reference grid are contained in cells (Ax. Ay, Az - I),

(Ax. Ay — I. Az — 1), and (Ax — 1, Ay — 1. Az — I). Table 3.2 shows the first 32 rows

of the reference table for the 3D implementation.

Through the use of dynamic data structures, the reference table and the grid used

to generate it can be incrementally computed to whatever size is necessary in order

to complete the reference number and distance value propagation. In the execution

shown in Figures 3.2 through 3.5 in the next section, for example, the largest distance

61

R eferen ce
N u m b e r

S q u ared
D istan ce

6 -ad jacen t
G e n e ra tin g
R eferen ce

18-ad jacen t
G e n e ra tin g
R eference

2 6 -ad jacen t
G e n e ra tin g
R efe ren ce

rO
r L
7-2
r'i

0
1
2
3

7-0 (0)
rO (0)

rO (0)
r4 4 r l (1) - -
ro 5 7-2 (2) r l (1) -
7'6 6 7-3 (3) - r l (1)
r l 8 - 7-2 (2) -
rS 9 - 7-3 (3) 7-2 (2)
r9 9 r4 (4) - -

r 10 10 r5 (5) r4 (4) -
r l l 11 r6 (6) - 7-4 (4)
r l2
r l3

12
13 r l (8) 7-5 (-5)

7-3 (3)

r 14 14 7-8 (9) r6 (6) 7-5 (3)
r l5 16 r9 (9) - -
r l6 17 rl2 (12) - r6 (0)
r l7 17 rlO (10) 7-9 (9) -
rlS 18 r l l (11) - 7-9 (9)
r l9 IS - r l (8) -
7-20 19 - 7-8 (9) r l (8)
r21 20 rl3 (13) rlO (10) -
1-22 21 rl4 (14) r l l (11) rlO (10)
r23 22 — rl2 (12) rS (9)
r24
r25
r26
r27

24
25
25
26

rI6
rl9
rl5
r20

(IT)
(18)
(16)
(19)

rl3

rl4

(13)

(14)

r l l

r l3

(11)

(13)
r28
r29
r30
r3I

26
27
27
29

r l7

rl8
r23

(IT)

(18)
(22)

rl5 (16)

r l6 (17)

rl2
rl5
rl4

(12)
(16)
(14)

Table 3.2: The reference table for construction of the 3D distance map (only the first
32 rows are shown). The first two columns show the reference number and distance
map value for each reference, and the final three columns list the corresponding 6-
adjacent. 18-adjacent. and 26-adjacent generating references.

62

map value assigned is 26 (corresponding to rl5): hence, in that case, growth of the

reference table stopped after 16 rows had been computed.

Note that if the sizes of a reference table and its reference grid are sufficient,

the same reference table may be used in the construction of multiple distance maps.

In theory, there is a single, infinitely large 2D reference table that suffices for all

2D applications of the algorithm, and there is a single, infinitely large 3D reference

table that suffices for all 3D applications of the algorithm: Tables 3.1 and 3.2 simply

show the initial portion of these tables. For applications involving the construction

of numerous distance maps, rather than recomputing the reference grid and reference

table for each map. it may be useful to precompute a sufficiently large reference grid

and reference table and to store the reference table in a file for quick recall prior to

distance map construction.

3.3 Propagation of References

Reference numbers are propagated to voxels in increasing order based on informa­

tion stored in the reference table. During propagation, all reference numbers play two

roles: first as a descendant reference (when voxels are labeled with that reference),

then later as a generating reference (in order to propagate their own descendant ref­

erences). The exception to this is rO. which is not a descendant reference of any other

reference but is simply a label assigned to all exterior voxels during initialization.

In order to propagate references efficiently, a dynamic array of linked lists is main­

tained. Each linked list of the array is used for storing pointers to voxels with a

particular reference number. The linked list for the array index "0" contains pointers

to the exterior voxels: the list with index "T’ contains pointers to voxels labeled with

63

rl references; the list for "2" has pointers to the r2 voxels, and so forth. When a

voxel is labeled with a particular reference, a pointer to that voxel is inserted into

the matching linked list. When voxels with a particular generating reference need to

be examined for potential propagation of a descendant reference, the program can

simply access the linked list corresponding to the generating reference and examine

e a c h \ r n v f » l i n l i s t

The first row of the reference table, for rO. corresponds to the initialization process

for the voxel grid. ,\s mentioned earlier, each exterior voxel is labeled as an rO voxel,

and each interior voxel is initialized as unlabeled. .\s each successive row of the

reference table is computed, the set of unlabeled interior voxels is examined to find

the set that should be labeled with the reference number for that row. This amounts

to examining voxels labeled with the associated generating reference to see whether

they are adjacent to unlabeled interior voxels in the appropriate direction. When the

row for r l is computed, for instance, all unlabeled interior voxels that are horizontally

or vertically adjacent to an rO voxel are labeled as rl voxels (this is done by stepping

through each voxel in the linked list of rO voxels and examining its orthogonally

adjacent voxels). When the next row (for r2) is computed, all unlabeled interior voxels

diagonally adjacent to an rO voxel are labeled as r2 voxels. This process continues

as the reference table is created and stops when all interior voxels have been labeled.

Figures 3.2 through 3.5 on the next four pages demonstrate each propagation step

involved in the execution of the distance map approximation algorithm on a collection

of voxels designed for illustration purposes. Pseudocode is provided in Figures 3.6

and 3.7.

64

u□aaaaaflan nmmj
□ B a a a B H e a n a a a L naaBaaaaaBaaaaB

M a a a m a a a a a a a a a a
a a a a a a a a a a i
a a a a a a a a a a i
a a a a m a a a a a L
a a a a a a a a a a a a a a a
a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a
l a a a a a a a
l a a a a a a r

b m m œ in TTTTTT
0

i n m n r r

r f i S I

innnr
H H I H I i w . . .

■ f l n n i v ™ '
n a a a â a â S a § ______
D a a a a a a a a a i i a a B i
D a a a a a a a a a a a a a D D
B g ! --

w #
(a) Initial boundary (rO references). (b) Finding r l references [d = 1).

1 1 1 1 1 1 1 □ □ 1 1

rB S S S S S lB ^ B H Q l
B : : : : : : r ™1 1 1

x T ~ n
1 ± ± LaaaaaaaaBibbbi

Baaaaaaaaaaaai □1aaaaaaaaaaaa?
aaaBBj_BBBBBBBiBBi 1 1
J i D L E

1aaaaai
1 1 1 1 1 1 1
n

rrrr 1 1 m11111 1 1 O □ i 11OOOOO21□ l 2 112aaa BB2 1202 1ioaaa BB2 11 2 □ 11zaaaa aoi 1 1 111oaaaa ao nnrr1oaaaa aoi 11 1u1oaaaa BB2 12 □ 211oaaaa aaaoaaoi1zaaaa aaoaaaoi□1oaaa Baaaaaoi12aaaaoaaaaaao 11oaoo 21 2aaaaa211 □ 2 1 1 1 1OOOOO1111 .L.L1 1 111 1 11 1 1 1 1 1 1
(c) Finding r2 references (d = 2) . (d) Finding rS references {d = 4).

Figure 3.2: Distance map computation (propagation steps 0-3). The figures above
and on the following three pages show the results of each propagation step during
an execution of the distance map algorithm. In figure (a) above, the initial step
involves cissigning the reference rO to each exterior voxel. Each successive diagram
shows the result of assigning the next consecutive reference number from Table 3.1
to appropriate voxels, which are drawn in black and labeled with their distance map
values (d). In the actual implementation, the reference numbers are stored as well.

65

n
1 1 1 1 1 1 1 □ Q 1 1
1 4 4 4 4 4 2 1 Q 1 2 1 _

1 2 E I H B B B B 2 1 2 EX 2 1
1 4 H B H B B 2 112 4 1
2 B H B H H H 4 1
4 ■ ■ ■ ■ ■ ■ 4 1

1 1 1

1 2 4 2 1
4 l a i i n n A B B ^ ;

□ 1 T i B S i B i H i i 4 1
1 2 B B B Q 4 Q B B B B B 4 i
1 4 ^4 4 2 J_ 2 BBBBEI 2 JL 1 4 4 4 4 4 11 4 2 1 1 1 n
l i i C T Œ 1 1 1 1 1 1 1

I I I I I I

(a) Finding r4 references {d = 5).

m n rnr
1 1 1 1 1 1 1 □ □ 1 1
1 4 4 4 4 4 2 1 0 1 2 1

1 2 5 2 1
112 4 1

1 1 1

1 2 BBBQs
1 4 QBBBB 5

1 2 5BBBBB 4
1 4 BBBBBB 4
1 4 BBBBBB 4
1 4 BBBBBB 5
1 4 Q B B B B B Q i

□ 1 4 B B BBBB BBBB4 1
1 2 5 b d 5 4 5 DBBBQ 4 1
1 4 5 4 4 2 1 2 5 BBB 5 2 1

1 4 4 4 4 4 1

12 4 2
4 5 0 4

1 4 2 1 1 1 0
1 1 i c r r r 1 1 1 1 1 1 1

H

(b) Finding r5 references {d = 8).

n 1 1 1 1 1 1
1 1 1 1 1 1 iL J l 1
1 4 4 4 4 4 2 1 1 2 1

1 2 5 O D D 8 5 2 1 2 5 2 1
1 4 8 BBBB 5 2 1 1 2 4 1

1 2 5 BBBBQ 4 1 0 1 1 1
1 4 8 BBBBB 41 1 1
1 4B B B B B D 4 1 1 1 1
1 4 OBBBBB 5 2 1 2 4 2 1
1 4 8 BBBBB 8 5 4 5 8 4 1
1 2 5 B B B B B B B B B B 4 1
_ 1 4B B B B B B B B B B 4 1
1 2 5 13 8 5 4 5 8 b b b 8 4 1
1 4 5 4 4 2 1 2 5 B B B 5 2 1
1 4 2 1 1 1 0 1 4 4 4 4 4 1
1 1 1 FT I F 1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 n 1 I 1 1 11 1 1 1 1 1 i L J l 1
1 4 4 4 4 4 2 1 1 2 1

1 1 2 5 9 9 9 8 5 2 1 2 5 2 1
1 4 8 BBBEQ 8 2 1 1 2 4 1

1 2 5BBBB 8 4 1 1 1 1 1
1 4 8BBBB 9 4 1 1 1 1
1 4 9 BBBB 9 4 1 1 1 1
1 4 9 BBBBB 52 1 2 4 2 1
1 4 8BBBBB 8 5 4 5 8 4 1
1 2 5BBBBBBB9B9 4 1

. . . . 1 4 9 BB 9BBBBB 9 4 1
1 2 5 9 8 5 4 5 8b b b 8 4 1
1 4 5 4 4 2 1 2 5 9 9 9 5 2 1
1 4 2 1 1 1 0 1 4 4 4 4 4 1
1 1 1 C T T F 1 1 1 1 1 1 1
1 1 1 T T T I 1 1

(c) Finding r6 references (d = 9). (d) Finding r7 references (d = 10).

Figure 3.3; Distance map computation (propagation steps 4-7). For the step in figure
(a) above, all previously unlabeled voxels that are diagonally adjacent to a “1” (or
rather, to an rl voxel tha t in the diagram just happens to be labeled with distance
map value of 1) or that are horizontally or vertically adjacent to a “2” (or rather, to
an r2 voxel) are assigned to be r4 voxels with distance value 5. This propagation
step corresponds to the row for r4 in the reference table (Table 3.1 on page 59).

66

n r T T T 1 1 1
1 1 1 1 1 1 i L J l 1
1 4 4 4 4 4 2 1 1 2 1

1 2 5 9 9 9 8 5 2 1 2 5 2 1
1 4 8 E B g l O 5 2 1 1 2 4 1

1 2 5 l O f l M 9 4 1 | 1 1 1
1 4 8 i s h B I S 9 4 1 j n n r
1 4 9 mmn 9 4 1 1 1 1
1 4 9 B I 3 I 9 B 1 0 5 2 1 2 4 2 1
1 4 8 ^ B I H H | g] 8 5 4 5 8 4 1
1 2 S l o H B B B E Q i o 9 10 9 4 1

_ 1 4 9 [Q 10 9 l o E B B f l f l 9 4 1
1 2 5 9 8 5 4 5 8 S B B E B 8 4 1
1 4 5 4 4 2 1 2 5 9 9 9 5 2 1
1 4 2 1 1 i r 1 4 4 4 4 4 1
1 1 i m r r 1 1 1 1 1 1 1

J L J L . l 1 1 1

I T I 1 1
1 1 1 1 1 1 1 L J l 1
1 4 4 4 4 4 2 1 1 2 1

1 2 5 9 9 9 8 5 2 1 2 5 2 1
1 4 8 I 3 I Q B 10 5 2 1 1 2 4 1

1 2 5 I O B B E E 9 4 1 1 1 1
1 4 8 13 b b b 9 4 1
1 4 9 B B B B 9 4 1 1 1 1
1 4 9 B B B B 10 5 2 1 2 4 2 1
1 4 8 1 3 B H B 1 3 8 5 4 5 8 4 1
1 2 5 I O B B B B 1 3 IO 9 10 9 4 1

J l 4 9 13 10 9 10 13 b b b 9 4 1
1 2 5 9 8 5 4 5 8 1 3 | Q 1 3 8 4 1
1 4 5 4 4 2 1 2 5 9 9 9 5 2 1
1 4 2 1 1 1 □ 1 4 4 4 4 4 1
1 1 i j n r r 1 1 1 1 1 1 1

j □ r m 1

(a) Finding rS references (d = 13). (b) Finding r9 references (d = 16).

J C C l 1 1
1 1 1 1 1 1 1 L J 1 1
1 4 4 4 4 4 2 1 1 2 1

1 2 5 9 9 9 8 5 2 1 2 5 2 1
1 4 8 13 16 16 10 5 2 1 1 2 4 1

1 2 5 1 0 E B f l l 6 9 4 1 1 1 1
1 4 8 I 3 B B I 8 9 4 1 1 1 1
1 4 9 I 6 B B I 8 9 4 1 1 1 1
1 4 9 I 6 B B B 1O 5 2 1 2 4 2 1
1 4 8 I 3 B B B 13 8 5 4 5 8 4 1
1 2 5 I O B B I 8 B 13 10 9 10 9 4 1

_ 1 4 9 13 10 9 10 1 3 | B 16 16 9 4 1
1 2 5 9 8 5 4 5 8 13 16 13 8 4 1
1 4 5 4 4 2 1 2 5 9 9 9 5 2 1
1 4 2 1 1 i r 1 4 4 4 4 4 1
1 1 i f r 1 1 1 1 1 1 1

J L l 1 1 1 1

1 1 1 1 1 1 1
1 1 1 1 1 1 1 J
1 4 4 4 4 4 2 1

1 2 5 9 9 9 8 5 2
1 4 8 13 16 16 10 5 2
2 5 I O I 7 B I 6 9 4 1
4 8 I 3 B B I 8 9 4 1
4 9 I 6 B B I 8 9 4 1
4 9 I 6 B B 1 7 IO 5 2
4 8 1 3 B B f l l 3 8 5

1
1
1
1
1
1 2

□ l
1 2
1 4
1 4
1 1

1 2
2 5
1 2

1

1
2 1
4 1
1 1

1 2 4
4 5 8

5 1 0 1 7 1 7 1 6 1 7 1 3 10 9 10 9
4 9 1 3 1 0 9 10 13 1 7 1 6 16 9
5 9 8 5 4 5 8 13 16 13 8
5 4 4 2 1 2
2 1 1 1

irTTT
9 9 9 5
4 4 4 4
1 1 1 1

(c) Finding rlO references {d = 17). (d) Finding r l l references {d = 18).

Figure 3.4: Distance m ap computation (propagation steps 8-11). Xote how in the
propagation step in figure (d) above, no r l l references are generated, as r l l does
not have a 4-adjacent generating reference and there are no applicable instances of
its 8-adjacent generating reference (that is, there are no unlabeled voxels diagonally
adjacent to an "8". which in these diagrams represents an r5 voxel).

67

1 i n 1 1

_ 1 1 1 1 1 1 i L J 1 1
1 4 4 4 4 4 2 1 1 2 1

1 2 5 9 9 9 8 5 2 1 2 5 2 1
1 4 8 13 16 16 10 5 2 1 1 2 4 1

1 2 5 10 1 7 g l 6 9 4 1 1 1 1
1 4 8 1 3 [g 3 B l 6 9 4 1 n r r
1 4 9 1 6 9 H 1 6 9 4 1 1 1 1
1 4 9 1 6 5 5 1 7 10 5 2 1 2 4 2 1
1 4 8 1 3 g 3 5 B 2 13 8 5 4 5 8 4 1
1 2 5 10 17 1 7 1 6 1 7 1 3 10 9 10 9 4 1

u 1 4 9 1 3 1 0 9 10 13 1 7 1 6 16 9 4 1
1 2 5 9 8 5 4 5 8 13 16 13 8 4 1
1 4 5 4 4 2 1 2 5 9 9 9 5 2 1
1 4 2 1 1 1 r 1 4 4 4 4 4 1
1 1 1 U L . J L L 1 1 1 1 1 1 1

n n n n r m

TTTT~rr
1 1 1 U Q i
4 4 2 1 □ 1 2

2 1 2 5
2
1
1
1

1 1 2

□ l
1 2
1 4
1 4
1 1

1 1 1 1
1 4 4 4
2 5 9 9 9 8 5
4 8 13 16 16 10 5
5 10 1 7 ^ 1 6 9 4
8 13 2 0 @ 1 6 9 4
9 I S E B I G 9 4
9 1 6 ^ 9 17 10 5 2 1 2 4
8 13 2 0 B g 2 0 13 8 5 4 5 8
5 1 0 1 7 1 7 1 6 1 7 13 10 9 10 9
4 9 13 10 9 10 13 17 16 16 9
5 9 8 5 4 5 8 13 16 13 8
5 4 4 2 1 2 5 9 9 9 5

1
1
2 1
4 1
1 1I I 1 1 1

2 1 1 1 n
l i n n I

4 4 4 4 4
1 1 1 1 1

r r r i T i

(a) Finding rI2 references (d = 20). (b) Finding ri:i references (d = 25).

n r n rn1111111 n U i 114 4 4 4 4 2 1 121125 9 9 9 8 5 21252114 8 13 16 16 10 5 21124 112510 17 25 16 9 4 1 111114 813 20̂16 9 4 1 1 1 114 9 16 25̂16 9 4 1 111_14 9 162551710 5 2124 21
_ 14 8 132052013 8 5 4 5 84 1125 10 17 1716 1713 109 109 4 1

u 14 9 13 10 9 1013 1716 169 4 1125 9 8 5 4 5 8 1316 1384 114 5 4 4 2 1 2 5 99 9 5 2114 21 1 1 Q 1 4 4 4 4 4 1111 1 1 111 1 11111
_ L 1 I I I i 1 1 1 1

n m
1 1 1 1 1 1 1 L

n
j i 1

1 4 4 4 4 4 2 1 1 2 1
1 2 5 9 9 9 8 5 2 1 2 5 2 1
1 4 8 13 16 16 10 5 2 1 1 2 4 1

1 2 5 1 0 1 7 25 16 9 4 1 1 1 1
1 4 8 13 20 25 16 9 4 1 n r n r
1 4 9 16 25 25 16 9 4 1 1 1 1
1 4 9 16 2 5 ^ 1 7 1 0 5 2 1 2 4 2 1
1 4 8 13 2 0 ^ ^ 2 0 1 3 8 5 4 5 8 4 1
1 2 5 1 0 1 7 1 7 1 6 17 13 10 9 10 9 4 1

1 4 9 1 3 1 0 9 10 13 17 16 16 9 4 1
1 2 5 9 8 5 4 5 8 1 3 1 6 13 8 4 1
1 4 5 4 4 2 1 2 5 9 9 9 5 2 1
1 4 2 1 1 i n 1 4 4 4 4 4 1
1 1 1 1 I I r 1 1 1 1 1 1 1

1 1 1 r c m u L

(c) Finding r l4 references (d = 25). (d) Finding r l 5 references (d = 26).

Figure 3.5: Distance map computation (propagation steps 12-15). Note in figures
(b) and (c) above how the propagation of différent reference numbers may result in
the same distance map value being produced during separate steps. The accuracy of
the approximation algorithm depends upon being able to distinguish between such
cases, which is why it is im portant to propagate the reference numbers and not just
the distance map values. After the step in (d), there are no more unlabeled interior
voxels, so execution terminates, having produced the distance map values as shown.

68

/ / handling the reference table

generate the reference grid RG and reference table RT to a
sufficient size (alternatively, the rows of the reference grid and
reference table may be dynamically generated on an as-needed
basis during the propagation computations shown on the next page)

/ / initialization: flag exterior voxels with reference number zero
/ / and count the number of interior voxels

numinterior 0
for each voxel V

if V is an exterior voxel
re/[y] 0
insert V into list[0]

else
ref[V] +- U N K N O W N

numinterior 4— numinterior -r I
end-if

end-for

Figure 3.6: Pseudocode for the initialization phase of the distance map algorithm.
This figure and the one that follows provide pseudocode for the primary part of the
distance map algorithm; they should be read consecutively. Note that list is an array
of linked lists; h‘sf[iV] is the linked list designated to hold the voxels to which the
reference number N is assigned. The two arrays ref and distance are designed to
store the reference number and the distance map values for each voxel. RG and
R T refer to the reference grid and the reference table, respectively. Comments are
preceded by a double slash.

69

/ / propagation: in each iteration , the objective is to find and
/ / label the voxels that shou ld have reference num ber N

numlabeled 4— 0
N 1
repeat until {numlabeled = n u m in ten or)

I I handle the 4-adjacent references
if there is a 4-adjacent generating reference in row N o f R T

G 4-adjacent generating reference from row N o f R T
for each voxel V in

for each 4-adjacent neighbor .V o f V
if (ref[X] = UNKNOWN')

refi'x] ^ N
insert X into
numlabeled 4— numlabeled -f 1

end-if
end-for

end-for
end-if
/ / handle the 8-adjacent references
if there is an 8-adjacent generating reference in row N o f R T

G <— 8-adjacent generating reference from row N o f R T
for each voxel V in list[G]

for each str ic tly 8-adjacent neighbor .V of V
if (re/[.Y) = UNKNOWN)

r e f [X] 4 - N
insert X into l ist [N]
numlabeled numlabeled -r I

end-if
end-for

end-for
end-if
iV ^ iV + 1

end-repeat

/ / assigning distance m ap values

for each voxel V
X <— ref[V]
distance[V] <- squared distance value from row N o f R T

end-for

Figure 3.7: Pseudocode for the propagation phase of the distance map algorithm.

70

3.4 Analysis and Discussion

During execution, each voxel is examined a constant number of times (once for

initialization, then one time from each adjacent voxel). Construction of the reference

grid and reference table is linear with respect to the number of references computed,

and because the grid and table are incrementally computed only to whatever size

is necessary, the number of distinct references is bounded by the number of interior

voxels. The overall time complexity of the algorithm is thus linear with respect to

the sum of the number of interior voxels and the number of feature point voxels. In

the case when the feature point voxels consist only of the exterior voxels in the layer

immediately surrounding the interior voxels, the number of feature points is bounded

by a constant multiple of the number of interior voxels, and the time complexity is

more simply stated as linear with respect to the number of interior voxels. .Although

the constant multiplier incretises as the dimensionality increases (the number of voxels

potentially adjacent to a particular voxel increases with the dimension), the linearity

of the time complexity holds regardless of the dimension. See Table 3.3 for typical

execution times of the 2D and 3D implementations.

Note that if a vector distance map is desired, a post-processing step can be applied.

In order to do this, the reference table must be extended to include the corresponding

row and column (with respect to the reference grid) for each reference number. .After

each reference number has been computed in the final grid, the reference number for

a given voxel v can be used to index into the reference table to find the corresponding

row and column of that reference in the reference grid. This provides an offset vector

(Ax. Ay) that suggests where to look for the relative location of the exterior voxel

causing that reference. Due to the formulation of the reference grid, the offset vector

71

2D Dist.\.\'ce Map
Voxel Approximate
Grid Execution

Dimensions Time
256 X 256 0.6 sec
512 X 512 2.7 sec

1024 X 1024 11 sec
2048 X 2048 57 sec

3D DISTANCE Map
Voxel Approximate
Grid Execution

Dimensions Time
32 x 32 x 32 0.3 sec
64 X 64 X 64 2.6 sec

128 X 128 X 128 26 sec

Table 3.3: Approximate execution times for the 2D and 3D implementations of the
Euclidean distance map approximation algorithm. The times shown are the average
computation times over multiple test runs on grids in which the boundary voxels and
a few other randomly chosen voxels were marked as feature points. Execution was
performed on a Silicon Graphics® 02® (RôOQO Processor Chip).

must be combined with the coordinates of the particular voxel c in each of eight ways

to test for the presence of the exterior voxel. If the coordinates of c are [a.h). then

the eight voxels to test will have the coordinates (a + Ax. a + A//), (a + Ax. a - Ay).

(a - A x ,a + Ay). (a - A x .n - A y) . (a-t-Ay. a + A x). (a + A y.a —Ax), (a -A y . a-i-Ax),

and (a — Ay, a — Ax). The test is used to determine the appropriate signs with which

the offset vector should be amended before being assigned as the distance map vector

for u.

The algorithm described in this chapter is a contour style ordered propagation

algorithm along the lines of those of Verwer. Verbeek. and Dekker [\'\'D89] and

Ragnemalm [Rag92a] (see page 18). In contrast to the algorithm of Verwer et ah.

which computes a non-Euclidean distance map with scalar values, the algorithm given

here uses Euclidean distance values and provides a very close approximation to the

EDM. Due to the presence of the reference grid and the fact tha t reference labels

are propagated as opposed to distance map values, the algorithm given here also

allows easy conversion of the reference labels to create either a (scalar) distance map

or a vector distance map as mentioned earlier. Ragnemalm's algorithm [Rag92a|

uses Euclidean distances, however, the method of bucketing is based on the squared

Euclidean distances and is thus not as economical as the bucketing method used here,

which is based on the reference numbers.

There is an additional difference between the algorithms that has to do with the

way the bucketing is performed. The algorithms of \ erwer et al. [\'\'D89] and Ragne­

malm [Rag92a] take a voxel from the current bucket and use it to assign values/vectors

to voxels yet to be processed: then, after processing those voxels, those algorithms

insert the voxels into buckets to be processed later. This will be called forward pro­

cessing. The algorithm in this chapter inverts that process, examining voxels in earlier

buckets to determine which voxels should be assigned the current value/reference and

inserted into the current bucket. This will be referred to as inverted processing. .Al­

though fonvard processing may not affect the accuracy of the resulting distance map

when a non-Euclidean metric is employed, it can have an adverse effect on the ac­

curacy when a Euclidean metric is used. .As an example, examine the reference grid

from Figure 3.1 and observe that the reference r6 (d = 9) can generate the reference

rlO {d = 17) along a diagonal, and that the reference r5 [d = 8) can generate the

reference r l l {d = 18) along a diagonal. Now consider the case of an unprocessed

voxel V being diagonally adjacent to both an r5 and an r6 voxel during propagation.

Forward processing would result in the r5 voxel being processed first, thus assigning

V the value 18, which is one greater than necessary. If each voxel is processed only

once, as is the case with these contour style ordered propagation algorithms, then

the inaccurate assignment for v would not be corrected. Such an inaccuracy could

73

then be further propagated, causing more errors in the resulting distance map. In

the situation just described, inverted processing would have the result that c is not

assigned a value until the rlO references arc assigned, and so v would be assigned

the more accurate value 17. Closer inspection of the reference grid will reveal that

many more situations like this one can occur during either diagonal or orthogonal

propagation, and it should also be clear that this type of problem can result when

forward processing is used regardless of whether values, vectors, or reference numbers

are the actual elements being propagated. Thus, with respect to approximating the

Euclidean distance map with contour style ordered propagation algorithms, using in­

verted processing will produce distance maps that are at least as accurate if not more

accurate than the distance maps produced when using forward processing.

The algorithm in this chapter produces an approximation to the Euclidean dis­

tance map - errors may be introduced by the method in which references and distance

map values are propagated. These errors, although small, can cause the distance map

not to be an exact Euclidean distance map. .-\.lthough no formal analysis of all possi­

ble errors of the approximation algorithm has been performed, detailed obseirvations

of errors have been made over hundreds of executions of the algorithm for actual

applications as well as for contrived test data. These observations are summarized

in Table 3.4. The 2D approximation algorithm has been observed to produce a max­

imum error (as compared to the exact Euclidean distance) of about 0.068288 units,

and the 3D approximation algorithm has been observed to produce a maximum error

of about 0.071068 units (in both cases, the error is less than ^ of the edge length of

a voxel). Xote that the vast majority of distance map values computed by the algo­

rithm are the same as those tha t would be computed by an exact EDM algorithm.

74

C o m p u te d
V alue

E x ac t E D M
V alue

D ifference A b so lu te
E r ro r

R e la tiv e
E rro r

t^comp ^e.xact d c o m p d e x a c t
\ / ̂ c o m p ~ \ / ^ e x a c t

\ / ^ e x a c t
\ / d c o m p ~ \ / d e x a c t

2 D D i s t . J l N C E M . a p

1 7 0 1 6 9 1 0 . 0 3 8 4 0 5 0 . 0 0 2 9 5 4 2 2

6 7 5 6 7 1 O 0.038190 0 . 0 0 1 1 8 2 5 8

4 8 4 4 8 1 3 0 . 0 6 8 2 8 8 0 . 0 0 3 1 1 3 6 6

2 0 4 5 2 0 4 1 4 0.044248 0 . 0 0 0 9 7 9 4 3 2

5 6 2 5 5 6 2 0 5 0 . 0 3 3 3 4 1 0 . 0 0 0 4 4 4 7 4 1

1 7 5 3 0 1 7 5 2 4 6 0 . 0 2 2 6 6 0 0 . 0 0 0 1 7 1 1 7 9

1 5 1 2 9 1 5 1 2 2 7 0 . 0 2 8 4 5 9 0 . 0 0 0 2 3 1 4 2 4

1 6 9 4 5 1 6 9 3 7 8 0 . 0 3 0 7 3 2 0 . 0 0 0 2 3 6 1 4 1

9 0 4 9 9040 9 0 . 0 4 7 3 1 7 0 . 0 0 0 4 9 7 6 6 4

none observed 1 0 - -
25405 25394 1 1 0 . 0 3 4 5 1 0 0 . 0 0 0 2 1 6 5 6 3

5 8 8 6 5 38853 1 2 0 . 0 2 4 7 3 1 0 . 0 0 0 1 0 1 9 4 4

5 9 1 8 9 5 9 1 7 6 1 3 0 . 0 2 6 7 1 9 0 . 0 0 0 1 0 9 8 3 6

none observed 1 4 - -
6 0 7 3 6 6 0 7 2 1 1 5 0 . 0 3 0 4 3 4 0 . 0 0 0 1 2 3 5 0 8

3 D D i s t a n c e M a p

5 0 4 9 1 0 . 0 7 1 0 6 8 0 . 0 1 0 1 5 2 5

2 0 5 2 0 3 2 0 . 0 7 0 0 1 4 0 . 0 0 4 9 1 4 0 3

Table 3.4: Observed errors for the 2D and 3D implementations of the Euclidean
distance map approximation algorithm. Although the distance map values are given
as squared distances, the absolute and relative errors are computed according to the
actual (unsquared) distances - see the formulas in the second row. and note that f/comp
is the squared distance as computed and dexact is the exact squared Euclidean distance.
The maximum possible error for each observed deviation from an exact EDM value
is listed: for example, in one instance for the 2D algorithm, an observed value of
361 was computed when the exact value was 360, but the error for this deviation by
1 unit is less than the error for the 1 unit deviation for the case of computing 170
instead of 169; thus, it is the 170 versus 169 case that appears in the table. For the
2D approximation algorithm, the largest observed error is about 0.068288 units; for
the 3D algorithm, the largest observed error is about 0.071068 units.

fo

As observed for both the 2D and 3D implementations, less than one percent of voxels

receive values differing from the exact EDM (the figure is usually somewhere between

0.0l9c and 0.1% for most objects used during applications of this research).

For an exact EDM. each voxel has a value or reference reflecting the closest exterior

voxel. This means that the set of voxels whose values or references correspond to a

particular exterior voxel ly must be the same set of voxels whose center points he

within the \bronoi region defined by Cg when viewing the Vbronoi diagram induced

by the center points of the exterior voxels. The propagation method used by the

algorithm described in this chapter fails because a sliver section of a \bronoi region

may cause discontinuities between the set of voxels considered to belong to that

Voronoi region, that is. the set may not be connected. Figures 3.8 and 3.9 illustrate

an error caused by propagation around such a sliver region. The voxels of the Vbronoi

region for exterior voxel (or feature point) B contain a voxel disconnected from the

rest, and this problem voxel is assigned a reference associated with exterior voxel ,4

instead, with the result being that the problem voxel receives a distance map value

tha t is one unit greater than what it should have in an exact EDM.

The root of the problem just described lies in the fact that the use of a local

neighborhood for the simple propagation that takes place in this algorithm is insuffi­

cient for exact EDM computation in the general case. The local neighborhood works

well enough to compute an exact EDM for some cases of input (the example in Fig­

ures 3.2 through 3.5. for instance). As is clearly shown in the example in Figures 3.8

and 3.9, however, in other cases there might be sliver sections of Voronoi regions that

undermine simple propagation based on examination of only a local region of nearby

76

r S l \ : r 8 5 ^ ^ : m
1 6 9 1 7 0

1 4 4 1 4 5

121 122
vï«S-

m m # # #

7 3 8 0 8 »

m

m 5 2

.r/ff;-i

»

J f 7 rl03

2 1 8 2 2 9

r86 r9]

2 0 0

rSO

1 7 3

r67 r69

1 4 5 1 4 8

r57

1 2 2 1 2 5

r49 rSO

1 0 1 1 0 4

r40 r42
8 2 8 5

r33 r34
6 5 6 8

r26 r28
5 0 5 3

r2Q r2I
3 7 4 0

r l5 rI6
2 6 2 9

rlO rl2
1 7 2 0

r7 r8

1 0 1 3

r4 rS
5 8

r2 r4
2 5

r l r3
1 4

Figure 3.8; An example of the type of error introduced by using local propagation
when computing the Euclidean distance map. The black voxel in the upper right, with
reference r78 and squared distance 170. has been labeled incorrectly. Although it is
\/170 units away from the feature points A and C. it is only \/l6 9 = 13 units away
from feature point B . The other voxels have been shaded according to which feature
point has caused them to be labeled as they are. Compare this with Figure 3.9.

11

:: 4 r S

m s w m , m i t i s . <, ; . ■• Ï ^£i :

iià'a'sî̂ #-gm@ sJEü-sî

Figure 3.9: The Voronoi diagram for the error example of Figure 3.8. The lines are the
boundaries between the Voronoi regions for feature points A. B. and C , and voxels
are shaded according to the Voronoi region containing their centers (note the exact
correspondence with the shading from Figure 3.8). The problem voxel, shaded dark
gray in the upper right, lies in the Voronoi region for B: however, it has no adjacent
voxels th a t will propagate references corresponding to B.

78

voxels. Nevertheless, there are a few ways to circumvent the problem and thus arrive

at a robust algorithm that consistently computes an exact EDM;

1. Change the information that is propagated. For each voxel, save and propagate

references to all exterior voxels to which the Euclidean distance is within one

unit of that to the closest exterior voxel, .\fter processing is finished, simply re­

port the minimum distance value and reference at each voxel. . \ raster scanning

type algorithm based on this idea is proposed by Mullikin [Mul92].

2. Increase the size of the local neighborhood so that propagation does not have

to occur between adjacent voxels. Theoretically, though, a global neighborhood

is the only neighborhood sufficient to overcome all possible slivers, so by itself,

increasing the local neighborhood will just decrease the error inherent in the ap­

proximation. Unfortunately, use of a global neighborhood results in a quadratic

time algorithm.

3. Compute part or all of the Voronoi diagram either to assist with propagation

or to make propagation unnecessary. For the case of 2 0 distance maps, partial

computation of the Voronoi diagram has led to an exact EDM that operates

in linear time with respect to the number of voxels [BGKW95]. For higher

dimensions, due to the increased time complexity required for computing the

Voronoi diagram, it is unclear whether its partial computation could lead to

efficient construction of the exact EDM. much less a linear time algorithm.

When considering efficient com putation of the exact EDM under any dimension,

the first option offers the most promising approach. Indeed, the 2D and 3D versions of

the approximation algorithm described in this section have been used as the basis for

79

exact EDM implementations, with modifications along the lines suggested by the first

option. Precise analysis of the time complexity of these exact algorithms is difficult,

however, and it may be the case that their time complexities are not linear.

8 0

CHAPTER 4

CONSTRUCTING THE DISCRETE MEDIAL SURFACE

This chapter describes the second of the two main discrete geometry algorithms

fundamental to this research. The first algorithm, designed to approximate the Eu­

clidean distance map. is the focus of the previous chapter. This chapter discusses

the algorithm developed for computing the discrete medial axis (DMA) of a 2D dis­

cretized object or the discrete medial surface (DMS) of a 3D discretized object. The

concepts of the distance map. the medial axis (M.A.) and the medial surface (MS)

were introduced in Sections 2.1 and 2.2 in Chapter 2.

,A.n overview of the algorithm is given in Section 4.1. Section 4.2 then describes the

elements of the exposure calculation and how the concept of exposure is used to help

identify DM.A./DMS voxels. The heart of the algorithm is presented in Section 4.3. in

which the stepwise processing of voxels with common distance map values is explained.

Results appear in Section 4.4, and analysis and discussion of the algorithm follow in

Section 4.5.

As with the distance map algorithm in the last chapter, the DMA/DMS algorithm

detailed in this chapter generalizes to higher dimensions. The algorithm will be ex­

plained and illustrated for the 2D case, and both 2D and 3D results will be presented.

Extensions to three dimensions or higher tha t are not obvious will be discussed.

81

4.1 Overview of the Algorithm

The algorithm extracts the DMA/DMS tor an object from its Euclidean distance

map (EDM) by attem pting to identify and track the ridges of the EDM (recall the

basic discussion of this process from page 29 in Chapter 2). Whereas in the EDM

approximation algorithm, voxels are basically processed in increasing order of dis­

tance map value, in the DMA/DMS algorithm presented here, voxels are processed

in decreasing order of distance map value.

During the processing of a voxel, an exposure^^ calculation is utilized to help

determine whether a voxel belongs to the D.MA/DMS. Two exposure measures are

used: relative exposure, which is the amount by which the disk/sphere for one voxel

protrudes from the disk/sphere for a specific neighboring voxel (this is diagrammed

in Figure 4.1). and local exposure, which is the minimum relative exposure a voxel luus

when considering all of its neighbors (the "local" qualifier will frequently be om itted).

O ther processing is performed in order to ensure tha t each separate region of pro­

cessed voxels contains a single, connected portion of the DMA/DMS. The DMA/DMS

algorithm thus uses two btisic classes of DMA/DMS voxels: true DMA/DMS voxels

(whose exposure values meet or exceed a given threshold), and bridging DMA/DMS

voxels (whose exposures values themselves are insufficient, but that act as the con­

necting voxels between clusters of true DMA/DMS voxels).

The input to the algorithm is an EDM (or a close approximation) for a discretized

object - distance map values are assumed to be squared Euclidean distances. Interior

and exterior voxels must be clearly marked. In addition to the distance map. one input

*^The term "exposure" was coined to denote the amount by which a disk/sphere for one voxel is
exposed in relationship to one or more disks/spheres for adjacent voxels.

82

vTô,

Figure 4.1: The relative exposure of neighboring disks. The voxel on the left has a
distance map value of 10 and thus an associated disk of radius \/ÏÜ as shown: the voxel
on the right has a distance map value of 8 and thus an associated disk of radius \/8.
The relative exposure of the "10" voxel with respect to the "8" voxel is the extent to
which the \/ÎÔ disk protrudes from the \/8 disk and is the length of the double arrow
on the left. Given that the centers of the two voxels are separated by a distance of
one unit, this length is given by the expression \/TÜ-r 1 — \/8. which is approximately
1.334 units. Similarly, the relative exposure of the "8" voxel with respect to the "10"
voxel is the length of the double arrow on the right, or '/S 4-1 — \/lO ~ 0.GG6 units.

param eter can be specified by the user - the exposure threshold, briefly mentioned

in the previous paragraph but described in more detail in the next section. The

output of the algorithm is simply a labeling of each interior voxel as to whether it is

a DMA/DMS voxel.

4.2 Local Exposure Calculation

The algorithm extracts the DMA/DMS from the distance map in part through a

local analysis of the exposure for each voxel, or rather, the exposure of the associated

disk or sphere for each voxel. Recall that the distance map value for a voxel is the

square of the radius of a disk or sphere that is centered at the center of the voxel and

83

that just touches the boundary of the object. The exposure, then, provides a measure

useful for determining whether the voxel is the center of a maximal disk or sphere,

which is the pivotal component in the definition of the medial axis or surface (see the

first paragraph of Section 2.2 for the definition). In other words, the exposure of a

voxel is a rough measure of its relative importance to the DM.\/DMS in comparison

to its neighbors. It corresponds somewhat with whether a voxel is considered to lie

on a ridge or plateau of the landscape created when the distance map is viewed as

a height field for an object in the immediately higher dimension (see Figure 2.7 and

the related discussion in the text on page 29).

To compute the exposure for a voxel, it is necessary to compare the distance value

for the voxel with tha t for each of its neighbors in a way that corresponds to the

adjacency relationship between the two voxels. Let d, be the distance map value

for voxel c,. and let represent a neighboring voxel (with distance value d„). The

relative exposure of Ui with respect to Cn. denoted e(uj : (,'„). is the amount by which

the disk/sphere for u, protrudes from the disk/sphere for This amount can be

computed as follows:

e{ui : Vn) = \fd^ + distance(c,, e„) - \fd'n

where "distance(u:, (;„)” is the distance between the centers of u, and

The local exposure e, for voxel i\ is the simply the minimum of the relative

exposures of Vi with respect to each of its neighbors. For purposes of computation,

it is handy to partition the neighbors into groups according to their adjacency to a

voxel. For the 2D case, let N\ be the set of voxels that share an edge with i\ and

let Ag be the set of voxels that share a vertex (but not an edge) with u,. The local

exposure is then computed as the minimum of the exposures for each adjacency type

84

(e, ̂ is the exposure for l\ with respect to its 4-adjacent neighbors. e„ is the exposure

with respect to its strictly 8-adjacent neighbors):

e, ̂ = min e(r, : r^) = min {Jd, + 1 - \/d„)
fn€.v; ^ ^

= min e(c, : c„) = min (Jd , + \/2 - Jd „)
t'ri€Â

e, = m in {c ,,.e ,J

For the 3D case, the neighbors for a voxel l\ are partitioned into three sets: 6-adjacent

neighbors (.\g). strictly 18-adjacent neighbors and strictly 26-adjacent neigh­

bors (.Vjg). The local exposure is computed in a fashion similar to the 2D case:

= min e(c, : c„) = min (Jd, + I - Jd^)
fnc.V- iv.€.V- ̂ ^

= mill e(c, : i.'„) = min {Jd, + V2 - Jd„)
w,£.v;, ''

e.,,, = min e{t\ min (dr/, -r \/3 - Jd,^)
UticA-ig c A

e, = m in{e„.c.,,.e,.,,}

Extending the exposure computation to higher dimensions is straightforward.

Note tha t for the actual implementation, a few CPU cycles can be saved by first

finding the maximum distance value amongst the voxels in each partition, since that

distance value will result in the minimum exposure with respect to the corresponding

partition. It then suffices to apply the exposure calculation one time for each partition

and to report the minimum of those results. Figure 4.2 on the next page illustrates

this method of computing the exposure.

Potentially, exposure values can range from 0 to 2. The vast majority of vox­

els have exposure values less than 0.5, but most voxels tha t should belong to the

85

E x p o s u r e f o r t h e - 4 "

TTT 1 111111 1 iU 114 4 4 44 2 11 121125 9 9 98 5 212521148 13 161610 5 21124112S10 17 25 169 9 1 11114a13 20 25 169 4 114916 25 25 169 4 1 11114916 25 26 17 10 5 21242114 813 20 26 20 13 8 54584112510 171716 1713 10910941□ 149 13 10 9 1013̂16 16 941125 (g 8 5 45 8 13 16138411454 4 2 12 5 9995211421 1 1 r 1 4 44441
1 111 TTT 1 1 11111

M I N I

L ocal E x p o su re

E x p o s u r e f o r t h e " 1 7 "

A dj M ax N b r C a lcu la tio n E xp
4-adj 9 \/4-t- 1 - \/9 0.000
8-adj 10 \/4 -f- \/2 — \/lO 0.252

L ocal E x p o su re

E x p o s u r e f o r t h e "9"

0.000

A dj M ax N b r C a lcu la tio n E xp
4-adj 9 / 9 + 1 - / 9 1.000
S-adj 1 o I /o /-I i o 0.809

0 . 8 0 9

A dj M a x N b r C a lcu la tio n E xp
4-adj 16 s/17 + 1 - /1 6 1.123
8-adj 16 s / l T - ^ s / o - s / i e 1.537

L ocal E x p o su re 1.123

Figure 4.2: Examples of calculating the exposure for the three shaded voxels in the
distance map on the left. The tables on the right show the maximum distance values
for the 4-adjacent and strictly 8-adjacent neighbors of the shaded voxels (the column
heading abbreviations are for adjacency, maximum neighbor, and exposure). These
values are plugged into the exposure equation, and the minimum of the results is the
exposure for the voxel. The local exposures for the shaded "4". "9". and "17" voxels
are thus computed to be 0.0. 0.809. and 1.123. respectively. Figure 4.3 shows the
exposure values for all of the voxels.

DM.A./DMS have exposure values of 0.4 to 0.5 or greater. Specifying an exposure

threshold somewhere in the range 0.4 to 0.5 and examining the voxels meeting or

exceeding that threshold gives a good indication of the DM.A./DMS. These voxels are

usually not completely connected; instead, they form connected clusters that dot the

ridges and plateaus implied w ithin the distance map. Such clusters can be seen in

Figure 4.3. in which the exposure threshold is 0.5.

86

0.00

0.00

0.00

0.00

0.00

0.00

0.17

0.00

0.00

0.17

0.00

0.00

0.18

0.00

0.00

0.17

0.04

0.22

0.00

0.00

0.22

0.04

0.00

0.24

0.00

0.04

0.12

0.04

0.02

0.00

0.00

0.02

0.04

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.17 0.00 0.18

0.00 0.00 6 . ^ m n 0.18

0.02 0.00 g g 0.16 0.07 0.18

0.12 BBlil 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

1.00 0.90

0.18 0.18 0.18

E E l 0.18 0.18

0.18 0.18 g g 0.00

0.00

0.00

0.90 1.00

0.00

0.00

0.76 0.65 0.00

TQ] 0.18 0.00

0.00

0.00 0.00 0.00 0.00

0.02 0.04 0.04 0.00 0.00 0.00 0.17 0.00

0.13 0.12 0.04 0.00 0.07 0.17 0.00

0.02 0.04 0.00 0.16 J Q 0.00 0.00

0.04 0.00 0.04 0.00 0.00 0.00

0.22; 0.04 0.00 0.04 0.12 Œ22 0.17 0.00

0.17 0.00 0.00 0.00 0.04 Q J j 0.00 0.04 0.00

0.00 IH I I 0.00 m 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00

Figure 4.3: The complete grid of exposure values computed for the distance map
shown in Figure 4.2. Exposure values have been rounded to the nearest hundredth:
values of 0.5 or greater are shown in white lettering to illustrate the clustering th a t
results from simple application of an exposure threshold of 0.5. Voxels are shaded with
graylevels according to where their exposure values fall in the range from 0 (white)
to 1 (black) - voxels with exposures greater than or equal to 1.0 are colored black.

In most applications, and particularly in the context of this research, it is useful

to have a fully connected DMA/DMS; for this reason, further processing is performed

to find suitable voxels that will work to connect the clusters. Note that the processing

described in the following section does not directly correspond to the concept of con­

necting clusters as was just mentioned: nevertheless, it should be clear after reading

that forming such connections is the main by-product of the processing.

4.3 Extracting the DMA/DMS

.As mentioned above, the exposure value of a voxel is the first indicator of whether

a voxel is a DM.A/DMS voxel, but examination of exposure values alone is insufficient

to guarantee a connected DM.A/DMS. Some voxels must be used as bridging voxels

to connect the DM.A/DMS even though their exposure values are below the threshold.

In order to help identify these bridging DM.A/DMS voxels, it is important that voxels

be processed in a certain order. Therefore, before the actual processing of a voxel

is discussed, a few paragraphs will be spent discussing the ordering of voxels to be

processed.

.After each voxel has been assigned an exposure value, the voxels are organized into

a sorted array of lists corresponding to each distinct distance map value. Voxels with

a common distance value are inserted into a single, matching list, corresponding to a

particular contour level of the distance map. This array of contour lists is sorted in

decreasing order according to distance value, and the contour lists are then processed

in sequence beginning with the list for the largest distance value. Figures 4.4 through

4.7 on pages 90 through 93 illustrate the execution of the algorithm as it processes each

88

contour level of a distance map (the same distance map computed in the illustration

for the EDM approximation algorithm - Figures 3.2 through 3.5).

The distance map value of a voxel thus determines the contour level in which

the voxel will be processed. W ith regard to the processing of a particular contour,

though, the voxels having the largest number of processed neighbors are given priority.

Processing the voxels in this order helps to reduce the number of connected clusters uf

processed voxels at any stage of the execution and also simplifies the case-wise analysis

used to determine how a voxel should be processed. To help achieve the prioritization,

just before a particular contour list is processed, its voxels are partitioned into arrays

(called contour arrays) corresponding to the number of processed neighbors each voxel

has. The processing of the contour, then, consists of stepping through this array

of arrays beginning with the one corresponding to the largest number of processed

neighbors.

Each unprocessed voxel keeps a record of how many of its neighbors have been

processed. To help maintain these records, whenever a voxel is processed, it incre­

ments the counter for each of its unprocessed neighbors. If the neighbor has the same

distance value as the current voxel being processed, then reference to that neighbor

must be transferred from its containing contour array to the array corresponding to

having one more processed neighbor. .\s an example, given that the current voxel

and a particular neighbor both have the same distance value (that of the contour

list), if the neighbor voxel itself has 2 processed neighbors before the current voxel

is processed, then it resides in contour array #2 . .\fter the current voxel has been

processed, though, tha t neighbor will have 3 processed neighbors, and so it will need

to be moved from contour array # 2 to contour array #3 . In addition to having a

89

y
H B a a B B

H B B S S S S S a S B

BBBBBBB
n BBBBBBB

□ Œ B flflflB B B
BBB

BBBBBBBD
m ' i I I _ o o _

iii§S BflDBBBl

BBBBBB
BBB SSSB 9 B SB SSS

BBBBBBB
a

(a) Step 0: {ci = 26).

Bgaa raaiagn
(b) Step l; (ri = 25).

ÎB

BaBfflBBBBBBBBBBB

~ H B a a V n n S [

a iiiË ia iS S a
a a a a a a a a a a a a
a a a a a a a i
~ ~ a a a a

a a a a a a B

B aBflB B B B B B B B B B fl
S8 §ffîFR 8 S8 8 8 8 S

n I T T r r r

a
m~\ \ I _ o o _aamaaaao OBI

^Dl
□BBBBBBBBBflBBBI
JBBBBBBBBBBBBBI

IBHBBE
a a a B - B m B a a a a a a a r
B B B B / î BBBBBBBBB.
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
8 8 8 B B 8 8 8 8 8 8 8 r
B B B n n n n a a a a a a a l

I I r r r r
B

(c) Step 2: (ri = 20). (ci) Step 3: (ri = 17).

Figure 4.4: Discrete medial axis computation (steps 0-3). This figure and the three
that follow illustrate the DMA/DMS algorithm. \bxels are processed in decreasing
order of distance map value (denoted by d in the individual captions). In (a), the first
DMA voxels are processed (black with white lettering). More are identified in (b).
In (c), the first three voxels whose exposures are below the threshold are processed
(light gray with arrows denoting direction of steepest ascent); note in (d) how one of
these becomes a bridge (dark gray with white lettering) to help connect the DMA.

90

Î
m m m m m m m

I y m
‘ m - M m m

p
js s s s / Î \aassasaa
j H M I I I H Ilaaaaaa

i \ I / I

 i\-i-
l a a a — a B S "

►EB3-
l a a a / — B3E]"
J5 S S S / Î \ E E a s a s 2 s□aaa t aaa-maaaaa. aaaaaa t amaaa.
aaaaaa

(a) Step 4: {d = 16). (b) Step .5: {d = 13).

n n n n r n n o o □aaaaaaaa n a a n naaaaaaaaoaaac naaaaaaaaaaaaaa ja a a x i✓-aaaaaaa
 \ —►^♦—3 ____
B B B - ' S S - a i a

a a a -/ r \um i a i aaa □aaat t a t - a r aaaaaaaaa t

l l f f l
aaaaaa

1 1 1 1 1 1

n ' T T I I
laaaaaai o n

n m a a \ i i a a
j a a a \ i / -

— » —

BBB \ —__
a a — a s — a a
a a — mm— a a a a a
a a a / - a m - a a a a a
a a a - m î \ m a i i i ✓
o a a / E I Î Î — E B E Q iE — a a

Î a a a a a
/ Î \

T J l laaaaaai
m ' n T

B

(c) Step 6: {d = 10). (d) Step 7: (d = 9).

Figure 4.5: Discrete medial axis com putation (steps 4-7). Voxels that have not yet
been processed are shaded medium gray with distance map values drawn in black.
Two separated regions of processed voxels are apparent in diagram (a) above - the
genesis of the smaller region occurred in Figure 4.4(d). In (b), a "13" voxel becomes
a special type of bridge, known as a saddle point, that effectively merges the two
regions. No DMA voxels are added in (c). In (d), a bridging path composed of two
voxels is formed to connect the "9" to the rest of the DMA.

91

B
TT T ~ n T

B§i
.CD.
S Ë

M l /
\ \ l

- «
\ \ —
- » ■

BB| — »
/ / —

mmm—M t i i 0 3 / i i ü
□BB/SEî î î-KBEQŒ-aa
BHBB î a a a / 1 b b n b b

IBBBB/ î \
BBBBBinBBBBBBBI
BB Bnm hB BB aBBB IB

BS
l a a

' n T T r r
i D D i

Si'
§§E

w l l / /
\ \ i / ~

\ - »
\ N —

 y / — / /
a a / —B î nIBÉ 1 i B /
□ B B /B î î î —B Ë B -

Q i \ B / / î B B ^ a a

(a) Step S: {d = 8). (b) Step 9: (d = 5).

rn I III D O
H B B B B aaao n c _ ,
_ a \ 11 i i a a a a a a i

n \ \ I I / /
U B

□B B _ .
J B —\ \ l / — BBBBBB

\ —— S
a p f f ^
BJBBBL
B B B lBB

B — \ \ — "

— —*BB— / BBB l BB
—* / / — / / l I D
B / —B î \ B B l l B / —B

OB—/B î t î —BBB— B
H — B r \ î / / î B B \ — B

BDBî Î B B B / / î \ \
nB B BBBnB / î î î N ,

I BBTTTTIBBBBBBBI
] T T T T J T

SE

I I I I I I
□BBBBBBBD n ,
□ B \ l l l l /BDBIBI?8B

B
îBBÎ QB

m

□ B \ \ \ l l / / -
EjB—\ \ i / ' - —

| \ \ » "ES* *
 |—» \ \ — * * B
B — BB— __
n—" * *BB*' '* / / a \ i /
I—* / / — / / I l 0 —

J / / —B 1\ B B l I B / —
3B —/B î î î —BBB— B

—O f \ I / / t BB%
BBBî î \ B / / / î \ \ \
BD ÎBHBDB/ î î î nBI

U
BBBBBBB
n B

(c) Step 10: (d = 4). (d) Step 11: {d = 2).

Figure 4.6: Discrete medial axis computation (steps 8-11). In the upper right of (b).
another separated region of processed voxels forms. Both regions continue to grow in
(c) and (d) and are finally merged in Figure 4.7(a) though the use of a saddle point
and several bridging DMA voxels - note how each bridging path traverses its voxels
along the path of steepest ascent. .4ctually, either “1” between the groups could act
as the saddle point for the merge, but really, both should be considered saddle points.

92

Tirn i r D On 1 1 /Q DDiri
i i I
i i Q B i n B B /
lŒEBQBCz î □

/

\ l
1

\ \ \ \
—»—* \ \

\ \ \ — *-
— ►— * \ \ —

— * ‘ / / \
— / / Î
/ / / — m î \ B a t B _ L i

□ — / E î î î
î \

Q B î î \

î \

B

î r \

\ 1 /
\ 1 / /

E B E " —
î / / t E E \
]_/ / / \ \ \ \ \ u

n f l / î
î t î
î î î

\
î \

m I T T
B

(a) Step 12: {d = 1).

m ' T i I

□
OB
O

I o o

° r f g “ 0
BBOBB

e e b b o _ □
i

E E
E E

E E B
E SS E
EEI

_ c a B

(b) Final DMA.

I I I F IT

Figure 4.7: Discrete medial tixis computation (step 12 and output). In (a), the final
level of voxels has been processed. DMA voxels are marked as either black or dark gray
with white lettering; the black voxels have exposures equal to or above the threshold
(0.5). the dark gray voxels have insufficient exposures but act as bridges to help
connect the DMA. Non-DMA voxels are drawn in light gray and shown with arrows
representing the direction of steepest ascent. The output of the algorithm, shown in
(b), is a grid in which the DMA voxels are marked as either true DMA voxels (black)
or bridging DMA voxels (dark gray) and are labeled with their distance map values.

field for the number of processed neighbors, then, a voxel must also have a field that

acts as a subindex into the appropriate contour array, noting the position of the voxel

within that array, so tha t the transfer can be performed quickly. Note that in the

example, if contour array # 2 happened to be the current array being processed, then

processing of the contour arrays would have to step back to process contour array # 3

(since that array would contain the neighbor voxel) before returning to finish any

processing of contour array #2 .

93

As alluded to in the overview of the algorithm, voxels are processed differently

depending on whether their exposure values are greater than or equal to the exposure

threshold. When a voxel having a sufficient exposure value is processed, it is auto­

matically marked as a DMA/DMS voxel. Following this, a bridging operation may

occur to ensure that this new DMA/DMS voxel is connected to the other DMA/DMS

vuxela in the same region uf processed vuxels. When a voxel wiih an insufficieni expo­

sure value is processed, a check is performed to determine whether the voxel connects

two or more regions of processed voxels, in which case the voxel is a saddle point. If

it is a saddle point, then a bridging operation is performed for each adjacent region

in order to connect the DMA/DMS for the conglomeration. Note that these bridging

operations for saddle points can also occur when processing a voxel with sufficient

exposure if that voxel is adjacent to more than one region of processed voxels.

To aid in the bridging process, each voxel maintains two additional pieces of infor­

mation; a group identification number and a potential bridging direction. The group

ID is used to keep track of connected regions of processed voxels: all processed voxels

(whether DMA/DMS voxels or not) that form an 8-connected cluster (26-connected

cluster for the 3D case) will have the same group ID. The bridging direction is used

to determine bridging paths that will keep each portion of the DMA/DMS connected

during formation; each separate group of processed voxels will have its own connected

portion of the DMA/DMS.

Initially, all voxels are assigned a unique group ID and thus reside in their own

one-voxel size group. During processing, groups are merged by applying a union-find

algorithm to the set of group IDs (for details on the union-find algorithm, see Cormen,

Leiserson, and Rivest [CLR90]).

94

Bridging directions are assigned to voxels as they are processed. In the current

implementation, the bridging direction is the direction of steepest ascent (what is

actually assigned to each voxel is a pointer to the neighboring voxel in the direction of

steepest ascent). For the steepest ascent computation, neighboring voxels are handled

in separate groups according to their adjacency to the current voxel being processed,

lu LUC 2D caac. the 4-àdJàcent vuXcls ài'c all uiic uiiit àway fiolu the currcut voxel,

and the strictly 8-adjacent neighbors are all \/2 units away, and this relative distance

must be taken into account in the gradient calculation. Using the same symbols as

in the formulation of the exposure calculation (see page 84). for the current voxel l\.

the amount of ascent, or slope, to a neighboring voxel c,, is computed as follows:

ascent (c, : v j = ----------------- -
distance(Cj. c,,)

The bridging direction corresponds to the neighboring voxel with maximum ascent

value. As in the exposure computation, though, instead of calculating the itscent to

each neighboring voxel, the 4-adjacent and 8-adjacent neighbors with the maximum

distance map values can be found first to lessen the amount of computation involved.

When a voxel is processed, the neighboring voxels that have already been processed

are examined to determine which groups are represented. Action is taken according

to how many groups are represented, with the possibilities divided into the three cases

from the following list:

• N o a d jac e n t g roups: No adjacent groups translates into no adjacent voxels

having been processed, so the current voxel simply keeps its own group ID.

Unless the exposure threshold has been set artificially high (that is. greater

95

than one. in which case the algorithm is not guaranteed to work), the voxel will

have sufficient exposure to be labeled as a DMA/DMS voxel.

• O ne a d ja c e n t g roup : If the processed neighbors all belong to the same group,

then the current voxel joins that group (this is done by merging the group IDs

of the current voxel and the adjacent group using the union-find algorithm).

If the exposure value of the current voxel is below the threshold, then nothing

else is done (this is the situation for each of the "20" voxels processed in Fig­

ure 4.4(c)). If the exposure is sufficient for the current voxel to be labeled as a

DM.-\./DMS voxel, though, then an additional step is performed to ensure that

the DM.A/DMS for the group is connected in light of the fact that the current

voxel is a new member of the DMA/DMS. This amounts to finding a bridging

path from the current voxel to another DM.A/DMS voxel for the group: any

non-D.M.A/DMS voxels discovered along the bridging path are relabeled to be

DM.A/DMS voxels. The bridging path is composed of voxels found by starting

at the current voxel and repeatedly moving to the steepest ascent neighbor until

a DM.A/DMS voxel is reached: often, the steepest ascent neighbor is already one

of the DM.A/DMS voxels, so no further action is required. In Figure 4.4(d). the

processing of one of the "17" voxels requires a bridging path to be formed which

causes a "20" voxel to be relabeled as part of DM.A/DMS. In Figure 4.5(d). a

longer bridging path results from the processing of a "9" voxel.

• M u ltip le a d jac e n t groups: W hen the processed neighbors belong to more

than one adjacent group, several things happen. First, regardless of its exposure

value, the current voxel is labeled as a DMA/DMS voxel (it is a special type

96

of bridging voxel that corresponds to a saddle point). Next, bridging paths are

found connecting the current voxel to the DMA/DMS of each adjacent group,

effectively connecting the DMA/DMS for the conglomeration (note that to do

this, it is necessary to compute the steepest ascent direction into each adjacent

group). The final step is to merge each adjacent group with the current voxel's

group through multiple applications of the uuion-uad merging upt^ictLiuu uu th e

associated group IDs. In the execution illustrated in Figures 4.4 through 4.7.

there are two instances of this merging via saddle points: the first occurs as a

"13'' voxel is processed in Figure 4.5(b). and the second occurs in the hnal step

in Figure 4.7(a) when the large, central group is merged with the smaller group

in the upper right.

The actions in the previous list focused on the bridging process, but remember

tha t as any voxel is processed, additional steps are required to notify its unprocessed

neighbors that they have yet another processed neighbor. Through careful coding,

accessing the neighbors for the currently processed voxel can be minimized to total one

access per neighbor plus one access per adjacent group (the latter access results from

initiating any bridging operations that may need to be performed from the current

voxel). Path traversals during bridging operations require accessing each voxel along

the path in order to find its steepest ascent neighbor and to label it as a bridging

voxel of the DMA/DMS.

There is a fair amount of bookkeeping that must be performed for the algorithm

to work efficiently. For convenience, the following list provides a summary of the

information stored with each voxel:

• D is tan c e M ap V alue: Obviously, it is necessary to know the distance value

for each voxel.

• E x p o su re V alue: The exposure value of a voxel, the computation of which is

described in Section 4.2. is compared against the exposure threshold to deter­

mine whether the voxel is a DM .\/D.\IS voxel outright.

• A rra y o f N e ig h b o rs : Each voxel possesses an array of pointers to voxels

immediately adjacent to it. This array is organized according to adjacency re­

lationships to facilitate the exposure and ascent calculations: for the 2D case, for

instance, the four 4-adjacent neighbors precede the four 8-adjacent neighbors.

• S te e p e s t A scen t N e ig h b o r: This is a pointer to the neighboring voxel in the

direction of steepest ascent, to be used during potential bridging operations.

• G ro u p ID N u m b er: This represents the current region of processed voxels

in which the voxel resides. It is actually an index into the array that serves to

maintain the group affiliations for the union-find algorithm.

• N u m b e r o f P ro c e sse d N eighbors: For an unprocessed voxel, this is the

number of neighboring voxels that have already been processed. It also serves

as an index indicating which contour array contains the voxel when the contour

list containing this voxel is being processed. Once the voxel has been processed,

this field is no longer updated.

• C o n to u r A rra y S u b -in d ex : Whereas the number of processed neighbors tells

which contour array the voxel is in during processing of its contour list, this field

tells which position within that array is held by the voxel. Together, these two

98

fields enable the algorithm to shift the voxel from one contour array to another

in constant time as the need arises. This particular field is only used during

the processing of the contour list containing the voxel; it is initialized when the

contour list is partitioned.

• D M A /D M S C lassifica tion : This field is used for two purposes: labeling the

voxel as to whether it has been processed, and labeling it as to whether it belongs

to the DMA/DMS. Before the voxel is processed, this field contains the value

"unprocessed" : later, after processing, it may contain one of three values: "true

DMA/DMS voxel", "bridging D M .\/D .\IS voxel". "non-D.MA/DMS voxel".

4.4 Results

By specifying different values for the exposure threshold, various DMAs and DMSs

can be produced, the difference being primarily in the level of detail the DM.\/DMS

shows. low threshold such as 0.4 can extend the DMA into the finer protrusions

of the boundary; a high threshold such as 1.0 is useful for generating a lean DMA

for a concise analysis of the structure of the object’s interior. Threshold values above

1.0 or below roughly 0.25 typically do not result in useful DMA/DMSs. Figure 4.8

shows the DMAs produced by the algorithm by using thresholds of 0.4 and 1.0 for the

distance map used in Figures 4.4 through 4.7. Compare the results with Figure 4.7(b).

For the purposes of this research, fine detail relating to each bump on the surface of

an object is unnecessarv*, so the exposure threshold is usually set at either 0.5 or 1.0,

depending on the object. More examples of DMAs produced by the algorithm are

given in Figure 4.9.

99

B f f l

□□ EEBBBBB
D EBB

Q D B B
Q3E B ____

Q
QQ EE] BD

EB EBEB EED
 I E e B I B B
D BB EEOEBBB

OB O_____ B B□non:n

s

□ „ B B B

I T T i- r i C D
□ _ D _ B ^

□ B
B B

E B E E B B B _ □

I
E B

B _
EB

E E E
 I E E E B B

□ B
Q

O
TT

TT rrr'D i
(a) Toxp = 0.4 (hi r„p = 1.0

Figure 4.8; The discrete medial axis that results from using other exposure thresholds
(denoted by Texp). VVhereiis Figure 4.7(b) shows the DMA computed for an exposure
threshold of 0.5. the two grids above show the DMA computed for exposure thresholds
of 0.4 and 1.0. respectively.

It is sometimes the case that the voxels with a distance value of one (also referred

to as T" voxels in the text) have relatively high exposure values when compared to

voxels with other distance values. This can adversely affect the results of the algo­

rithm by causing numerous spurious extensions of the DMA/DMS. For the 2D case,

these extensions can often provide additional information for analysis of the object

(for examples, see Figures 4.9(c) and 4.9(1)); nevertheless, they can often be filtered

out by increasing the exposure threshold (contrast the examples just mentioned with

Figures 4.9(b) and 4.9(h)). For the 3D case, the extra extensions can provide addi­

tional information, though in the vast majority of cases they simply clutter the DMS

without providing anything of real use or significance.

1 0 0

Texp = 0.3a (b) Texp = 0.5 (c) r„ p = 0.4

(s) î'exp = 0 .5

w

(i) r«xp = 0.4

Figure 4.9: Several DMAs produced by the algorithm. The grid dimensions for each
example are roughly 100 x 100, and exposure thresholds (denoted by Texp) are shown.
The shape in (b) and (c) is loosely based on one used by Ge and Fitzpatrick [GF96].

1 0 1

Note that these extensions may be technically accurate in the discrete realm, where

the voxels functioning as feature points are perceived as individual elements devoid

of any coherent relationships with other feature point voxels. Contrast this with the

alternative case, where the voxelization is an approximation to a continuous object.

Here, an outside observer would likely group the feature point voxels (which comprise

the first layer of exterior voxels) into coherent sets buatrd un a \ iaual partitioning

of the object's boundary: the observer would then expect the D.MA/DMS for the

object to respect this partitioning. Unfortunately, the discretization process usually

conceals or discards any inherent partitioning of an object's boundary elements - and

this problem manifests itself through an undesirable side effect: spurious extensions

of the D.M.A./DMS that typically have no correspondence to the continuous medial

surface of the object.

To help limit the growth of spurious branches of the DM .\/D .\IS. it is often useful

to ignore the "1" voxels to a certain degree. To do this, all "1" voxels are set to be

non-D.M.-\./D.MS voxels, with the only exceptions being the T" voxels that function

as saddle points, which are labeled as DM.A/DMS voxels. This helps to keep the

DM.A/DMS more clear and concise so that it better corresponds to the continuous

medial axis/surface of the object. Figures 4.10 and 4.11 show examples of DMSs

produced by the 3D implementation of the algorithm, in all cases handling the T"

voxels as a special case in the manner just described. In each figure, voxels are drawn

as spheres with a radius of ^ times the width of a voxel so that a 26-connected

"surface'' of voxels, when rendered, will completely occlude anything on the side

farther from the camera. For the 2D implementation, such special handling of "I"

voxels is typically unnecessar}' in light of the influence had by simply raising the

1 0 2

T e x p = 0.4

(b) T e x p = 0.4

Figure 4.10: Two DMSs of a box as produced by the algorithm. The box has the
relative dimensions 2 x 1 x 3 . In (a), the box is aligned with the axes, resulting in
a more regular voxelization and DMS. In (b), before being voxelized. the box was
first rotated by 25 degrees about the z-axis and then by 20 degrees about the x-axis
(for comparison with (a), the resulting DMS is shown with a similar viewpoint and
lighting). In both instances, the voxelized box consisted of approximately 35.000
interior voxels, and the exposure threshold was set at 0.4.

103

(a) The voxelized horse (b) Texp = 0.5

(c) Texp = 0.7 (d) T e x p = 1 . 0

Figure 4.11: DMSs of a voxelized horse as produced by the algorithm. The discretized
horse model in (a) contains roughly 50,000 interior voxels. The other images show
the DMS produced for the voxelized horse using various exposure thresholds (Texp).

104

exposure threshold; nevertheless, keen observation of the shading used for DMA voxels

in Figure 4.9 (black for true DM.\ voxels versus dark gray for bridging DM.\ voxels)

will reveal which extensions of the DM.-Vs would disappear if "F' voxels were basically

ignored.

4.5 Analysis and Discussion

The time complexity analysis that follows relies on knowledge of the union-find

algorithm and the counting sort algorithm. For more details on these algorithms,

its well as for a discussion of O (n lg 'n) time complexity, see Cormen. Leiserson. and

Rivest [CLR90].

If n is the number of interior voxels, then the time complexity of the D.\I.\/DM S

algorithm presented in this chapter is 0 (n lg ‘n). Note that Ig 'u is a function tha t

grows extremely slowly: in fact. Ig'n < 5 when ri < 2'’̂ "’̂ ®. Thus, for all practical

purposes, the time complexity for the algorithm is as good as linear time complexity.

The time complexity arises due to the use of the union-find algorithm, which is

implemented using path compression and union-by-rank. and to the fact that the

total number of disjoint-set operations in the algorithm is a constant multiple of the

number of union operations. As for creating the sorted array of contour lists, it

should be observed that the number of distance map values can be no larger than the

number of interior voxels, so a linear time counting sort can be used to help order the

array. Likewise, a counting sort can be used to partition the voxels of the contour list

according to the number of processed neighbors each voxel has. .As for the possible

movement of a voxel from one contour array to another as its contour list is processed,

observe that this cannot happen more than k times for any particular voxel, where k

105

2D (DM.A) IMPLEMENT.^TION
In te r io r E x e c u tio n
Voxels T im e

10.000 0.2 sec
100.000 3 sec

1 .0 0 0 .0 0 0 36 sec

3D (D M S) I.MPLE.MENT.ATIO.N
In te r io r E x e c u tio n
V oxels T im e

10.000 0.5 sec
100.000 6 sec

1.000,000 78 sec

Table 4.1: Approximate execution times for the 2D and 3D implementations of the
DMA/DMS algorithm. The times shown are the average computation times over
multiple test runs on various grids which had approximately the number of interior
voxels listed in the table. These times were compared to the EDM approximation
algorithm from Chapter 3. which was executed prior to the D.\I.\/DM S algorithm in
order to generate the distance map for input to the DMA/DMS algorithm. In general,
the DM.A implementation required roughly three times as much execution time as the
EDM approximation algorithm, and the DMS implementation required about five or
six times the execution time of the EDM approximation algorithm. Execution was
performed on a Silicon Graphics® 02® (R5000 Processor Chip).

is the total number of adjacent voxels a voxel may have. For a particular dimension,

this is a constant number {k = 8 for two dimensions, k = 26 for three dimensions, and

so forth): thus, the number of transfers also has a linear time bound. Finally, note

that the number of voxels traversed during all of the bridging operations combined

cannot exceed the number of interior voxels: therefore, the extra processing required

for bridging has a cumulative bound that is of linear time complexity.

•Actual execution times for the 2D and 3D implementations are given in Table 4.1.

The timings for the 3D version are roughly twice tha t of the timings for the 2D

version. The only difference in the two implementations is in the number of possible

adjacencies for a voxel, and this seems quite reasonable for explaining the relationship

between the timings.

106

For the purposes of the research behind this dissertation, the DMA/DMS algo­

rithm works quite well (its use will be made clear in the next chapter): nevertheless,

there are a few problems with the algorithm as it pertains to producing quality DM.As

or DMSs. As for judging the algorithm in terms of the preferable characteristics pre­

sented beginning on page 26 of Chapter 2. the algorithm performs nearly acceptably

with a few noted shortcomings. The characteristics are reprinted in the list that fol­

lows along with a discussion of the performance of the algorithm with respect to each

one.

• S im ila r Topology: For the 2D version, the DM.A produced often has the

same topology as the original object, such as in Figures 4.9(b) and 4.9(c). Such

agreement is definitely not guaranteed, however, and this is especially evident

in the extreme case of grids generated by randomly dropping feature points into

a plane of background points. Even for the more usual case of working with

discretized objects, it is not difficult to design objects where the genus of the

DM.A for the interior differs from that of the object. .As for the 3D version of the

algorithm, it is more often the case that the genera differ. In Figure 4.11. each

DMS shown has a genus greater than zero (the genus of the voxelized horse),

and in Figure 4.10. although the first DMS shown has genus zero like the box

itself, pin-size holes are visible in the second DMS, indicating a non-zero genus.

Precise determination of the genus of discrete objects turns out to be a fairly

confusing undertaking, and the subject of discrete topology is beyond the scope

of this text.

• C en te rin g : For the most part, the DM.As and DMSs produced by the algorithm

are well centered. Occasionally, however, bridging paths may be created that

107

are not as well centered as they could be, since they appear to diverge from

where the continuous MA or MS might ptiss through the voxelization. This

would seem to indicate that having the bridging paths follow in the direction

of steepest ascent is not the optimal solution to the centering issue.

• E x a c t R ec o n s tru c tio n : If the exposure threshold is set low enough (0.4. for

instance), and if "1" voxels are processed just like any other voxel, then the

DMA or DMS produced seems like it could be used to reconstruct the original

voxelization exactly via the inverse distance transform. Xo formal testing of

this claim has been performed, however.

• R o ta tio n a l In v arian ce : Here the algorithm often performs fairly well, though

having a sufficiently large number of interior voxels helps to minimize any ob­

servable variance under rotation. Figure 4.10 is somewhat typical of the ro ta­

tional results possible with the algorithm.

• Im m u n ity to N oise: Due to the dependence of the algorithm on the exposure

calculation, noise can affect the local structure of the DMA or DMS produced.

Special handling of the "1" voxels as described earlier can aid the algorithm in

better handling of surface noise.

• T h in n ess: Recall th a t thinness was a characteristic omitted from the original

list but described afterwards. As for the performance of the algorithm with

regard to this characteristic, note that the application of the exposure threshold

is blind to the thickness of the DMA or DMS at any point. Nonetheless, the

algorithm can produce reasonably thin results (Figure 4.10. for example), and

using an exposure threshold of 1.0 can help (see Figures 4.8(b) and 4.11(d)).

10 8

The basic problem with the 3D implementation (and one that might worsen in

implementations for higher dimensions) is that no special processing is performed

in order to ensure that "surfaces" of voxels are being generated for the DMS. The

bridging paths are all essentially ID. but perhaps the voxels along the bridging paths

could be made aware of neighboring bridging paths in some attem pt to weave a

bridging surface for parts of tlie DMS.

W ith all of its problems, then, one may ask what the main selling points for

the algorithm are. The simple answers to the question are the algorithm's relative

ease of implementation for any dimension and its efficient execution. If all that is

needed in an application is a rough approximation to the medial axis or surface, or

a reasonably well connected DM.A. or DMS. then this algorithm works quite well. .As

will be demonstrated in the chapters that follow, the DM.A/DMS algorithm is entirely

satisfactorv for the research described in this document.

109

CHAPTER 5

AUTOMATED GENERATION
OF CONTROL SKELETONS

This chapter details the steps involved in the general solution to the problem of

autom atic control skeleton generation for a given polygonal data model. The basic

goals for generalized skeleton production are outlined in Section 5.1. Section 5.2 then

steps through the discussion of each stage of the algorithm, from the voxelization of

the model through construction of the discrete medial surface and on through to the

creation of the control skeleton. Finally. Section 5.3 provides illustration and analysis

of the results of applying this algorithm to several example models, and Section 5.4

concludes the discussion of the general solution.

Note that many of the steps of the algorithm are nearly identical to those in an

earlier report on this research [WPOO]. The main differences between the algorithm

described in this chapter and the one reported on previously are th a t the one described

here uses the discrete medial surface of the voxelized object, tha t it includes a step

to smooth the path tree before creating the skeleton structure, and that it provides

the user with slightly more control over the skeletonization process through the use

of several input parameters. The results of this algorithm are slightly better than the

results from the previous method.

l i d

5.1 Goals

The primary goal of the algorithm is the automatic construction of a skeleton for

use in controlling the animation of a given set of polygonal data. To be effective,

the control skeleton produced by the algorithm must correspond well with the input

object. This correspondence should be present in the three basic respects: structure,

articulation, and attachment. These three areas are further described in the respective

sections of the outline of objectives below:

1. The skeleton and the object should agree in their basic shape and structure.

• The skeleton should be centrally located with respect to the object's sur­

face.

• Major branches of the skeleton should match the major protrusions of

the object, and minor branches of the skeleton should match the minor

protrusions of the object.

2. The flexibility, or articulation ability, of the skeleton should be appropriate for

the object. This means that the joints for the skeleton should reside at locations

such that the skeleton exhibits the following qualities:

• Skeletal segments should have meaningful lengths in relation to the nearby

surface elements of the object.

• The articulation of the skeleton in a particular region must seem appropri­

ate with respect to the local topology of the object: in other words, joints

should be placed a t points where the object intuitively should be able to

bend.

I l l

• The articulation at a particular joint must seem appropriate with respect

to the local geometry of the object, meaning that the jo in t’s axes should

be aligned with the proximal and distal segments so as to allow easier

specification of joint angles for animation.

• The skeleton should provide a sufficient but manageable level of control,

i here should be enough of a skeleton to provide some desired degree of

control, yet there should not be so much of a skeleton that its manipulation

would seem unwieldy.

3. The object should be attached to the skeleton in a sensible, straightforward

fashion.

• Each point of the object should be attached to one or more nearby segments

of the skeleton.

• The attachment should make the surface of the object appear flexible so

that the surface is seen to bend gradually but in direct agreement with the

bending of the skeletal segments.

Closely associated with the primary goal is the aim of requiring very little user in­

put. Besides the polygonal data, the user can specify seven input parameters, though

generally the algorithm performs fairly well using the default values of the param­

eters. The most influential parameters are the voxel-size parameter, the exposure

threshold, and the closeness-of-fit parameter. The voxel-size param eter is simply the

desired edge length of a voxel, the exposure threshold is the input parameter for the

DMS calculation, and the closeness-of-fit parameter relates loosely to the extent of

1 1 2

skeletal branches. The various parameters will be discussed in more detail as they

arise in the presentation of the algorithm.

5.2 The Algorithm

This section describes the various steps of the algorithm. Section 5.2.1 discusses

the manner in which the given model is disrreri/ed and Sections .5 2 2 and 5 2 3 tpll

how the distance map and discrete medial surface are computed for the discretized

model. Section 5.2.4 describes how the medial surface approximation is used to

generate a tree-like structure of voxel paths, which, as detailed in Section 5.2.5. is used

to generate the segments and joints of the control skeleton. .Also in that section, the

method of attaching the original polygon model to the control skeleton is presented.

The geometric input to the algorithm is currently restricted to sets of polygonal

data. The polygons are not required to form a single, closed surface, or really even to

be connected at all. What is required is that after voxelization of the polygonal data

and classification of each voxel as being either interior or exterior to the object, the

interior voxels form a single, connected set. .A closed polyhedron works quite well as

input, but a figure consisting of overlapping closed polyhedra works equally well. The

voxelization and classification process is often rather forgiving of aberrant polygons

or of polygonal surfaces that are not closed.

5.2.1 Volumetric Discretization

For purposes of uniformity, the first step of the algorithm consists of transforming

the polygonal data model so that its bounding box lies just inside the unit cube. .After

the transformation, the user is prompted to enter the edge length of a voxel (this is

113

the voxel-size parameter mentioned earlier), and the bounding box is then diced into

a regular grid of small cubes (voxels).

After the voxel grid has been generated, the polygonal data is examined, and any

voxels that are intersected by a polygon are marked as containing faces of the object.

filling routine is then applied to 6-connected regions o f unmarked voxels in order

tu la b e l each legiuu as iuLei iui ui e.'cLeriur: a region is la b e led as exterior if and only

if that region includes voxels on the edge o f the grid. N'ote that voxels contain ing

faces are also considered to be interior voxels. ,\f te r applying the filling routine, each

voxel is labeled as either interior or exterior, and the grid is essentia lly a volum etric

b itm ap o f the object.

For simplicity, it is required that the interior voxels form a single 26-connected

group, though additional steps could be implemented to process disconnected groups

and generate a separate control skeleton for each one, Note that the algorithm will

work if the group of interior voxels contains holes: however, the control skeleton that

is generated has the basic structure of a tree, and a tree-structured skeleton may not

work well for animating an object such as a doughnut or any other shape that is not

of genus zero.

The objective is to have a sufficient number of interior voxels. Having more interior

voxels allows for a finer approximation to the shape of the model and thus equates to a

better control skeleton, specifically with respect to the centralization of the segments

and joints as well as to their relationship with the polygonal data. The trade-off, of

course, is that more interior voxels require more memory and more processing time.

Experiments have shown edge lengths of 0.005, 0.01, or 0.02 units to work fairly well,

depending on the manner in which the transformed object fills the unit cube. For

114

4 9 16 25 20 17 16 16 16 16 16 16 16 13 10
4 9 16 17 16 16 16 16 16 16 17 20 20 13 8

Figure 5.1: The 2D Euclidean distance map for a discretized, animal-shaped polygon.
Cells intersected by the polygon or contained therein are the interior cells, shown as
shaded squares: the first surrounding layer of exterior cells is shown using empty
squares. The value in each interior cell is the square of the Euclidean distance to the
nearest exterior cell.

most of the models used, the interior voxels account for about 10% to 40% of the

total, and any%'here between 20,000 and 200.000 interior voxels are usually sufficient

to produce a reasonable control skeleton.

5.2.2 Distance Map Computation

The next step of the algorithm is the generation of a Euclidean distance map

(EDM) for the interior voxels. For each interior voxel, the square of the Euclidean

distance from its center to that of the closest exterior voxel is computed. Figure 5.1

115

provides a 2D example of the EDM as computed for a discretized, animal-shaped

polygon. The extension to three dimensions should be clear. Note that for the

purposes of this research, the exact EDM is not necessary, so in actuality, a very

close approximation is computed instead. For background on the distance map. see

Section 2.1 of Chapter 2: for a detailed discussion of the algorithm used to compute

the distance map. see Chapter 3.

5.2.3 Medial Surface Extraction

.\fter the distance map has been computed, it is fed into the algorithm described

in Chapter 4 for computing the discrete medial surface (DMS) of the object. The

DMS algorithm flags those interior voxels that belong to the DMS of the object. It

accepts one input parameter, the exposure threshold, which influences roughly how

thick the DMS appears as well as to what degree it extends into each individual

surface protrusion of the discretized object.

Generally, the skeleton generation algorithm works best if the DMS is relatively

clean and simple, that is. if it has relatively few extensions other than those corre­

sponding to major protrusions of the voxelization. For this reason, it is suggested that

the exposure threshold be set somewhere in the range [0.5.1.0]. The DMS algorithm

is also set to ignore voxels whose distance map value is “1" unless they are needed to

keep the DMS connected (see Section 4.4 of the previous chapter for a description of

this special handling of the “1” voxels).

5.2.4 Path Tree Generation

.\fter the DMS voxels have been identified, a path tree is generated tha t effec­

tively simplifies the DMS to a tree structure of ID pathways (referred to hereafter

116

as chains). The path tree is developed so as to maintain a tree structure regardless

of the genus of the DMS or the object. The formation of the path tree begins by

identifying a centrally located voxel referred to as the heart. .\ breadth-first search

of the DMS is performed beginning at the heart in order to identify extreme points

in the DMS - these extreme points are potential end-effectors of the control skeleton.

The process of growing the path tree then begins, and each new branch of the path

tree is created to extend to a previously unreached extreme point. During this pro­

cess. the corresponding spheres for the path tree voxels are examined to see which

DMS voxels are contained within them - any voxels contained within the spheres

are said to be "covered" by the path tree. This coverage is used to help weed out

insignificant extreme points resulting from spurious extensions of the DMS. When

no more path tree branches can be added that are at least a certain length, path tree

growth stops. Chains of the path tree are then identified, and the chain vertices are

filtered to help smooth the otherwise jagged pathways resulting from stepwise move­

ment between consecutive voxels along the chain. The following subsections describe

these processes in more detail.

Identifying Extreme Points

Before extreme points are identified, the algorithm needs a point from which to

label points as being extreme. For this reason, the concept of the heart was developed.

As applied to the DMS. the heart is a DMS voxel tha t is centrally located with respect

to the connectivity of the DMS as a whole.

One way to compute the heart is to perform repeated depth labelings of the DMS

voxels, each time using a different DMS voxel as the origin of the depth labeling (all

other DMS voxels are then labeled with their depth, or distance from the origin). After

117

each depth labeling, each DMS voxel adds its assigned depth value to an individual

accumulator. Over the course of multiple depth labelings. DMS voxels that are more

centralized overall will accumulate lower depth sums that those DMS voxels that are

on the periphery of the DMS. .After every DMS voxel has been the origin of a depth

labeling, the DMS voxel with the minimum depth sum is the heart. Depending on the

connectivity of the DMS. there may be multiple heart voxels (all having the- minimum

depth sum): for simplicity, however, the first voxel discovered to have the minimum

depth sum is considered to be the one and only heart voxel for use in identifying

extreme points.

The heart computation just mentioned requires a quadratic number of computa­

tion steps with respect to the number of DMS voxels. To avoid such a computational

cost, a constant number of DMS voxels (say. 100 or so) can be randomly selected to

be origins for depth labelings. Searching for the DMS voxel with the minimum depth

sum then provides a reasonably close approximation to the heart.

.After the heart voxel has been found, another depth labeling is performed on

the DMS using the heart as an origin. The length of the path between the heart

voxel and the deepest DMS voxel is saved for future use: this length is called the

heart radius. .Any DMS voxels whose depth values are local maxima are then tested

to see whether they are still local maxima with respect to all DMS voxels within a

slightly larger neighborhood (such as by comparing the depth of a local maximum

against the depths of all DMS voxels within five adjacent voxels of the local maximum

and discarding the local maximum if its depth is less than tha t of any DMS voxels

within the neighborhood). The remaining local maxima are the extreme points of the

DMS, and these are partitioned into groups according to their proximity within the

1 1 8

h e a r t

Figure 5.2; The heart and extreme points for a DMS of a horse. The heart voxel is
labeled, and there are thirteen groups of extreme points (shown as black spheres) as
seen from the heart - the hooves (4 groups), the tip of the tail (1). the haunches (2).
the nose (1). the ears (1). and along the mane (4).

voxelization (another application of neighborhood searches). When the path tree is

extended to an extreme point, all other extreme points of the same group are then

ignored for future path tree extensions. Figure 5.2 shows the heart voxel and extreme

points for a DMS of a horse.

Forming Path Tree Extensions

During the formation of the path tree, the algorithm examines connected paths

of DMS voxels. Two measures of voxel paths are used during this process: the

path length and a special weighted measure. The path length is simply the sum of

119

the distances between the centers of consecutive voxels along the path: the distance

between the centers of two adjacent voxels is I. l\/2. or /\/3 . where / is the edge length

of a voxel. The weighted measure U p of a voxel path P is based on the Euclidean

distance map:

where d, is the squared value for voxel c, as stored in the distance map (the use of 3

as the exponent was arrived at empirically).

The purpose of the weighted measure is to provide a means for favoring centralized

paths through the figure that follow along the deepest portions of the DMS. Using

a modified version of D ijkstra’s shortest paths algorithm (see Cormen. Leiserson.

and Rivest [CLR90] for the standard version), the algorithm can find the voxel path

through the DMS connecting any given pair of voxels and minimizing the weighted

measure of all such connecting paths. .-Mthough minimizing the weighted measure

does not guarantee that the path will follow along the deepest region of the DMS.

experimental results have shown that it appears to do so.

••Vnother concept crucial to the formation of the path tree is that of "coverage."

which is related to the inverse distance transform. Each value in the Euclidean

distance map defines a sphere, centered at the corresponding voxel, that just touches

the boundary of the object. The radius of the sphere for a voxel Vi is \/dl, where d, is

the (squared) distance map value for i\. Each sphere may contain the center points

of other voxels; if so, a sphere is said to "cover" those voxels. When a new path

is added to the path tree, any DMS voxels that lie within any of the corresponding

spheres of the new path are marked as being covered by the path tree. Figure 5.3

shows a simple example of coverage.

1 2 0

□□
II 11 1

1 1 1 2 4
1 1 4 4 4

□ 1 1 1 1

n a ? n
'

4
8 g 1 0 5
8 1313 8
5 8 13
2 5

i O
2 1
4 1 □

1

F

4
4
4
4
4
4
4
4
2

□ l
1 2
1 4
1 1

1 1 1 1 1 1
S B 3 2 3 3 4 4 4 4 4 4

9 9 9 9 9 9
1716 16 16 16 16

1 6 1 6 1 6 16 16 16 17 20
1310 9 9 9 9 9 9 10 13
8 5 4 4 4 4 4 4 5 8 13
5 2 1 1 1 1 1 1 2 5 8
4 1 n n n n n n j_ 2

1

1 1 H D D
33

5
4

1 2

%

□9:

1
1
2 __

□ □

i n
□

Figure 5.3: Examples of the coverage of three disks. The disks are centered at three
black voxels and have radii equal to the square root of the respective distance map
values in those voxels. Voxels shaded dark gray are contained in the disks and are
considered to be "covered” by the black voxels (which are also considered to be covered
themselves).

The extreme point with the largest depth value (relative to the heart voxel) is the

starting point for the first branch of the path tree. The path tree is then grown by

creating and appending extensions to it until further extensions to the path tree will

unnecessarily complicate the structure. Each extension to the path tree is formed by

executing the following steps:

1. Mark (or update) the DMS voxels covered by the path tree.

1 2 1

2. Find the extreme point DMS voxel ly farthest from the covered region (note

that the group of extreme points containing vj must not already have had a

branch of the path tree extended to one of its members, and also note that any

covered extreme points are simply ignored).

3. Find the minimum weight path of DMS voxels connecting cy to the path tree.

4. .A.ppend that minimum weight voxel path to the path tree.

In Step I. note that the coverage of the DMS does not need to be recomputed

each time a new branch is added to the path tree: instead, the coverage can simply be

updated in the area surrounding the new extension. Figure 5.4 shows how coverage

changes during the formation of path tree extensions within the DMS of the horse

from Figure 5.2.

In step 2. the algorithm searches for the non-covered extreme point voxel cy that

is farthest from the set of covered DMS voxels. If the shortest path length from cy

to a covered DMS voxel is greater than or equal to a certain threshold, then the

algorithm proceeds with steps 3 and 4 to extend the path tree to cy and then repeats

the process beginning with step 1. If the shortest path length from cy is less than the

threshold, then steps 3 and 4 are skipped, and no more branches are added to the

path tree.

The threshold used in this process is the product of the user-supplied closeness-

of-fit param eter (mentioned in Section 5.1) and the heart radius computed at the

beginning of the path tree generation process. Observation has shown that a closeness-

of-fit value between 0.05 and 0.1 works fairly well for producing a good, simple control

skeleton - this means tha t a new branch will be added if it extends at least ^ to

1 2 2

* Non-covered
DMS voxels

Covered
DMS voxels

Path tree voxels
or non-covered
extreme points

(a) (b)

(c) (d)

Figure 5.4: Forming path tree extensions. The extreme point a t the tip of the tail
is the first point of the path tree. In (a), the first extension to the path tree reaches
from the tail to the nose. In (b). the second extension reaches to the right hind hoof.
The next three extensions branch out to the other hooves as shown in (c). In (d). the
final branch extends to the ears. The remaining extreme points are not far enough
from the covered region to warrant further extensions of the path tree. The completed
path tree is shown in Figure 5.5 without the other DMS voxels.

123

Figure 5.5: The completed path tree for the horse. The path tree voxels are drawn
as small spheres to allow the edges of the path tree to be seen.

of the length of the heart radius beyond the current coverage of the path tree. Using

finer values will usually allow the extension of the path tree into smaller protrusions

of the object, such as the fingers of a hand: however, it can also result in the formation

of other seemingly spurious branches.

Step 3 makes use of the modified version of Dijkstra's shortest paths algorithm

mentioned previously. Each path tree voxel is assigned a weight of zero and becomes

a source point for the shortest paths. The weighted measure is applied as the shortest

paths search spreads through the DMS. When the search reaches v/. it is a simple

m atter to backtrack to find the actual minimum weight path from Vf to the path tree.

This minimum weight path is then added to the path tree. Its coverage of the DMS

124

voxels is then computed as the process of extending the path tree is repeated from

step 1.

Smoothing the Path Tree

The path tree is basically a collection of vertices (the centers of the path tree

voxels) connected by a set of edges (based on the adjacency of consecutive voxels

of the path tree extensions). The path tree for the horse has been redrawn as a

collection of vertices and edges in Figure 5.5. .\fter the path tree has been formed,

its vertices can be sorted into three classes. Endpoint vertices have only one adjacent

edge - these correspond to the extreme points used during the growth of the path

tree. .Junction vertices have three or more adjacent edges - this is where the path

tree forks or branches. The remaining vertices, termed intermediate vertices, have

exactly two adjacent edges and come in connected sequences between endpoint and/or

junction vertices. The endpoint and junction vertices split the path tree into a set of

connected path segments termed chains.

Due to the regularity of the voxelization. the chains of the path tree can be fairly

jagged. The jaggedness may be especially noticeable in parts of the figure where the

main direction of a chain section does not align reasonably well with any of the axes

of the voxelization. To lessen any peculiar effects the orientation of the voxelization

can have on the path tree, and also to diminish the influence of the jaggedness on

the later creation of segments and joints, the path tree is subjected to a smoothing

operation.

.\s each chain of the path tree is identified, it is smoothed by applying a filtering

process to average positions of consecutive voxels along the chain. A filter radius of

three edges usually works well to smooth out any jaggedness of the original chain.

125

S11

s 1 0

s 9

s 8

s 7

1 units 2 s 4

-3

Figure 5.6: Smoothing of a path tree chain. A path tree chain is smoothed by applying
a filter around each vertex of the chain. For the chain p 0 . .p l l above (shown in light
gray), the smoothed chain s 0 . . s l l (shown in black) was computed using essentially
a box filter with a two edge radius. As an example, the position of s5 is the average
of all chain vertices within two edges of p5; thus. s5 = p3+p-t-^pj^E*i~P‘ radius is
limited a t the ends of the chain: for instance, s i = and sO = pO.

The smoothing process is illustrated in Figure 5.6 using a filter radius of two edges.

Figure 5.7 shows the result of smoothing the path tree for the horse.

5.2.5 Control Skeleton Construction

The path tree itself is usually too complicated to use directly as the structure of

the control skeleton: instead, an approximation to the path tree is formed in what

is called the skeletal graph (which is really a tree, since it approximates the path

tree). The skeletal graph is the precursor to the final control skeleton structure. It

is created so as to approximate the path tree using appropriately sized edges, each

of which will become a segment of the control skeleton. The discussion that follows

126

Figure 5.7: The smoothed path tree for the horse. This is the result of applying the
smoothing operation to the chains of tiie path tree from Figure 5.5.

explains how the skeletal graph is constructed and how it is then used in the creation

of the segments and joints of the control skeleton. The final part of the discussion

reveals how the coverage of the path tree can be used in determining how vertices of

the polygonal model are to be attached to the skeleton structure.

Creating the Skeletal Graph

The initialization of the skeletal graph results from a simple conversion of path

tree chains. The endpoint and junction voxels of the path tree are used to create the

initial vertices of the skeletal graph. Each chain of the path tree is used to create an

initial edge of the skeletal graph.

127

After the initial edges and vertices of the skeletal graph are formed, tests are

performed to determine which edges should be split. Splitting of a skeletal edge

is accomplished by inserting an intermediate vertex into the skeletal graph (at the

location of a specially selected chain vertex from the corresponding path tree chain)

and replacing the edge with two new edges. Each new edge then corresponds to a

subsection of the original chain. The edges for any partieular ehain may be- split

repeatedly in order to form closer approximations to the chain or in order to have

more appropriate lengths.

Two input parameters are used to specify a range of desired edge lengths (the

specified range is actually applied not to the skeletal edges but to their corresponding

section of a path tree chain). The parameters, called min-fraction and max-fraction.

are entered as values between zero and one (default values are 0.1 and 0.3. respec­

tively). The lower limit of the range is the product of min-fraction and the heart

radius: the upper limit of the range is the product of max-fraction and the heart

radius. .Any skeletal edges whose chains are already shorter that the lower limit will

not be split. .Any skeletal edges whose chains are longer than the upper limit will

definitely be split. Edges whose chain lengths are within the range may be split based

upon how closely they approximate the corresponding chain section.

Skeletal edges are assigned error values according to how closely they approximate

the corresponding chain section of the smoothed path tree. This error is simply the

maximum distance between the skeletal edge and one of the vertices of its related

chain section. Figure 5.8 provides an illustration of the error computation and the

splitting of a skeletal edge.

128

1 unit

Figure 5.8: Error and splitting of a skeletal graph edge. The error for a skeletal
graph edge is the maximum distance between the edge and any of the vertices of its
corresponding smoothed chain. The error for the skeletal edge s O - s l l is the length
of the perpendicular segment to s4. which is 2.79 units. The best split for the skeletal
edge is obtained by inserting a skeletal vertex at s3. as this results in the smallest
maximum error (0.50) for the two replacement edges. The replacement edges for this
example are s0 -s3 (error = 0.41 units) and s 3 - s l l (error = 0.50 units).

The splitting of skeletal edges is performed incrementally; at each step, the entire

skeletal graph is compared to the entire path tree to determine which edge should

be split next. In this way. the skeletal graph gradually becomes more complex while

providing an acceptable approximation to the path tree at any stage of the splitting

process. The reason for this global approach is to provide the best approximation

given the constraint imposed by the number-of-segments parameter (each skeletal

edge corresponds to one segment of the control skeleton). The processing is accom­

plished using a heap whose node weights are the error values of the skeletal edges.

.A.ny edges whose chains are longer than the lower limit are placed into the heap.

The edge with the largest error is removed from the heap and processed. If it can

129

Figure 5.9: The skeletal graph for the horse. Each edge of the skeletal graph is used
to create a segment for the control skeleton. .Joints of the control skeleton are created
at interior vertices of the skeletal graph, but note tha t more than one joint may be
created at a vertex depending on how many edges are incident to that vertex.

be split and if its error is larger than what is acceptable (that is. if its error is larger

than the approximation-error parameter), then errors for the two replacement edges

are computed, and those edges are inserted into the heap. If the number-of-segments

parameter has been set, then the splitting process is repeated until the skeletal graph

contains an equivalent number of edges (or until the heap is empty and there are no

more edges to be split). If the number-of-segments param eter is left unspecified by

the user, then splitting stops when the heap is empty. Figure 5.9 shows the skeletal

graph computed by allowing the heap to empty as the smoothed path tree for the

horse is processed.

1.30

Creating Segments and Joints

After the skeletal graph has been formed, creating the segments of the control

skeleton is rather simple. Each edge of the skeletal graph essentially becomes a

segment of the control skeleton. .A. deep segment is then selected to host the root

joint for the control skeleton, or rather, to be the only segment connected to the root

joint. The root joint itself is positioned at the midpoint of the skeletal edge for that

segment (note that it does not divide the segment).

The location of the root joint imposes proximity relationships on the skeletal graph

edges and thus on the control segments. Each pair of adjacent segments has either a

proximal-distal relationship or a sibling relationship with respect to their proximity

to the root joint. For each proximal-distal pair, a joint is created at the shared joint-

voxel (note that this results in coincident joints at the branching points of the tree

structure, with the coincident joints numbering one less than the number of segments

meeting at the branching point). Each joint other than the root joint thus has one

proximal and one distal segment: the root joint has only a distal segment. Vertices

of the skeletal graph that are not used for joint creation become end-effector points

of the control skeleton.

Each joint has three rotational degrees of freedom. Joint axes are determined auto­

matically to align with the proximal and distal segments. They form an orthonormal

set of vectors defined as follows: the z-axis points outward along the distal segment,

the x-axis is formed to be perpendicular to the plane defined by the proximal and

distal segments, and the y-axis is then formed to complete a right-handed coordinate

system. In the event that the plane used to create the x-axis is not uniquely defined,

the algorithm searches proximally to find the closest ancestral segment tha t can be

131

used to help uniquely define a plane (a distal search is performed if the proximal

search fails). The first rotational degree of freedom is about the joint's x-axis. the

second is about the joint's y-axis. and the third is about the jo int's z-axis.

Anchoring Skin Vertices to the Control Skeleton

Once the control segments and joints have been assembled, the algorithm turns to

the process of anchoring the vertices of the polygonal data to the control segments.

To do this, the algorithm returns to examine the spheres of the path tree voxels. Each

control segment corresponds to a section of a chain of the path tree, and each voxel

along that section of the path tree has a sphere which covers voxels of the figure (see

Section 5.2.4 for an explanation of coverage). The collected coverage for a particular

section of the path tree essentially defines a volume within which the corresponding

control segment exerts influence. In the actual implementation, each voxel gathers

and maintains a set of pointers to those control segments that cover (or influence) it.

Xot all voxels interior to the figure are necessarily covered by spheres of path tree

voxels. .A. voxel that is not covered by some path tree voxel will not at first have an

influencing set of control segments; instead, such a set must be created. The sets for

such voxels are constructed by propagating sets from covered voxels into non-covered

regions of the voxelization. This propagation is performed in a breadth-first manner

moving away from the covered region.

When each voxel has a list of those control segments exerting influence over it, it

becomes a simple m atter to anchor the vertices. The voxel that contains a speciflc

vertex provides the list of control segments that influence that vertex. The coordi­

nates of that vertex can then be expressed using the local coordinate frame for each

influencing segment. When the control skeleton is moved, the (fixed) local definitions

132

of that vertex are converted into global positions and used in a weighted sum for­

mula that computes a new global position for the vertex. The following paragraph

describes this process in detail.

Let S be the set of control segments that influence a specific vertex r. and let .s,

be the ith. control segment influencing that vertex. Let ongtn^ be the origin of the

local frame of .s,. and let RtoWorldi be a 3 x 3 rotation m atrix used to help transform

a point from the local basis of .s, to the global basis of the figure. If the local position

of c in the frame of .s, is denoted by p,. then the global coordinates of c. according to

S’,, is given by the expression origin^ + pi x RtoWorldi. If only one segment influences

V. then that expression suffices: however, if S contains multiple segments, then the

expressions are combined using a weighted sum:

p,. = ^ (c, X [ongin^ + Pt x RtoWorldi)

Here. p„ is the global position of v resulting from the combination, and (c, is the

weight (or amount of influence) that segment s’; exerts on v. .Vote that the symbol

"x" used above denotes either simple multiplication or matrix multiplication and not

the vector cross product. If only one segment influences v, then the weight (c, in the

formula above is set to one. When multiple segments influence v. then the weights

Wi used in the formula must sum to one. In this case, the weights are computed as

follows:
totaldist — disti

i i \ =
(n — 1) X totaldist

where n is the number of segments in 5 . disti is the shortest distance between c

and segment .s,, and totaldist = Hsies d-isti. Closer segments have larger weights.

Note tha t xvi. pi. dist^ and totaldist as mentioned above are constants - these values

133

are computed once using the original positions of the polygonal data and the con­

trol skeleton structure. X'alues that are updated each time the control skeleton is

repositioned include origin^. RloWorld,. and. of course, p̂ ..

5.3 Results

In general, the algorithm is quire effective in producing a ii.sefiii c o n t r o l s k e l e t o n

in a short period of time. The quality of individual results is highly dependent on the

object and the input parameters. In some cases, the algorithm performs extremely

well, but in some other cases, the algorithm does only a mediocre job. For most

objects that an anim ator might wish to animate by using a control skeleton, the

skeleton produced by the algorithm is at least a reasonable start worthwhile for liner

hand-editing.

Table 5.1 shows the results of several executions of the algorithm on various polyg­

onal models (the models themselves can be seen in Figures 5.10. 5.12. and 5.13). Note

that each model has been scaled to fit inside the unit cube: thus, a grid size of 0.01

will allow approximately 100 voxels along the edge of the unit cube. The graph in

Figure 5.11 illustrates the unproven but apparently superlinear time complexity of

the algorithm (superlinear with respect to the number of interior voxels). The data

in the figure can be approximated fairly well by the function

/ (- r) = r
x ' -

54.000

where x is the number of interior voxels and /(x) is the number of seconds required

to create the control skeleton.

W ith respect to the goals described at the beginning of Section 5.1. the algorithm

performs reasonably well. As can be seen in the figures, the control skeletons are

134

(a) (b)

(c) (d)

Figure 5.10: The horse and a few random poses. In (a), the horse is shown in its
default pose (as input for the algorithm). The other three images are selected random
poses of the horse using the skeleton from Figure 5.9.

135

Voxel Number of Grid Total Interior Time
Size Segments Dimensions Voxels Voxels (min:sec)

Horse (681 vertices. 1.354 polygons)
0 .02 32 51 X 42 X 15 32,130 7 ,324 0:02
n ni 36 101 Y ,S4 V 29 246,036 48.626 0 : 1 1

0.005 31 201 X 168 X 58 1.958.544 352.971 1:29
Human (349 vertices. 694 polygons)

0.01 29 37 X 101 X 17 63.529 14.044 0:04
0.005 27 73 X 201 X 33 484 ,209 92 ,9 3 4 0:24
0.0025 31 145 X 401 X 65 3.779.425 675.120 2:58

O ctopus (2.347 vertices. 4.690 polygons)
0.01 52 101 X 59 X 78 464.802 42.772 0:11
0.008 57 126 X 74 X 97 904 ,428 79 ,926 0:21
0.00675 51 149 X 88 X 115 1.507.880 129.474 0:34

.Jellyfish (2,526 vertices. 5.048 polygons)
0 .008 102 119 X 126 X 110 1 ,649 ,340 157 ,150 1:04
0.007 103 1.36 X 143 X 125 2.431.000 227.784 1:36

Table 5.1: Execution results for the skeletonization algorithm on a horse, a human, an
octopus, and a jellyfish. Each row corresponds to a single execution of the algorithm
for which the voxel-size parameter was specified as in the first column. The number of
control segments was determined automatically by the program, and all other input
parameters used default values (see Table 5.2). The boldface rows correspond to the
set-ups used for Figures 5.9. 5.12. and 5.13 (with a minor change in the case of the
skeletonization of the human in Figure 5.12, where an exposure threshold of 1.0 was
used instead of the default value of 0.5 used in the table). The column at the far right
contains the amount of time required (minutes and seconds) to execute all stages of
the algorithm (from figure voxelization through anchoring the vertices) on a Silicon
Graphics® 02® (R5000 Processor Chip). Many of the test runs were also performed
on a PC with a 133 MHz Intel® Pentium® processor running under Linux®, and those
execution times were quite similar, typically 100% to 105% of the execution time on
the 02.

136

In p u t
P a ra m e te r

V alid
R an g e

D efau lt
V alue D e sc rip tio n

voxel-size (0..3C) 0.02
The edge length of a voxel, gener­
ally specified relative to the unit-
cube.

exposure threshold [0..1] 0.5
The parameter for the DMS calcu­
lation that relates somewhat to the
thickness of the DMS.

closeness-of-fit [0-1] 0.1

When multiplied by the heart ra­
dius. this provides a minimum ac­
ceptable length for new extensions
to the path tree.

approximation-error [O..ocj 0.4
The error tolerance for approxima­
tion of path tree chains by skeletal
graph edges.

min-fraction [0-1] 0.1

When multiplied by the heart ra­
dius. this provides the minimum
desired length of a path tree chain
for a corresponding skeletal edge.

max-fraction [0-1] 0.3

When multiplied by the heart ra­
dius. this provides the maximum
desired length of a path tree chain
for a corresponding skeletal edge.

number-of-segments [I. 2. ..oc) unspecified

The maximum number of control
segments the skeleton may have. If
left unspecified, the program deter­
mines the number of segments au­
tomatically.

Table 5.2: Input parameters for the skeletonization algorithm.

131

300

240

« 180 - -

1.1

400K0 200K BOOK BOOK 1000K

of in terio r v o x e ls

Figure 5.11: An analysis of execution times for the algorithm. Execution time (in
seconds) is graphed against the number of interior voxels for several executions of
the algorithm on the horse (each dot corresponds to one execution). Except for the
voxel-size. all input parameters used default values. The time complexity appears
to be superlinear with respect to the number of interior voxels (see page 134 for an
approximating function). Graphs created for other objects were very similar.

centralized, and they have branches that reach to the ends of the major protrusions

of the objects. The segments and joints relate fairly well to the surface features,

although there is some room for improvement here, notably in the control features

produced for some of the limbs posed in a straight fashion (observe the apparently

arbitrary segmentation in the arms and legs of the human in Figure 5.12, for instance).

W ith respect to the attachm ent problem, the scheme used is relatively simple and yet

still quite effective under moderate repositioning of the control skeleton.

As for the idea of having "just enough but not too much" of a control skeleton,

results are rather highly dependent on the objects given as input. For the most part.

138

(a) (b)

Figure 5.12; The control skeleton for a human figure and one pose. The skeleton in
(a) was generated using a voxel-size parameter of 0.005 and an exposure threshold
of 1.0. .A.11 other parameters used default values. The figure in (b) is the result of a
selected random pose of the skeleton.

139

(a) (b)

(c) (d)

Figure 5.13: Control skeletons and poses for an octopus and a jeilvdish. The skele­
tons in (a) and (c) were generated using a voxel-size param eter of 0.008. All other
parameters used default values. The figures in (b) and (d) are the results of selected
random poses of the skeletons.

140

skeletons produced by specifying the voxel-size and using default values for the other

input parameters are reasonably succinct. (A list of the various input parameters and

their default values is given in Table 5.2. W ith a closeness-of-fit value below 0.1. the

algorithm can extend the skeleton into shorter surface protrusions such as the fingers

of a hand; when doing so. however, it also usually produces at least a few spurious

h ran rh es in othnr part': o f rfip figura

One area where the algorithm can have noticeable difficulty is with multi-junction

points, such as where two "arm" sections of the path tree might joint a "spine" section

of the path tree (often the arm sections join the spine section at different points). It

can sometimes be useful to increase the exposure threshold to 0.9 or 1.0 so that the

DMS used for path tree generation is rather lean. This usually collapses the area

involved in the multi-junction point and sometimes results in better joining of path

tree extensions in the area of the junction.

.\s can be expected, the quality of the skeleton is dependent on the quality of the

voxelization of the object. The use of finer grids allows better approximations of the

surface details of the object, but not without a cost - simply halving the voxel-size

parameter will produce eight times the number of interior voxels and result in a related

increase in the running time. As long as the topology of the grid is not compromised,

a coarse grid can still produce reasonable results: the main benefits of a finer grid

are better centralization of the control skeleton and better determination of surface

protrusions (the latter allows better application of the closeness-of-fit parameter).

Several shortcomings of the algorithm have been identified:

• Because the algorithm produces a tree-structured control skeleton, it does not

work very well for objects with holes; for example, when given an object such

141

as a doughnut, it will create a C-shaped skeleton. W ith some additional pro­

gramming. the algorithm might be extended to produce a kinematic constraint

that effectively closes the "C" during animation.

• The step-wise greedy approach to splitting the control segments in order to pro­

duce a desired number of them is probably not the optimal method, especially

since it only considers bifurcations of the segments.

• Long, straight sections of the path tree are sometimes segmented in a seemingly

arbitrary fashion. This can be the case when a figure's arm is posed without

a bend at the elbow - sometimes no elbow joint is generated, at other times,

numerous Joints are generated along the straight-away. In contrast, when the

input figure has bent limbs, the algorithm does very well at producing joints at

the expected locations.

• For many objects, a tree being one example, it is probably not desirable to have

the root joint centrally located with respect to the articulation points of the

control skeleton. An input flag could be provided to request that the root joint

be placed at the lowest end-voxel of the path tree, or better yet. a user could

simply select the root once the control segments have been generated.

• The surface attachment scheme is rather simplistic, which is an advantage in

terms of easy understanding and implementation. The repositioned surface,

however, can sometimes suffer from interpenetration problems, especially if the

joints are bent beyond a small amount (say 20 or 30 degrees). In the vicinity of

the joints, sufficient numbers of vertices are necessar}- to minimize the penetra­

tions. and the algorithm could be extended to produce extra vertices near the

142

joints; regardless, a better and probably more complicated attachment scheme

is necessary to avoid the penetration problem.

• Often the algorithm produces a control skeleton that overall is quite good but

that could use some tweaking. Since the focus of this research has been the

autom ation of the control skeleton construction, there is currently no interface

for tweaking it: nevertheless, such an interface would definitely be useful and

indeed would be required for widespread use of the algorithm. A better idea

would be to convert the implementation into a plug-in for a software package

designed for modeling and animation and to allow tweaking of an automatically

generated skeleton via the skeleton-control interface of that package.

5.4 Conclusion

This chapter has detailed an approach to automating the process of generating

control skeletons. The method described achieves a higher degree of automation

than previous approaches: furthermore, the algorithm is very fast, quite general, and

fairly robust. W ith very little user input, the algorithm produces control skeletons of

relatively good quality, sometimes good enough for immediate use in animation. \ t

the very least, the algorithm is generally useful for providing an initial skeleton that

an animator could hand-tune. It is especially useful for producing skeletons for more

complex objects like trees or jellyfish, where creating a skeleton by hand would be a

tedious and time-consuming process.

The algorithm is intended as a general solution to the problem of autom atic gen­

eration of control skeletons. It must be emphasized that the algorithm constructs a

control skeleton based solely upon a geometric analysis of the object. The algorithm

143

has no knowledge of what kind of an object it is dealing with, nor of any semantic

relationships between the parts of an object. Of course, this does not prevent a user

from having definite ideas about what kind of skeleton should be produced based on

what type of object was provided as input. Nonetheless, even in the face of possi­

bly unrealistic assumptions on the part of the user, the algorithm can often produce

• > K i n m e n 1 t e

The remainder of this dissertation is an investigation of how knowledge of certain

types of objects can facilitate the creation of control skeletons that might be deemed

as more appropriate for those particular objects. Specifically, the research examines

skeletonization of animal-like and human-like models, easily the most common classes

of objects whose members are typically anim ated in an articulated fashion using a

control skeleton.

The research to come suggests various assumptions that might assist the algorithm

from this chapter in producing a more desirable skeleton for objects from these classes.

In nature, for example, it is often the case that a large, interior region of an animal is

populated by several short bones (witness the vertebrae) and a long, narrow region is

populated by a few long bones (arm and leg bones, for instance). It is also the case

tha t the vast majority of creatures have an anatomical skeleton exhibiting some type

of symmetry. Observations such as these can be reformulated as heuristics that can

be incorporated into automatic control skeleton generation. Such ideas are the topics

of discussion in the chapters that follow.

144

CHAPTER 6

COMPARATIVE ANATOMY OF VERTEBRATES

This chapter describes the anatomical knowledge upon which the remainder of

this dissertation is based. Because the majority of articulated figures are human-like

or animal-like, and because it is the anatomy of the human or animal that determines

its movement capabilities, any attem pt at the automatic generation of anatomically

appropriate control skeletons would seem remiss without such an investigation into

human and animal anatomy.

The discussion in this chapter draws from sources specific to human anatomy

[Mad94] and animal anatomy [EBD56]. as well as from the slightly more general

areas of artistic anatomy [AS79, Par90| and comparative anatomy [KenST, Hil95,

Har99. ParSS. .Joh94. Ale94]. The wealth of information from Kent [KenST] has been

especially enlightening; indeed, many of the details of the following discussion come

directly from his book.

Artistic anatomy can be loosely summarized as an examination of anatomy where

the focus is on those features which influence surface form. In computer graphics,

artistic anatomy texts are often sought when attem pting to "flesh out” a figure;

that is. when an anim ator employs individual models of bones, muscles, and other

anatomical components to create a layered model for a figure. Typically the goal

145

is to arrive at a final model which, when posed or anim ated, will have a surface

that will deform in accordance with the repositioning of the underlying (deformable)

component models.

Comparative anatomy is the study of the anatomical similarity of different species

of the animal kingdom, with a popular focus being the comparison of human and

animal anatomy. This g en era lly in volves an ex p lo ra tio n of the entire subphylum

Vertebrata or its encompassing phylum. Chordata.

The similarities in vertebrate anatomy provide the foundation for the research that

follows: the motivation consists of two basic goals. The first objective is to improve

the automated generation of control skeletons so as to produce a more anatomically

appropriate skeleton, meaning that the control skeleton created for a figure should

exhibit the expected anatomical flexibility of the figure. The realization of this objec­

tive is the topic of Chapters 7 and 8. The second objective is to develop generalized

component models for use in the automated generation of a layered model to flesh

out a figure. Steps toward this goal are the subject of Chapter 9.

The presentation that follows looks at vertebrate anatomy with an eye toward the

two goals just mentioned. Section 6.1 begins by laying out some simple principles

concerning the general structure of vertebrates. Sections 6.2 and 6.3 then focus on

two specific anatomical systems within vertebrates: the skeleton and the muscula­

ture. Note that Appendix provides a glossary of the anatom ical terms used in this

dissertation.

146

6.1 Vertebrate Structure in General

Vertebrates are animals that have a spine or backbone. This includes amphibians,

birds, fishes, mammals, and reptiles. Due in part to their common evolutionary

ancestry, vertebrates exhibit a remarkable level of similarity. Comparisons between

any two species of vertebrates will reveal similarities in their overall structure as

well as similarities in the structure and function of their various anatomical systems.

.A.lthough there will be noticeable differences between the species, especially as the

age of the nearest common evolutionary ancestor becomes further and further distant,

large numbers of anatomical similarities will still exist. W hat follow are some general

principles of or relating to vertebrate structure.

6.1.1 Bilateral Symmetry

VV’hen discussing vertebrate structure, anatom ists often refer to three principal

axes. The longitudinal axis runs from the anterior end of the body to the posterior,

or from the head to the tail, and the dorsoventral axis runs from the dorsal (back)

side of the body to the ventral (belly) side.''* The left-right axis simply runs from the

left side of the body to the right side.

Structurally, the left and right sides of a vertebrate are mirror images of each

other; hence, vertebrates exhibit bilateral symmetry. The most obvious example of

this is the pairing of the limbs, but bilateral symmetry also manifests itself in countless

■̂*It should be noted that for human anatomy, the terms anterior and posterior are typically used
to refer to the front and the back of the human body which is usually presented in standing position.
In such a stance, anterior becomes sjTionomous with ventral, and posterior becomes synonomous
with dorsal. In the discussions within this dissertation, however, the terms anterior and posterior
are used in a more general sense - anterior to mean towtird the head, and posterior to mean toward
the hind quarters or tail.

147

ways with respect to the anatomical systems within an individual and seems to be a

persistent feature in the skeleton and musculature.

6.1.2 Two Sets of Paired Limbs

Vertebrates can be roughly divided into two groups: fishes and tetrapods. .Am­

phibians. birds, mammals, and reptiles are all tetrapods. which literally means “four-

footed." Tetrapods have two sets of paired limbs, though in some tetrapods (dolphins,

whales, and snakes, for instance) one or both pairs may be vestigial. Some fishes can

also be seen as having two pairs of appendages, though, so some anatomists prefer to

define tetrapods as "vertebrates that dwell on land (or that had land-dwelling ances­

tors)." [Hil95] The research here leans primarily toward the structure of tetrapods.

6.1.3 Cylindrical Shape

.An intriguing characteristic of the form of vertebrates, and one that permeates

the natural world, is the generally cylindrical shape of so many things. Fingers,

toes, limbs, tails, trunks, and necks all have a nearly cylindrical shape. So do blood

vessels and several other conduits within the body. .And countless items of anatomy

(numerous bones, muscles, and parts of the digestive tract, for instance) that could

not really be said to be cylindrical often have a nearly circular cross section. The

reasons for this are beyond the scope of this dissertation^^ (see [VVai88]), but the idea

is worth noting when contemplating an abstraction of the skeleton or musculature.

'^In the simplest of summaries, it relates to the economy exhibited by rounded shapes with respect
to the ratio of perimeter to enclosed area or the ratio of surface area to enclosed volume.

148

6.1.4 Metamerism

Another principle, at least with regard to the vertebrates, is usually not as obvious

as the ones previously described. It usually becomes apparent only on an examination

of certain internal anatomical structures. That principle is metamerism. W ith respect

to primitive species (worms, for example), metamerism refers to a segmentation of the

body into nearly identical, or homologous, segments. Metamerism is easily visible in

embryonic vertebrates, but the specialization processes that occur during development

distort and obscure the once metameric structures. Typically only tiny remnants of

metamerism or its results remain in adult vertebrates: examples in the skeleton include

the vertebrae and ribs, and examples in the musculature consist primarily of some

oblicjue and longitudinal muscle groups running along the spinal column. [KenST]

6.1.5 Form Follows Function

A final point to note is the resounding message so often expressed in biology

classes: form follows function. If an anatomical entity exhibits a particular shape,

then it does so because tha t is the shape it needs to have in order to function ef­

fectively. Stated another way, if a particular function is necessary for evolutionary

surwival, then better forms will evolve to serve that function. Although this principle

is probably too general to be of any specific use with respect to creating a generalized

control skeleton or fleshing one out. it is nevertheless such an important tenet that

such a task should probably not be undertaken without at least being aware of the

principle.

149

6.2 Skeletal Anatomy of Vertebrates

The skeletal system of most vertebrates follows a fairly typical pattern. It can be

divided into two main parts: the axial skeleton and the appendicular skeleton. The

axial skeleton includes the skull, rib cage, spine, and tail bones (which are basically an

extension of the spine): the appendicular skeleton consists of the bones of the girdles

and limbs. Table 6.1 provides a simple breakdown of these parts.

The Axial Skeleton

Numerous bones make up the skull. For purposes of this research, in which articu­

lation is the primary focus, the skull can be seen as consisting of just two bones. The

first of these is the cranium, whose primary features include the brain case, the eye

sockets, any nasal openings, and the upper teeth. The other bone is the mandible, or

Jawbone, which houses the lower teeth.

The spine and tail are composed of vertebrae. The vertebrae are divided into

groups based upon regional specialization. From anterior to posterior, there are

cervical, thoracic, lumbar, sacral, and caudal vertebrae. Cervical vertebrae function

to give an animal a flexible neck so that it can turn or nod its head. Thoracic vertebrae

provide anchor points for ribs, with one pair of ribs for each thoracic vertebra. Lumbar

vertebrae allow for a flexible lower back. Sacral vertebrae generally fuse with each

other and with the pelvic bones to help brace the body against the movement of the

hind limbs. Caudal vertebrae run along part or all of a flexible tail (in humans, the

caudal vertebrae fuse together into the coccyx).

As mentioned, the ribs are joined to the thoracic vertebrae in the back. In the

front, the ribs either join to the sternum or term inate without a joint, in which case

150

A x i a l S k e l e t o n

Spine and tail (vertebrae)
Rib cage (ribs and sternum)
Skull (cranium and mandible)

A p p e n d i c u l a r S k e l e t o n

Anterior Posterior
Pectoral girdle (scapula, clavicle) Pelvic girdle (pelvis)
Forelimb Hind limb

Upper arm (humerus) Thigh (femur)
Forearm (radius and ulna) Shank (tibia and fibula)
Wrist (carpals) .\nkle (tarsals)
Palm (metacarpals) Instep (metatarsals)
Digits (phalanges) Digits (phalanges)

Table 6.1: simplified view of the skeletal components of vertebrates (based on tables
from Kent [KenST]).

they are referred to as floating ribs. .\s a whole, the rib cage protects the vital organs

of the thoracic cavity (the heart, lungs, liver, and kidneys).

The Appendicular Skeleton

Discussion of the appendicular skeleton typically follows the parallelism of its

anterior and posterior components, comparing the forelimbs and the hind limbs and

contrasting the girdles connecting the limbs to the axial skeleton. The pectoral girdle

consists of the clavicles (if present) and the scapulae; it connects the forelimbs to the

trunk via the rib cage. The pelvic girdle, which is essentially the pelvis, connects

the hind limbs to the spine. Whereas the bones of the pectoral girdle can operate

independently for the left and right halves, the bones of the pelvic girdle are generally

151

not independent, being immobilized through symphysis with each other and fusing

with the sacral vertebrae.

The basic limb structure for vertebrates can be viewed as consisting of five seg­

ments [KenST]. For the forelimb, those segments (and their associated bones) are the

upper arm (humerus), forearm (radius and ulna), wrist (carpals). palm (metacarpals).

and digits/fingers (phalanges). For the hind limb, the five segments are the thigh (fe­

mur). shank (tibia and fibula), ankle (tarsals). instep (metatarsals), and digits/toes

(phalanges). The hind limb commonly has one other bone at the knee: the patella.

In comparative anatomy, the term nianus is often used as a generalization of

the term hand. Specifically, it refers to the wrist, palm, and digits of the forelimb.

Likewise, the term pe.s is used as a generalization of foot to refer to the ankle, instep,

and digits of the hind limb. For quadrupeds, the structures of the nianus and pes

are often very similar (such as with the horse or dog): for bipeds, however, there is

usually a greater difference due to the differing functions of the forelimb and hind

limb.

Like the bones, the joints for forelimbs and hind limbs have a similar pattern. The

shoulder and hip joints are ball-and-socket joints, having three degrees of freedom

(DOF). The elbow and the knee are both hinge joints, having a single degree of

freedom, though the elbow generally points toward the rear of the animal while the

knee generally points toward the head of the animal. As with the tibia and fibula

with respect to the foot, the radius and ulna allow for the pronation (rolling inward)

or supination (rolling outward) of the hand. Note that for many species, the ulna

is either non-existent or is fused to the radius, so no such rotation of the hand is

possible. The same holds in the hind limb, where the fibula disappears or fuses with

152

the tibia. The wrist joint and the ankle joint both allow two rotational DOFs. and the

joints proximal to the metacarpals and metatarsals allow two rather heavily limited

DOFs. Joints of the phalanges can be considered as hinge joints with one DOF whose

axis is perpendicular to the digit.

6.2.1 Differences

With a few exceptions, the bones of one species are often fairly similar to the

homologous bones of another species of vertebrates (in this context, the word homol­

ogous actually refers to the correspondence of bones between species). Nevertheless,

there are some noticeable differences. .Although the basic form of homologous bones

is usually the same between species, the bones may differ (perhaps vastly) in length,

girth, and the sizes and shapes of distinct features.

The number of bones within functional groupings may also differ from species to

species: common examples are the number of ribs, vertebrae, carpals. tarsals. and

digits. Many birds have seven pairs of ribs, mammals commonly have twelve pairs

(though some have as few as nine or as many as twenty-four pairs), and snakes

(notably an exceptional vertebrate) can have hundreds of pairs [KenST]. Note that

difference in quantity is sometimes obscured as a result of bones ankylosing, or fusing

together; for instance, the human sacrum consists of five fused vertebrae. .As another

example, the synsacrum of birds is a massive fusing of thoracic, lumbar, sacral, and

caudal vertebrae and a couple of ribs, which itself then fuses with the pelvic girdle

[KenST].

The orientation of adjacent bone groups can also vary. In many animals, the

spinal column meets the back of the skull. This usually means tha t the back-to-front

153

line of the skull is nearly colinear with the spine. In many other animals (humans

being one example), the spinal column meets the base of the skull, so the alignment

of the head and trunk might be viewed as perpendicular.

Perhaps the most important difference across vertebrate skeletons is that homol­

ogous bone groups do not necessarily have the same function. On a local scale, for

example, the opposable thumb of humans serves n different function tlitUi the nuii-

opposable first digit of some other primates. On a more global scale, the forelegs of a

quadruped have a vastly different function than the arms of a biped or the wings of

a bird. Finally, as alluded to earlier, some bones or groups of bones may be vestigial

in some species.

6.3 Muscular Anatomy of Vertebrates

6.3.1 Muscle Basics

The musculature of vertebrates can be discussed from several vantage points. One

view divides the muscles into two groups: somatic muscles and visceral muscles. So­

matic muscles are primarily responsible for interacting with the external environment

and are mostly voluntary muscles, meaning they can be flexed at will. These include

the muscles of the body wall, the appendages, and the tail. Visceral muscles, which

are mostly involuntary, are responsible for internal body functions. These are usually

muscle sheets around hollow organs, tubes, and ducts, such as those muscles respon­

sible for peristalsis along the digestive tract. For the purposes of this research, the

only concern is with somatic muscles.

.A. single muscle consists of a belly (the contractile portion) and possibly one or

two tendons connecting the belly to different bones. The points where the muscle or

154

tendon attaches to the bones are known as the origin and the insertion. In general,

the origin is on the bone that remains fi.xed when the muscle is contracted, and the

insertion is on the bone that is moved when the muscle is contracted.

Muscles come in a variety of shapes depending on the sizes and locations of their

origin and insertion points. The simplest type of muscle is the fusiform muscle. It has

one origin and one insertion and is spindle shaped. The biceps brachii and several

other limb muscles are spindle shaped. More complicated muscle forms arise if a

muscle has several points of origin and /or insertion. Fan-shaped muscles are common

in the chest and shoulders, and sheet-like muscles are common in the abdominal wall.

[Hil95!

Since the active function of a muscle is to shorten, muscles are arranged in antag­

onistic pairs throughout the body. W ith regard to the bone to which they attach, the

muscles of an antagonistic pair usually act to flex or extend it. to adduct or abduct

it. to protract or retract it. to lift or depress it, or to rotate it one way or the other.

6.3.2 The Musculature

Like the skeletal system, the musculature for vertebrates can also be divided into

axial and appendicular components [KenST]. The muscles of the trunk and tail are

the primary axial muscles. The appendicular muscles are themselves usually divided

into two groups: extrinsic appendicular muscles, which connect the limb or girdle to

the trunk, and intrinsic appendicular muscles, which connect one section of a limb or

girdle to another section of the limb.

The musculature typically change more quickly over an evolutionary time line than

does the skeleton. Therefore, it is generally more difficult to determine homologous

155

muscle groups amongst different species than it is to determine homologous bone

groups. Fortunately, the homologies between major muscle groups are fairly clear.

An exhaustive discussion of the numerous muscles comprising the musculature of

vertebrates and detailing the differences between the musculatures of the various

classes is beyond the scope of this dissertation: however, some generalizations are

T i A f t n r r

The axial muscles consist primarily of two groups: epaxial muscles and hypaxial

muscles. The epaxial muscles originate on one vertebra and insert on one or more

vertebra or possibly on the base of the cranium. These are the oblique and longitu­

dinal muscles along the spine that function to bend or to stabilize the spine. The

hypaxial muscles are the sheet-like muscles of the body wall. They serve less to move

the skeleton than they do to contain the innards of the trunk. Other axial muscles of

significance are the muscles of the jaw.

For the extrinsic appendicular muscles, a pattern emerges: the dorsal or posterior

muscles are responsible for extending the appendages, while the ventral or anterior

muscles are responsible for flexing the appendages, or bringing them closer to the

body [KenST]. The latissimus dorsi and the trapezius are examples of the dorsal

muscles: the pectoralis muscles are examples of the ventral muscle. Note that these

examples are muscles affecting the forelimbs. Since the pelvic girdle is fused to the

spine, it cannot move independently, so their are essentially no extrinsic appendicular

muscles that affect the hind limbs.

For the intrinsic appendicular muscles, other patterns emerge, depending in part

on whether the limb is a forelimb or a hind limb. There are also parallels between

the fore and hind limbs. The deltoideus and other shoulder muscles stretch from the

156

scapula to the humerus over the shoulder joint. These muscles function to adduct

and to rotate the humerus. In a similar fashion, a group of muscles stretching from

the pelvis to the femur across the hip joint (the gluteus being one of them) functions

to abduct and to rotate the femur. The triceps, two heads of which originate on the

humerus and one of which originates on the scapula, inserts on the ulna and functions

to extend the forearm. In comparison, the quadriceps femoris originates either on the

pelvis or an upper portion of the femur and inserts more or less on the patella. Three

of its four muscles function is to extend the lower leg, while the other functions to

adduct the thigh. The primary antagonists for the triceps are the biceps brachii and

the brachialis. while the primary antagonists for the quadriceps femoris are the biceps

femoris (commonly referred to as the hamstring in humans). These muscles function

to Hex the forearm and the lower leg. respectively. \ ’arious muscles of the forearm

act to pronate or supinate the manus or act either directly or through long tendons

to flex or extend the manus or its digits. \ arious muscles of the lower leg affect the

pes and its digits in a similar manner (the gastrocnemius is a one of these). [KenST]

As one final note on the musculature of vertebrates in general, the footprints of the

major muscles upon their bones of origin and insertion have marked similarities. Ho­

mologous bones typically have similar features (protrusions, processes, and so forth),

and each of those features typically serve to provide places of origin or insertion for

one or more homologous muscles. This usually holds true even if the functions of

those homologous muscles differ somewhat between various species.

157

CHAPTER 7

AUTOMATED IDENTIFICATION
OF ANATOMICAL FEATURES

This chapter and the one that follows discuss how knowledge of human and an­

imal anatomy as presented in the previous chapter can be incorporated into the

skeletonization algorithm described in Chapter 5. The use of this knowledge is in­

tended to assist the algorithm in producing more appropriate control skeletons for

human-like and animal-like figures. This chapter will describe various assumptions

and heuristics for automatically identifying gross anatomical features of the figures.

The next chapter will then show how those classifications can be employed to generate

a control skeleton that might mimic the expected anatomical flexibility of the figure.

Section 7.1 lists a number of basic constraints imposed on the input object in

order to simplify the task of identifying its parts. Based upon those constraints.

Section 7.2 sketches some simple heuristics for identifying gross anatomical regions.

Section 7.3 describes the implementation of these heuristics within the skeletonization

system, and Section 7.4 briefly discusses some typical results of applying the method

to various objects.

The research described in this chapter takes a fairly simple approach to the prob­

lem of autom ated identification of anatom ical features. This basic method for the

158

anatomical breakdown of an object works reasonably well within the larger scope

of this dissertation research. Nevertheless, a reader interested in a more thorough

treatm ent of such automation might enjoy delving into the broad area of artificial

intelligence, and more specifically, the topic of pattern recognition.

7.1 Constraints

The fundamental goal of this chapter is to divide the object into regions corre­

sponding to basic anatomical features found in humans and animals. In short, this

consists of sectioning the figure into a trunk and various appendages, and labeling

those appendages as arms. legs, wings, and so forth. To achieve a reasonable degree

of success in this tcisk. the algorithm relies on various assumptions about what type

of figure it is dealing with and how that figure is posed. These assumptions are es­

sentially constraints that a user must ensure are satisfied before the algorithm may

be expected to perform its share of the automation process.

7.1.1 Structural Constraints

The primary assumption is that the object provided as input is some human-like

or animal-like figure. W hat that means and what sorts of constraints that assumption

imposes on the basic skeletal structure the figure is expected to possess are discussed

below.

Vertebrate

The figure is assumed to be of a vertebrate creature: that is. it is expected tha t

the creature would have a backbone or spinal column in real life. Living vertebrates

consist of amphibians, birds, fishes mammals, and reptiles: however, the figure need

159

not be that of a living creature. It is simply expected to have a vertebrate-like

anatomical structure so that it is well-suited for animation via a control skeleton

composed essentially of spinal segments and appendicular segments. This expected

structure is most easily evident in the tetrapods. or the non-fish vertebrates. Note,

however, that there is no constraint that the figure must have four limbs, though it

u r i l l h A a c c n m A r i f h a f rViA f i m i r A H a c î^r m o « ; t r vnA f iA^r l a n r l ‘. i f n n A f a i l

Tree-like Structure

The overall skeletal structure for vertebrates in general is tree-like. Some might

argue that the rib cage imparts cyclical structural elements on the skeleton or that

the human shoulder complex, since it exhibits inherent dependencies of the combined

human skeletal and muscular structure, is more accurately modeled in a cyclical

fashion. Nevertheless, for the purposes of this research, the gross description of all

vertebrate skeletons as tree-like is acceptable: thus, it is also assumed that the control

skeleton for the figure should possess such a hierarchical structure.

Bilateral Symmetry

As discussed in the previous chapter, another overwhelming characteristic of ver­

tebrate skeletons is their bilateral symmetrv'. This is most obvious with regard to

their limbs, which form in pairs. In this research, limb-like appendages of the figure

will be expected in pairs so that the expected control skeleton will exhibit bilateral

symmetry.

Proportions

The final structural constraint assumes tha t the figure is proportioned in a reason­

able manner. This means tha t any limb of the figure is expected to have approximately

160

the same dimensions as its pair. It also means that there is a credible relationship

between the sizes of different elements of the figure: for instance, if one element is too

large, other elements may be overlooked by the algorithm as being insignificant.

7.1.2 Postural Constraints

The second set of constraints require that the input object be presented in a way

tha t does not obfuscate the identification process.

Orientation

When given as input, the figure is assumed to be oriented such that the y-axis

points in the approximate "up" direction with respect to the figure. The user must

then specify an approximate "forward" direction for the figure. For human-like fig­

ures. the forward direction should be the ventral direction: for animal-like figures, it

should be some combination of the ventral and anterior directions depending on the

resting pose of the figure. For a quadruped, the forward direction is almost exclu­

sively the anterior direction, but for a bird in a standing position, it might be a more

equal combination.

Pose

Although there is a structural constraint th a t the skeleton generated should be

symmetric, it is not necessary tha t the figure itself be posed in a symmetric fashion.

The figure is assumed to be in a stable, self-supporting pose. This requirement allows

for easier identification of the figure's legs. A further expectation of the pose is

th a t there is sufficient space between the limbs of the figure as well as between the

limbs and the trunk. This allows for a voxelization of the figure to have a separate

161

protrusion for each limb and helps form a more clear delineation of where the trunk

might be seen to end and a limb might be seen to begin.

7.2 Heuristics for Identification

Based on the constraints just discussed, the figure is to be divided into sections

corresponding to its major body parts. The constraints also provide the basis for

various expectations regarding each type of body part. The following list shows the

assumptions made with regard to each basic type of body part;

• Trunk - The trunk is expected to be central to the figure, to contain the heart

(that is. the geometric concept of the heart defined in Chapter 5). and to be

bounded by major junctions of limbs or other protrusions (any region of the

figure that is adjacent to only one m ajor junction is assumed to be a protrusion:

arm. leg, wing. head, or tail).

• Leg - Legs are expected to support the figure and run from the ground to the

trunk. In other words, the legs are expected to define the extreme part of the

figure in the downward direction. Legs are also likely to have a vertical or mostly

vertical orientation between the ground and the trunk, and they are expected

to be found in pairs.

• Arm - Arms are expected to join the anterior part of the trunk and to come in

pairs. They are not necessarily expected to reach the extreme of any direction,

though it would not be surprising to find them defining the lateral extremes of

the figure.

162

• Wing - Whereiis arms and legs are expected to have circular, elliptic, or at least

somewhat regular cross sections, the wings are expected to have fairly linear

cross sections. Like arms and legs, wings are expected in pairs.

• Head - The head is expected to define the forward extreme, the upward extreme,

or both the forward and upward extremes for the figure. It is expected to join

the most anterior part of the trunk.

• Tail - If present, a tail is expected to extend in the rearward direction and to

join the trunk at roughly the same point as the most posterior pair of limbs.

7.3 Implementation Issues

The heuristics above are realized in three phases. In the first phase, a special graph

is created that effectively simplifies the DMS. The second phase involves marking

vertices of the graph according to certain characteristics: whether they are major

junctions for the figure, whether they are near the extreme top or bottom of the

figure, what the general shape of the cross section is for that part of the figure, and

so forth. In the final phase, the sections of the graph corresponding to various body

parts are identified and labeled.

7.3.1 Creating the Level Graph

For the purpose of simplifying the DMS. the algorithm relies on the heart com­

putation from Section 5.2.4 in the Chapter 5. Recall that the heart is a voxel that is

well centered with respect to the DMS voxels. During the computation of the heart,

each DMS voxel accumulates a series of the shortest distances between itself and

other (source) voxels. After a sufficient number of voxels have acted as sources for

163

spreading distances, accumulation stops. The minimum and maximum accumulator

values are found, and each DMS voxel is then assigned a normalized heart value by

determining where its accumulator value lies between the minimum and maximum.

In a manner not unlike that of forming level set diagrams (see the last paragraph

of Section 2.3.2 for a brief review of the work of Lazarus and \ erroust [L\'99]). a graph

termed the level graph is formed using the heart values. The level graph functions to

divide the interior of the figure into interconnected strata. First, the DMS voxels are

partitioned into sets according to the percentile in which their heart values reside.

Experimentally it has been shown that using about twenty sets works fine for most

figures. In this case, the first set would consists of all DMS voxels whose heart values

were within 59c of the minimum, the second set would include voxels with heart

values within 5% to 10% of the minimum, and so forth. .\ext. each set is divided into

connected components based on the adjacency of its DMS voxels. For each connected

component, a corresponding vertex is created in the level graph. The position of

the level graph vertex is the centroid of its connected component. Edges are added

between level graph vertices if the corresponding sets of DMS voxels represented by

the vertices are adjacent to each other in the DMS.

In the actual implementation, the level graph is formed in a bottom up fashion

by analyzing sets of DMS points in decreasing order of heart value. Throughout

the formation, the program m aintains a record of the disconnected portions of the

level graph. Each connected portion has a unique group number, and it is the group

numbers tha t are compared when testing for adjacency during edge creation. In this

way. the level graph formed will always be a tree, and the root of that tree will be

the group of DMS points containing the heart voxel.

164

Figure 7.1: The DMS and the level graph of the horse shaded according to heart
values. For the DMS of the horse, the voxels are shaded from white to black as the
normalized heart values run from zero to one. The level graph for the horse is shaded
to correspond with the DMS. from which the level graph was created.

165

The top of Figure 7.1 shows the DMS voxels of the horse shaded according to

their heart values, and the bottom of the figure shows the level graph created. .A.s

should be apparent from the figures, the level graph is a simplification of the DMS.

Whereas the DMS might have a "surface" of voxels that extends down the center of

some protrusion of the figure, the level graph typically will have only a single chain

uf edges and vertices corresponding to that same portion of the protrusion. Due to

the nature of how heart values will lie within a volume, the level graph effectively

provides an approximately longitudinal view of each protrusion of the object. In

addition, it offers a good indication of where each protrusion joins the trunk of the

figure in relationship to other protrusions,

7.3.2 Marking the Level Graph Vertices

Because the level graph is a tree, and because each of its vertices is associated

with a group of DMS points, it is a fairly simple m atter to assign weights to the

vertices according to how many DMS points are dependent on a particular vertex

for connecting to the heart. The weight assigned to a vertex is a fraction ranging

from zero to one. The numerator of the fraction is the sum of the number of DMS

points tha t are contained in the group corresponding to the vertex and the number of

DMS points contained in groups corresponding to other level graph vertices that are

distal to the vertex in question. The denominator of the fraction is the total number

of DMS points. The assignments of these fractions to the vertices can be computed

fairly easily during the bottom up creation of the level graph. It is done by keeping

track of the number of DMS points represented by each connected component of the

level graph as it is formed.

166

There are two main reasons for keeping track of these fractions. First, observe

that a very small fraction indicates that a level graph vertex and its distal group can

probably be ignored when identifying gross pieces of the anatomy via the level graph.

For this reason, vertices with a very small fraction are marked as being insignificant.

Second, when a vertex is created that merges two or more sufficiently large regions of

t h e DMS (corresponding l u previously discunnecied components o f t h e l evel graph),

the new vertex is marked as being a major junction for the figure. It is these major

junctions that serve to carve the DMS into regions corresponding to the body parts

of the figure.

Once the level graph has been created, each of its vertices is tested for a few

simple criteria, or rather, the corresponding DMS points are tested and the result

of the test is assigned to the vertex. Four of the tests deal with directions. If any

DMS point for a vertex is within the top 10% of the voxelization (with respect to

the y-coordinate), then that vertex is marked as an extreme vertex in the upward

direction. Similarly, if any DMS point for a vertex is within the bottom 10% of the

voxelization, the vertex is marked as extreme with respect to the downward direction.

Other tests are used to mark vertices that are seen as extreme with respect to the

forward or backward direction (recall that the user must specify which direction is

considered to be forward). Note that the forward and backward tests are slightly more

complex since the forward direction may not align with an axis of the voxelization. In

preparation for the test, the most forward and the most backward interior voxels are

found and then projected onto a line that is parallel to the forward direction vector.

Each DMS point can then be projected onto the same line and tested to see where it

falls between those two extreme projections.

167

The final test for a vertex is an attem pt to determine the approximate shape

of the cross section of the figure at that vertex, specifically, whether is should be

considered rounded or linear. For a given vertex, the corresponding DMS point

group is examined to find the point farthest from the group's centroid (which is the

location of the levelgraph vertex), .\nother pass through the group points finds the

4" ^ V** ^ ^ G ^ ^ I ^ ̂ <-* ^ y > » /"» V ^
^ O i i t c i c i L t i i c . 3 L L i w t L i t i i c l i i a i i c i i L i i C J L p o L i L t . i . l i t - L i i O L t i i i c L a 1 1 W i l l L i i c a c i c i i L i i u a c p V l l l L a

to the centroid is compared to the radius of the distance map sphere whose center is

closest to the group's centroid. If either distance is greater than a certain multiple of

the radius (a multiple of 1.5 seems to work fairly well), then the level graph vertex is

marked as having a linear cross section; otherwise, the vertex is marked as having a

rounded cross section.

7.3.3 Labeling the Level Graph

The level graph is considered to be divided into a number of sections by the

locations of the major junction vertices. If the major junction vertices were to be

removed from the graph, then the connected components that would remain would

correspond to the sections.

The first part of the level graph that is labeled is the trunk. The trunk consists

of the major junction vertices and any edges connecting them to each other. The

slope of the trunk is examined to determine whether the trunk is mostly horizontal

(such as that of an animal), mostly vertical (such as a human figure), or somewhere

in between, .\fte r the trunk is labeled, a simple examination helps to weed out

unim portant branches of the level graph: if any non-trunk section consists of only

insignificant vertices, then the section itself is also labeled as insignificant.

168

Any unlabeled section that has an extreme vertex with respect to the downward

direction is labeled as a leg. .As legs are expected to be paired, there should be an

even number of leg sections identified. In the event that an odd number is identified,

then a tail section may have been mislabeled as a leg. This is sometimes remedied

during the pairing procedure. Legs are paired based upon where they join the trunk,

and each leg is paired with the closest unpaired leg. Trunk vertices or edges that

aid in the pairing (via forming connections between paired legs) are marked iis being

pelvic pieces of the trunk.

The next body parts identified are wings. If at least 409c of the significant vertices

in an unlabeled section have linear cross sections, then that section is marked as a

wing. ,\ny wings discovered undergo a pairing operation similar to that of the leg

sections: portions of the trunk that aid in the pairing are marked as being girdle

pieces for wings.

.\fter the wings comes the tail. The section that extends farthest to the rear of the

figure is e.xamined. If it is unlabeled or if it is an unpaired leg. then it is (re)labeled

as being a tail.

Head identification begins with unlabeled sections at the anterior portion of the

trunk. If the trunk of the figure is found to be mostly in a vertical pose, then the

assumption is that the figure is human-like, so whichever of those sections extends

farthest upwards is labeled as the head. If the trunk is mostly horizontal, then the

focus is on the section that extends farthest forward. If the trunk is slanted or if there

is no clear direction for the trunk, then the topmost and/or forward most sections

are compared - whichever is found either to align best with any trunk direction or

most likely not to be paired with another unlabeled section is marked as the head

169

section. Note that the head section may or may not include a part that should really

be considered as a neck.

The remaining unlabeled sections are analyzed to see if there are any pairs that

join the trunk at approximately the same vertex. If there are. and if each of the

sections has at least a moderate length, then those sections are labeled as arms. Once

again, a pairing operatiun is used tu mark the cunnecting trunk picLfs eta eleuifula of

a pectoral girdle.

.\ny insignificant sections and any unlabeled sections that are less than a sufficient

length are now (re)labeled as portions of the trunk. .\ny unlabeled sections of at least

a sufficient length are at this point brought to the attention of the user, who may

then assign labels to them. .A.Iso at this point, the user may modify the labeling of

any section.

.After the user has made any corrections, each arm or log section of the level

graph is processed to determine if it might have separated digits (fingers or toes,

respectively) as evidenced by notable branches toward the end of that section of the

level graph. If a limb is discovered to have separated digits, then the limb is marked

for specialized processing so that an appropriate hand or foot section of a control

skeleton can be generated: otherwise, the limb is marked as needing either a manus

with a single digit or a one-segment manus. This is discussed further in the next

chapter.

7.4 Results

The identification algorithm works reasonably well, though it can have problems

with certain objects. It seems to work quite well for quadruped figures (a horse or a

170

dog, for instance) where the various types of protrusions (head. legs, and tail) do not

compete with each other for prominence in a common direction. For such figures, it

rarely makes an incorrect classification.

It is less robust for human-like figures, sometimes confusing a human arm for a

tail if the arm is posed in a slightly rearward direction. The confusion is the result

of using a rather suuphstic identifiLatiuu scheme tliat labels the tail scctiuii before

identifying any arm sections. On a model of a dragon, which has two arms, two wings,

and two legs, the algorithm performs fairly well, though it occasionally mislabels a

wing as an arm in coarser voxelizations of the figure. .\ more common occurrence is

the mislabeling of spurious branches of the level graph as arm sections (the reason for

these actions is discussed below). .\11 in all. the algorithm does fairly well, and when

it does make an incorrect classification, it does not take long for a user to make the

necessary corrections.

One problem with the algorithm is its dependence on the accuracy of the heart

computation. Since the sources for the heart computation are chosen randomly, the

position of the heart can vary from one execution to the next. On occasion, a slight

variation in the heart position and the distribution of heart values can alter the level

graph just enough to impede proper classification of its branches.

The main problem with the algorithm is th a t the level graph is computed on the

set of DMS voxels. The DMS often has some spurious branches that have an adverse

effect on the computations for the heart and level graph. Such spurious branches

would likely not appear if the heart and level graph were computed on the set of

all interior voxels. Unfortunately, that computation over the whole of the interior

is prohibitively expensive, typically increasing the execution time by at least one

171

order of magnitude. Considering the trade-off between requiring more execution time

versus requiring more user interaction to assist the algorithm, in this particular case,

requesting a little help from the user seems well worth while.

172

CHAPTER 8

AUTOMATED GENERATION OF ANATOMICALLY
APPROPRIATE CONTROL SKELETONS

This chapter describes how anatomical knowledge can be used with the feature

classification algorithm from the previous chapter in order to generate a control skele­

ton that seems anatomically appropriate for a given figure. Section 8.1 discusses

the application of the knowledge in the creation of the axial portions of the control

skeleton, and Section 8.2 describes the application with respect to the appendicular

sections of the control skeleton. Section 8.3 then discusses how the surface data is

attached to the control skeleton. Section 8.4 concludes with some preliminary results

of an implementation of the process.

8.1 The Axial Skeleton

The axial parts of the control skeleton are comprised of the segments and joints

relating to the head, trunk, and tail. W ith respect to the axial portion of the figure,

the rib cage has been ignored to some degree - greater consideration of the rib cage

comes into play later during the formation of segments and joints of the pectoral

girdle. The articulation of the rib cage is rather limited, and it is considered to add

173

redundancy to the control skeleton - that is. it adds cycles of dependency when mod­

eled more realistically. For simplicity, the rib cage has been conceptually trivialized

to have individual ribs positioned statically with respect to the coordinate frames of

the vertebral segments to which they attach, and the rotational motion between these

vertebral segments is assumed to be quite limited.

Recall from the previous chapter tha t the level graph has been partitioned so

that its edges and vertices correspond to the various parts of the figure (head. tail,

trunk, arms. legs, and wings). The level graph vertices are also associated with a

partitioning of the DMS voxels: thus, the DMS voxels are assigned body part labels

in accordance with their respective level graph vertices. The limbs of the figure have

been paired, and the figure as a whole has been identified as being either human-like

or animal-like depending on the orientation of the trunk portion of the level graph (a

nearly vertical trunk implies a human-like figure: a horizontal, slanted, or essentially

non-vertical trunk implies an animal-like figure).

The first step in realizing the cixial control skeleton is finding a centralized path

from the tip of the head to the tip of the tail. The tip of the head is found by examining

the DMS voxels labeled as being part of the head and selecting the voxel that is

farthest in the anterior direction. For animal-like figures, this typically corresponds

to the figure's nose; for human-like figures, it is the top of the head. The tip of the tail

is the tail DMS voxel with the highest heart value. If the figure does not have a tail,

then another point is substituted as the posterior goal for the path. This replacement

point is the midpoint of the centralized path connecting the extreme points of the

hindmost pair of limbs.

174

Each centralized path (head-to-tail or limb-to-limb) is computed in the same man­

ner as the first extension of the path tree in Chapter 5 (see Section 5.2.4 for more

details). This is based on a modified version of Dijkstra's shortest paths algorithm

where the weights are based on the reciprocals of the cubes of the distance map

values. After each centralized path is computed, weights for the entire DMS are

reinitialized so that the calculation of the next centralized path will not be affected

by any previously computed paths.

After the head-to-tail path has been computed, the next step involves dividing

the path into sections, with one section for the head, one for the neck, one for the

trunk, and one for the tail. To help accomplish this sectioning, a path is computed

for each pair of limbs connecting the most extreme DMS point of each limb with that

of its pair. Each limb-to-limb path is then processed to find the middlemost voxel

of the path - this is the voxel that most evenly divides the path into two roughly

equivalent sections: for convenience, it will be referred to as the midpoint of the path.

The head-to-tail path is then searched to determine which of its voxels are closest

to each of the midpoint voxels of the limb-to-limb paths. W ith respect to the limbs,

this serves two purposes: to determine the front-to-back ordering for the limb pairs

and to find an approximate location for creating the girdle for each limb pair. The

closest head-to-tail voxel to the hindmost limb pair’s midpoint effectively marks the

end of the trunk section of the head-to-tail path and the beginning of the tail section

(provided, of course, that the figure has a tail). The closest head-to-tail voxel to

the foremost limb pair’s midpoint is considered the forward-most voxel of the trunk

section. The rest of the head-to-tail chain (the forward-most part) is divided in half,

with the anterior half representing the section for the head and the posterior half

175

representing the section for the neck, .\lthough somewhat arbitrary, the head/neck

division seems to work reasonably well for many figures.

In a more flexible system, a user would be provided with interface options to

override arbitrary implementation decisions such as the placement of the head/neck

division just mentioned. Nevertheless, providing too many such controls could over­

whelm a user and undermine the potential benefits that autom ation offers. Since

this research has focused mainly on autom ation of the processes involved, it has ne­

glected the issue of user control to some degree. In Chapter 10. a worfcible interface

is proposed that offers a compromise between user interaction and automation.

W ith the head-to-tail chain divided into sections, adjustments can now be made

to the chain so as to make it more anatomically appropriate. Since the spinal column

for most vertebrates runs along the center of the dorsal side of an animal's trunk,

the trunk portion of the head-to-tail chain is adjusted dorsally. This is accomplished

by examining the distance map spheres for sample trunk voxels of the chain and

creating a replacement trunk section that is offset dorsally by 70% of the radius of

each respective distance map sphere.

The cervical vertebrae for many vertebrates (especially those whose heads typically

overhang the front portion of their bodies) form a mild S shape. For these animals,

the joint between the first cervical vertebra and the cranium (at the top end of the

S) is fairly high in the neck region. In order to im itate this characteristic in animal­

like figures, a replacement section for the portion of the head-to-tail path near the

junction of the head and neck sections is computed. The replacement section is also

offset in the dorsal direction. Instead of using distance map spheres, however, rays

176

•A

Figure 8.1; Head-to-tail chains and the adjusted head-to-tail chains of a horse and a
human. The location of the adjusted chain is a better approximation to where the
spine of the creature would be. The original head-to-tail chain is shown in black, and
the adjusted chain is shown in dark gray. Silhouettes of the girdle spheres for each
figure are also shown.

are cast dorsally from the corresponding voxels of the head-to-tail path, and points

along these rays are used to create the offset path.

The head-to-tail path, having been modified with appropriate replacement sec­

tions. is then smoothed in an operation similar to tha t described in Section 5.2.4.

Figure 8.1 show the results of making these adjustments to the head-to-tail paths for

a horse and a human figure.

The head section of the path is fixed as a rigid segment of the axial control

skeleton, and the rest of the modified head-to-tail chain is then divided into a series

of vertebral segments, each having the same length. Experimentally it has been

177

determined that having segments that are approximately one third the length of the

head segment provides a reasonable number. This seems to allow good flexibility of

the spinal column while not overwhelming a user with the otherwise large number

of joints that a real spinal column would possess. .A. Joint is created between each

consecutive pair of vertebral segments as well as between the head segment and the

most anterior vertebral segment. An additional joint is created at the midpoint of

the vertebral segment that best corresponds to the location of the midpoint of the

hindmost pair of limbs: this joint serves as the root joint for the control skeleton. The

root joint and the vertebral joints each have have three rotational degrees of freedom

(DOFs) by default. The axes for these DOFs form an orthonormal basis. The z-axis

points tangentially along the smoothed head-to-tail path in the direction away from

the root joint, the y-axis points in a distal direction, normal to the head-to-tail path.

The x-axis points laterally to complete a right-handed coordinate system. Movement

about the three axes can be constrained by setting fairly restrictive joint limits. The

segments and joints created for the horse are visible in Figure 8.2 in the next section.

W ithin the head of the figure, a jaw segment is created if the head portion of the

level graph reveals the presence of a jaw. In animal-like figures, this means that the

head section of the level graph has a branch that extends downward and outward

from the main line running to the nose region; for human-like figures, any jaw branch

is expected to extend fonvard from the main line running to the tip of the head. The

jaw segment is attached to the head segment by a single joint, the parameters of

which are set so as to permit hinge-like motion about one axis. This completes the

formation of the axial portion of the control skeleton.

178

8.2 The Appendicular Skeleton

The appendicular portions of the control skeleton are formed in a template-based

manner depending on a few characteristics: whether the figure is human-like or

animal-like: whether a particular pair of limbs has been classified as arms. legs, or

wings: and whether a particular pair of limbs has separated digits. The basic ap­

proach is to create a partial control skeleton in independent fashion for each pair of

limbs and then to attach it to the axial control skeleton.

The first step in the processing of a pair of limbs is to determine the type of girdle it

needs for attachm ent to the axial skeleton. Based on the discussion in Chapter 6. two

types of girdles are possible: a pectoral girdle and a pelvic girdle. The pectoral girdle

is modeled as two independent segments corresponding to the two independently

mobile scapulae. The pelvic girdle is modeled as a rigid extension to the vertebral

segment to which it is attached. .-Vrms. wings, and the foremost pair of legs (provided

there are at least two pairs of legs) are provided with pectoral-style girdles, single

pairs of legs or all leg pairs but the first are modeled with pelvic girdles.

The method for creating the girdle segments differs for human-like and anim al­

like figures. Both methods involve examining the sphere for the voxel on the original

(centralized) head-to-tail path closest to the midpoint of the limb-to-limb path. The

limb-to-limb path is assumed to intersect this girdle sphere’, and for most figures

with fairly circular cross-sections, the assumption holds. For figures with more ob­

long cross-sections, the limb-to-limb path may not intersect the girdle sphere. For

simplicity in this particular implementation, however, the single girdle sphere is as­

sumed to suffice, and the limb-to-limb path is assumed to intersect that sphere.

179

For human-like figures, the shoulder joints and the hip joints are modeled as being

at the voxels of the limb-to-lirnb paths just outside the reach of the girdle sphere. .\ny

limb segments created are thus exterior to the girdle sphere.

For animal-like figures, the process is more involved. Instead of becoming places

for shoulder or hip joints, limb-to-limb path voxels just outside the girdle sphere are

used as positions for the knee joints or the elbow joints of the limb pair.^® The shoulder

joint locations or the hip joint locations are then computed to lie inside the girdle

sphere. These interior joints are positioned such that they roughly preserve the width

between the outside joints (that is. the elbow or knee joints), so that they allow for the

scapular/coxal segment and the humerus/femur segment to be of roughly the same

length, and so tha t they are offset in the anterior direction for pectoral girdles or in

the posterior direction for pelvic girdles (see Figure 8.2). This method of positioning

the shoulder and hip joints was determined experimentally, and it appears to work

reasonably well in most cases.

The portions of the limb-to-limb paths outside the girdle sphere are then smoothed

and divided into segments. The segmentation depends on whether the figure has been

identified as human-like or animal-like and also on whether the limbs stem from a

pectoral-style girdle or a pelvic-style girdle. Each separate limb path exterior to the

girdle sphere is divided according to the ratios presented in Table 8.1. The ratios

are meant to correspond to the relative lengths of the various bones from a limb

of that type. Note tha t in the segmentation of the limb paths for animals, the

humerus/femur measurement is not used, since that segment is already accounted for

‘®The motivation for this comes from a heuristic in artistic anatomy: the elbow and knee joints of
quadruped animals are located approximately at the same height as the line of the creature’s belly.

180

sc a p u la

h u m e ru s

ra d iu s & ulna —

I c a r p a l s 1

— m e ta c a rp a ls —
■c

— p h a la n g e s —

fem ur

tibia & fibula

ta rs a ls
m e ta ta r sa ls

p h a la n g e s

Figure 8.2: The girdle spheres and the control skeleton for the horse. The pec­
toral girdle sphere gives rise to the segments corresponding to the scapulae and the
humerus for each forelimb; the pelvic girdle sphere is used to generate the segments
corresponding to the pelvis and the femur of each hind limb. The remainder of each
limb is segmented based on the data in Table 8.1.

181

B ones w ith in
th e S eg m en t

A n im a l
F o re lim b

A n im al
H in d L im b

H u m an
A rm

H u m a n
Leg

humerus/femur 149 175 190 180
radius-ulna/tibia-fibula 154 174 1.50 160
carpals/tarsals 22 35 20 30
m etacarpals/m etatarsals 78 89 36 30
proximal phalanx 29 29 25 12
middle phalanx 19 19 15 5
distal phalanx 16 17 10 5

Table 8.1: The ratios used in the segmentation of the limbs. Each column shows the
relative lengths of the segments for that type of limb. Note that the data are relative
only within a column and not between columns. The data were derived from analyses
of images in various references on anatomy [EBD56. ParSS, \Iad94].

from the processing of the girdle sphere. Figure 8.2 shows the results obtained for a

figure of a horse.

Recall that an analysis of appropriate regions of the level graph (described near

the end of the previous chapter) is used to determine whether a limb has a single

digit or multiple digits. If a limb is identified as having multiple digits, then further

examination of the branching structure of the region is performed to label one of the

level graph vertices as a wrist or ankle vertex.

For a limb with only a single digit, the segmentation is fairly straightforward, as

the whole limb path can be partitioned according to the ratios in Table 8.1. For limbs

with multiple digits, however, the segmentation occurs in phases - one phase for the

the portion of the limb proximal to the wrist or ankle, and an additional phase for

each digit the limb has. In the phase for the proximal portion of the limb, that part

of the path is divided into two sections for animal-like figures (the carpus/tarsus and

the lower arm/leg) or into three sections for human-like figures (the carpus/tarsus.

182

the lower arm/leg. and the upper arm/leg). The relative sizes or these sections are

again based on the data in Table 8.1. Before the segmentation can occur for the

digits, corresponding voxel paths must be generated. For each limb, the D.MS voxel

set corresponding to the wrist/ ankle vertex is examined to determine the deepest

DMS voxel (the one with the greatest distance map value). Similarly, the DMS voxel

set corresponding to the level graph vertex at the end of each digit is examined, and

the DMS voxel with the greatest heart value is chosen as the end-effector point for the

digit. For each digit, a centralized path is computed between its end-effector point

and the wrist/ankle voxel. The digit closest to the centerline of the body is assumed

to be the first digit (corresponding to the thumb or the big toe). Each digit path

other than that of the first digit is divided into four segments whose relative lengths,

ordered distally to proxirnally. conform to the ratio 10 : 15 : 25 : 36 (see Table 8.1).

The first digit is divided into only three segments according to the ratio 15 : 25 : 36.

Examples of the skeletonization for multiple digits is seen in Figure 8.9 on page 193.

In vertebrates with wings, the bones of the wing generally lie along the anterior

edge of the wing. In the implementation, when a limb has been identified as a wing,

a post-processing step is performed to shift the joint locations for the wing to the

anterior edge of the wing. Results of this forward shifting are apparent in Figures 8.7

and 8.10.

As alluded to in Chapter 6. the joints for the limbs can be constrained to rotate

according to typical patterns. Shoulder and hip joints are given three DOFs with axes

aligned appropriate to the adjacent segments, and elbow and knee joints are effectively

made into hinge joints by allowing no range of motion about two of the three axes

of the three DOF joints. W rist/ankle joints are given three DOFs. a simplification

183

that combines the roll of the radius and ulna (or tibia and fibula) with the yaw

and pitch of the wrist/ankle joint of humans and animals. Joints between digital

segments are constrained as hinge joints, and joints between the digital segments and

the carpus/tarsus are constrained as hinge joints except for the joint for the first digit,

which is constrained to have two rotational DOFs (no roll).

8.3 Attachment

After the segments and joints of the control skeleton have been constructed, the

polygonal da ta for the given model must be anchored to that structure. The basic

process is similar to that for the more general algorithm (described in Section 5.2.5):

the first step consists of determining which parts of the voxelization will be influ­

enced by each control segment, and the second step involves setting up a weighted

summation of a set of locally defined anchor points to be used to recompute the global

position of each vertex of the model.

Each segment has a corresponding list of voxels forming the core of its region of

influence within the voxelization. Applying the inverse distance transform to these

voxels generates a set of spheres, and any voxels interior to any of those spheres

are marked as being under the influence of the segment. In the general algorithm

described in C hapter 5, the core voxels for a particular segment’s region of influence

come directly from the chain of the path tree from which the segment had been

derived. Since the path tree is constructed from the DMS, the core voxels are DMS

voxels.

For the algorithm described in this chapter, the core voxels are selected in a dif­

ferent fashion. Recall that a head-to-tail chain of DMS voxels is computed during

184

the construction of the axial portion of the control skeleton. After the vertebral seg­

ments and the cranium segment are constructed, the voxels of the head-to-tail chain

are partitioned into sets corresponding to which of those segments is closest to each

voxel. These sets are used as the core voxels for each segment's region of influence.

For the jaw segment (if it exists) and for each segment of the appendicular portion

of the euUtlul skclctuli. the cu te tuXels aie full I id uv i i i le tsec l in g each segment with

the voxel grid. Using the jaw as an example, the line segment from the mandibular

joint to the tip of the jaw passes through the set of voxels that form the core of the

region of influence for the jaw. As in the general algorithm, the core voxels are then

expanded into spheres according to their distance values to help form the region of

influence for a segment.

The formulation of the weighted sum is similar to the formulation from Sec­

tion 5.2.5. Each vertex of the model lies within a voxel, and that voxel is contained in

one or more regions of influence. The containing voxel thus dictates which segments

will affect a particular vertex when the control skeleton is animated. Each influencing

segment lends a term to the weighted sum for the position of the vertex, and that

term is the product of an anchor point fixed within the local frame of the segment

and a weight. The weight is derived from the relative proximity of the vertex to that

particular segment.

8.4 Results

Overall, the results of the anatomically based method of generating control skele­

tons are promising. For many human and animal figures, the assumptions built into

185

the implementation work quite well. The control skeletons have a noticeable anatomi­

cal quality to them, and this closer adherence to anatomy serves to allow more natural

looking motion of the figures.

The algorithm depends on a generalized model of the anatomy of humans and

animals. Because of this, the control skeletons produced by the algorithm for a specific

model may nut be as anatomically accurate as a user might desire. Nevertheless, the

control skeletons produced are generally of sufficient quality to function as an initial

skeleton worthy of manual tweaking.

Because the algorithm uses heuristics based on human and animal anatomy, a

comparison of the results with the actual anatomy of such creatures seems in order

where possible. .A. few comparisons pertain to many of the figures. .Anatomically

speaking, each of the figures would have a jaw. If the jaw is not discernable as a

separate protrusion of the voxelization. however, then no jaw segment is generated

by the algorithm. The same comment holds true for the digits of creatures, and this

explains why some of the hands, feet, and paws seen in the diagrams have only one

digital extension of the control skeleton when the true anatomy would reflect several.

.As mentioned previously, a compromise has been made with respect to the number

of spinal segments in the control skeleton. The anatomy would argue for many more

spinal segments (and that they be of varying length according to body region), but

any benefit of having as many as the anatomy would dictate would probably be

overshadowed by the extra time consumed by an animator to control them all. Each

of the following paragraphs will make specific comparisons with regard to one of the

anatomically based control skeletons generated by the algorithm (Figures 8.3, 8.5,

and 8.7 through 8.10).

186

-■îf'-

Figure 8.3: .Anatoniically based control skeleton for a horse. For comparison with
actual horse anatomy, examine Figure 9.2 on page 202.

The control skeleton structure generated for the horse is shown in Figure 8.3.

Figure 8.4 presents a few poses of the horse using this control skeleton. To agree more

with the real anatomy of a horse (see Figure 9.2). a few changes would be necessary.

The joint proximal to the head segment should be farther forward, slightly behind the

ears. .A.Iso. the vertebral segments in the thorax should extend farther forward before

the S shape of the cervical vertebral segments is realized. The scapular segments

should be farther forward as well so tha t the shoulder joint is at the front of the

figure. Finally, the segments in the legs should extend farther into the hoof regions

of the feet, and the segments in the tail extend too far to be anatomically accurate,

since the bulk of a horse's tail is hair. For control purposes, however, an anim ator

would probably want the tail segments to extend as far as they do in Figure 8.3.

187

Figure 8.4; The horse in various poses. Each pose is the result of manually assigning
values to the joint angle parameters of the control skeleton in Figure 8.3.

188

Figure 8.5: Anatomically based control skeleton for a human figure.

Figure 8.5 shows the skeletal structure generated for a human figure, and a few

related poses of the figure are seen in Figure 8.6. In comparison to human anatomy,

the shoulder joints in the figure should be farther away from the spine and higher up

in the body as well. Note tha t the control structure has been built using segments

corresponding to the scapulae instead of segments corresponding to the clavicles. Us­

ing clavicular segments is probably the more common m ethod when a control skeleton

is manually designed. The decision to use scapular segments in the implementation

was based on the generalization that all tetrapods have scapulae, whereas not all

tetrapods have clavicles.

189

Figure 8.6: .A. human figure in various poses. Each pose is the result of manually
assigning values to the joint angle parameters of the control skeleton in Figure 8.5.

190

Figure 8.7: Anatomically based control skeleton for a bird.

The anatomically based control skeleton for a bird can be seen in Figure 8.7. Even

though the model is not an anatomically accurate model of a bird, a few things are

worth noting. The real anatomy of a bird has much less flexibility than the control

skeleton shown. This is because the thoracic, lumbar, and sacral vertebrae of a bird,

as well as its sternum, ribs, and pelvis, are typically fused into two large, rigid bony

masses. Discussion of the control skeleton in the tail region of the bird parallels that

of the horse's tail. The hindmost portion of a bird’s tail is populated by feathers, not

by bones and tissue. Lastly, the knee joints in the flgure should be farther forward,

and the ankle joints should be higher up in the legs and farther toward the rear of

the legs as well.

Figure 8.8 shows the skeleton generated for an asymmetrically posed dog. The

joint proximal to the head segment is obviously incorrect - it should be at the rear

191

Figure 8.8: Anatomically based control skeleton for a dog. Note that the asymmetric
pose was present in the given model before it was processed by the algorithm.

of the head and not quite as high as it is. To better agree with a real dog's anatomy,

the segments corresponding to the femur, tibia and fibula, humerus, and radius and

ulna should be longer, and the m etatarsals should be shorter. These changes would

result in the ankles being lower and thus more accurately placed. A dog also has

multiple digits, so the earlier comment about having a single group of digital segments

also pertains here. The scapular segments should be farther forward, and the pelvis

(represented as the two segments joining together just above the spine) should be

farther back - this includes the point at which it joins the spine as well as the hip

joints. The knee joints should be lower. Note that the caudal vertebrae of a dog do

typically reach to the tip of its tail.

192

r-

Figure 8.9: .\natomicaily based control skeleton for a cartoon-style human figure.
Note that the model is segmented: the darker regions show how the different parts of
the segmented model overlap.

The control skeleton generated for a cartoon-style human figure is shown in Fig­

ure 8.9. W ith the model having cartoon proportions (and non-anatomical extras such

as the hat), the anatomical heuristics are likely not to work as well. Given the skeletal

structure shown, an anim ator would likely desire a few changes. The shoulder joints,

the hip joints, and the knee joints should be raised, and the elbow joints should be

pushed farther back toward the elbow's typically bony protrusion. The ankle joints

should be moved into better position at the bottom of the shanks, thus lengthening

the foot segments as well. The head segment should be longer, and this would perhaps

be best accomplished by folding the top two vertebral segments into that of the head.

193

-n

Figure 8.10: Anatomically based control skeleton for a dragon.

Of final note, the joints proximal to the metacarpal segments are coincident (the same

holds for the hands in Figure 8.5). Whereas this is probably seen as acceptable for

animation purposes, it is not anatomically accurate, since anatomical joints are never

coincident.

The final control skeleton shown is tha t of a dragon (Figure 8.10).^' Since it is a

mythical creature (and modeled in a cartoon style as well), its anatomy is unknown.

From an animation stance, the vertebral segments in the neck region of the figure

should probably be farther toward its dorsal side, and the shoulder joints should

probably be closer to the wings. Finally, the number of segments in the arms and

^*The dragon model is available with the Teddy package [IMT99, Iga99].

194

legs could probably be decreased, as the digital segments are perhaps unnecessary for

the model.

The processing time recpdred for the models ranges from about five seconds (in

the case of the horse) to about two and a half minutes (in the case of the human

figure). The computation was performed on a Silicon Graphics 0 2 (R5000 Processor

Chip). Note tha t these times inelude the generation of the component models for

bones, which is discussed in the next chapter. .\s with the algorithm in Chapter 5.

the computation time is primarily dependent on the number of interior voxels used

to approximate the models.

.A, few more general points should also be noted:

• If the limb sections of a model (in the eyes of a user) have strange proportions

(perhaps incredibly long forearms), then the segmentation resulting from the

application of the ratios in Table 8.1 may not be appropriate. .An example

of this is seen in the legs of the cartoon character in Figure 8.9. .Also, for a

model of some mythical creature whose hypothetical anatomy does not closely

resemble that of most vertebrates, the control skeleton generated may or may

not be similar to what the user had expected. In general, the more closely a

model conforms to the constraints listed in Chapter 7. the better the results of

the algorithm are.

• W ith respect to assigning both joint frames and joint limits, the algorithm

produces mixed results. Correct or appropriate assignments of joint frames and

limits requires having the given figure in a default pose. The constraints listed

in Chapter 7 are not stringent enough in this regard: however, making them

more strict would limit the applicability of the algorithm.

195

For animal-like figures, the implementation has assumed a default pose similar

to that of the horse in Figure 8.3: for human-like figures, the default pose is

similar to that of the model in Figure 8.5. When the pose of a given model

deviates from the default, the joint frames for the generated skeleton may not

align in a convenient fashion (for instance, the hinge axis for a knee or elbow-

joint may not be aligned with one of the three m:es for the knee or elbow joint).

Of course, if the joint frames are not set up properly, assigning joint limits

makes little sense.

Note that if the default poses were required of input models, then the algorithm

could be redesigned to take advantage of the symmetric nature of the default

poses. Instead of computing the axial skeleton as described in Section 8.1. for

instance, the algorithm could examine the cross section of the model in its plane

of symmetry. Thus. 2D techniques could be used to generate the iixial skeleton,

leading to easier computation with more desirable and predictable results. The

process of pairing limbs would also be made easier.

• .As mentioned previously, some assumptions have been hard-coded into the im­

plementation. .An example of where this has a negative effect is seen in Fig­

ure 8.8: the neck region for the dog is fairly short in comparison to its head,

so arbitrarily marking the head/neck division as described in Section 8.1 pro­

duces poor results for that region of the control skeleton. .Again, a more flexible

system could offer the user choices that could alleviate such problems, but the

intent here has been to gather experience on how much can be done without

requiring such assistance from the user.

196

• One could obviously argue the need to expand the girdle sphere into a shape

that more closely matches the cross-section of the trunk at the location of the

girdle. This might allow for a more robust treatment of the girdle sections

of the control skeleton. It would probably not be too difficult to extend the

implementation in such a manner, perhaps modeling the cross-section region as

‘A m l î p r * f Î A n o f s n h p r p < r o n f p r n r j o n m p r î i o î i o n

Clearly anatomically based techniques are not always appropriate. When more

realism is called for. the algorithm provides a useful starting point. When less realism

is desired, such as with a cartoon-style figure, anatomically based techniques may be of

only limited usefulness. The next chapter delves more deeply into anatomically based

modeling, describing how component models of bones can be produced in automated

fashion to enhance the anatomicallv based control skeleton.

197

CHAPTER 9

CREATING ANATOMICAL COMPONENT MODELS

This chapter discusses how component models of anatomical systems such as the

skeleton and musculature can be used to help flesh out a control skeleton into a layered

deformable model for a figure. Section 9.1 presents a generalized skeleton model and

describes how it can be grafted onto an anatomically appropriate control skeleton as

computed in the previous chapter. Results and possible improvements are discussed.

Section 9.2 proposes how a similar idea might be applied in generating a musculature

for an arbitrary human-like or animal-like figure. Finally. Section 9.3 briefly describes

the role of modeling other supporting tissue and a skin surface.

9.1 A General Skeleton Model

The general model tha t has been implemented is fairly simple. It consists of a

set of normalized bone models derived from data models of human skeletons. Models

of human skeletons are more readily available than models of animal skeletons, and

except for a few special cases, most animal bones can be approximated fairly well by

using modified versions of human bones.

The model contains both axial and appendicular sections. The components of the

axial skeleton include a cranium and mandible for the head, a generic vertebra, and a

198

rib cage. The components of the appendicular skeleton consist of two parallel groups

of bones, a pectoral group and a pelvic group.

The cranium and mandible are created and scaled based on the length of corre­

sponding segments of the control skeleton: their widths and heights are computed

using distance map values in an attem pt to occupy as much interior space in the

head as possible. For the vertebral column, the approach is similar. The vertebra

is instanced once for each vertebral segment of the control skeleton and scaled in an

appropriate manner. The length of the instanced model is determined by the length

of the vertebral segment. For neck and trunk vertebrae, the width of a vertebra in­

stance is one twelfth of the diameter of the largest sphere within the trunk of the

figure (computed by examining distance map values). For tail vertebrae, the width

begins with the same measure as the trunk vertebrae but tapers off in a geometric

progression with a decrease of 10% between each successive pair of vertebrae. The

specific implementation does not necessarily correspond in any anatomical or biologi­

cal sense, but it provides visually reasonable results: the intention is merely to mimic

the tapering evident in the tail bones of real skeletons.

For the rib cage, instantiation is more involved. The girdles of limb pairs that are

arms, wings, or forelegs are assumed to be pectoral girdles (all other leg girdles are

treated as pelvic girdles). The girdle spheres for the limb pairs with pectoral girdle

are examined to determine how many there are and whether any of them overlap.

The spheres are partitioned into groups according to which ones overlap, and a rib

cage is created for each group. Each rib cage is set up to be in agreement with the

vertebrae to which the ribs would be attached; the sizing of the rib cage is determined

by the by the size of the girdle sphere or group of spheres.

199

For limbs with ;i pectoral girdle, instantiation of numerous bone models is per­

formed. Each pectoral limb is provided with a scapula, a humerus, a radius and an

ulna, a group of carpals. and. for each digit, a metacarpal and a set of phalangeal

bones. These bones are scaled to lengths to correspond to their respective segments of

the control skeleton, and for all but the scapula, to widths according to distance map

values. The width of the scapula is calculated as half its length, and its orientation

is computed so that the scapula has an approximately tangential relationship to the

rib cage filling out its corresponding girdle sphere.

Limbs with pelvic girdles are instantiated in a similar manner as the pectoral

limbs. They are provided with scaled versions of the femur for the thigh segment

and the tibia and fibula as well as the patella for the shank segment, and a group

of tarsals for the ankle segment. Each digit is provided with a metatarsal and two

or three phalangeal bones. The pelvis is instantiated as a single bone fixed within

the coordinate space of the nearest vertebral segment, positioned and scaled so as to

place the sockets of the pelvis roughly at the locations of the hip joints of the control

skeleton.

9.1.1 Results and Discussion

Figures 9.1 and 9.3 through 9.5 show the results of instantiating bone models for

various control skeletons from the previous chapter. Scaling the components of a

human skeleton and placing them within the segmented hierarchy of an anatomically

based control skeleton produces acceptable results, but there is room for improvement.

Earlier results confirmed that simply scaling a human skull to appear as the skull of an

animal, for instance, produced little more than a strangely scaled version of a human

200

Figure 9.1: Bone models generated for the skeleton of a horse. See Figure 8.3 for
the corresponding control skeleton. Compare the image above with the anatomical
illustration in Figure 9.2.

201

Figure 9.2: Anatomical illustration of the skeleton of a horse (based on a figure in
[EBD56]).

202

Figure 9.3: Bone models generated for the skeleton of a human figure. The corre­
sponding control skeleton can be seen in Figure 8.5.

203

m

Figure 9.4: Bone models generated for the skeleton of a cartoon-style human figure.
Figure 8.9 shows the underlying control skeleton.

204

Figure 9.5: Bone models generated for the skeleton of a dragon. The control skeleton
itself is shown in Figure 8.10.

205

skull with very little resemblance to the expected animal skull. For that reason, a

generalized animal skull has been modeled and used for the animal-like figures shown

here. Creating additional bones for the hands and feet of the human in Figure 9.3

and for the feet in Figure 9.4 could generate pleasing results, but such extras might

not animate well when fixed to the single digit control skeleton for that portion of

the hand ui fuut.

Typically, any particular bone of a creature (a skull or a femur, for example) is

recognizable as an instance of that particular type of bone even though it may come

in a variety of distorted forms specific to the kind of animals from which it came. This

recognition is due primarily to the features that the bone possesses (the eye sockets

and nasal cavity of the cranium, or the rounded head of the femur that helps form

the ball-and-socket joint of the hip). Standard scaling of bone models along three

independent axes often causes too much distortion of these features (in the case of

the femur, for instance, the rounded head might take on too much of an ellipsoidal

shape).

For more realistic skeletal models, several things could be changed. First, indi­

vidual bones of the system might best be described in a procedural fashion. Local

parameters could then be specified that would determine not only the length and

girth of the bone's basic shape but also the positions and sizes of the defining fea­

tures of the bone. Such feature-based rescaling would allow better reproduction of a

bone group like the cranium or of single bones like the femur.

The entire skeleton could be set up in a modular way with procedurally defined

groups of bones. The axial skeleton could be instantiated through the use of various

global parameters to have more or fewer cervical, thoracic, lumbar, sacral, and caudal

206

vertebrae, as well as to have more or fewer ribs. Other global parameters could specify

the sizes of the chest cavity (to determine the overall size of the rib cage and each

rib in it) and the head (to determine the overall and relative sizes of the cranium

and mandible), and still others could specify which individual bones might be fused

together. Such global parameters would provide for recommended sizes of bone groups

and the bones wit Inn them, lueal parameters could then be specified fur mdir idual

bones if it were necessary to override or adjust the global defaults.

Such parameterization could also be used for the appendicular skeleton, the im­

plementation of which would be capable of generating individual limbs. For each limb

generated, a half-girdle and an attached five-segment limb could be formed. Parame­

ters might allow the specification of the relative sizes of the girdle bones and of each

segment, as well as their default girths. O ther parameters could dictate how many

digits would be present on each limb to enable the production of anything from a

horse’s limb skeleton (one digit) to a human's pentadactyl limb skeleton. Boolean

parameters could be set as to whether a limb was to take a forelimb or hind limb

orientation (note that the elbow of vertebrates generally points caudally and the knee

cephalically) and as to whether a limb was on the left or right side of the body. Gen­

eral functionality of the limb might also be specified as a parameter. For planted

“hands” or feet, this could enable separate instantiation of plantigrade (flat-foot, like

a human), digitigrade (walking on curved digits, like a cat), and unguligrade (walking

on fingertips, like a horse) feet. Such a parameter could alternatively specify tha t that

limb was to be a wing or non-supporting arm.

There are a few problems with such an approach, however. If the goal is to

have an autom ated algorithm, then the large number of parameters that would need

207

to be incorporated would likely make an implementation infeasible. Automatically

assigning values to such parameters might be possible for a very constrained set of

figures (a horse, for example), but that would limit the usefulness of the system for

fleshing out other figures.

.Another problem concerns the amount of realness necessary for a given hgure.

.Vftcr all. how appropriate is it to create realistic sets of bones, muscles, or other

internal tissues for a cartoon-style person or animal?

9.2 A General Musculature Model

Though no modeling of the musculature has been implemented in the course of this

research, it is not hard to imagine how a generalized musculature could automatically

be generated. The following discussion draws from the analysis in Chapter 6 and some

of the research described in Section 2.4.

.A full set of muscles for an arbitrary vertebrate would probably be too difficult

and time-consuming to model, not to mention too much of a computational burden:

simplifications and generalizations seem called for. The musculature model would

depend upon the underlying model of the skeletal system, so it might work best

to have muscle groups defined in a procedural fashion relative to the locations of

the individual bones of that system. Each generic bone model could have default

locations for the origins or insertions of the muscle models tha t would attach to that

bone. These default locations would relate to the patterns of muscle footprints on

the bones as identified in the comparative anatomy literature.

208

As for the actual modeling of any individual muscles, an approach such as tha t of

Scheepers [Sch96. SPCM97] would likely be sufficient. This would allow for instanti­

ation of relatively simple fusiform muscles or for the more complex arrangements of

muscle groups in the chest and back.

For the axial muscles, a standard pattern of both oblique and longitudinal muscles

could be created along the spine (the cpmdal muscles) that would respond to arching

or to lateral bending of the vertebral column. Each muscle would originate on one

vertebra and insert on one or more other vertebrae or possibly on the base of the skull.

Simplified jaw muscles could also be modeled. .\ pattern of body wall muscles (the

hypaxial muscles) could also be generated, though it should be noted that since these

muscles function mainly to contain the innards of the trunk, it may be necessary to

have a simple model of the innards as well.

.A.S for the appendicular muscles, there could be two standard templates of limb

muscles, one for the pectoral girdle and anterior limbs and another for the pelvic

girdle and posterior limbs. For a forelimb, the extrinsic appendicular muscles could

be simplified to consist of the trapezius and the latissimus dorsi on the dorsal side

of the figure and the pectoralis on the ventral side. Models of the intrinsic muscles

might include the deltoid, the biceps and triceps, the brachioradialis. and perhaps one

or two forearm muscles that flex or extend the "hand’’. For a hind limb, the models

could include the gluteus maximus, the quadriceps, biceps femoris. gastrocnemius,

and a flexor for the foot.

209

9.3 Fatty Tissue and Skin

The main reason for creating component models of bones and muscles is to have

the skin surface of the animated figure deform in a manner one would expect for a

human or animal. Muscles and bones alone, however, are not enough to support a

believable skin model for a complete figure. For this reason, additional models for

shape-holding tissue (such as the cartilage in a figure’s ears) or for fatty deposits

on a figure would be useful. .A. simple model such as that of W ilhelms’ "stuffing”

[W1194. W1197] would probably work well.

.As for the modeling of the skin surface itself, one of two approaches could be

used. The first possibility would be to generate a completely new skin as a surface

offset from the underlying bone, muscle, and stuffing models, as is done by Wilhelms

[W1194. Wil97]. The original polygonal data defining the figure would simply be

discarded. .An alternative approach would be to keep the exterior polygons from the

original data and to anchor their vertices to the underlying anatom ical components.

This is the method of Schneider and Wilhelms [SW98]. Both approaches to skin

modeling have been set up in an automated fashion.

210

CHAPTER 10

CONCLUSION

10.1 Summary

This research began from a conversation with an artist who was describing the

time-consuming task of building control skeletons for figures he wanted to animate.

The author made a suggestion postulating the automation of the process, and the

idea was met with such excitement and enthusiasm from the artist that the author

became driven to pursue its realization. .-\fter several early attem pts that produced

somewhat mixed results, the author embarked on the approach tha t is described in

this document. Although the main thrust of the research has always been the auto­

mated generation of control skeletons for arbitrary figures, the research has expanded

to include the development of supportive algorithms as well as various extensions to

the original concept.

Two basic solutions to the problem of automatically generating control skeletons

have been designed and implemented. The first solution maintains the generality

of the original idea for the research by allowing the skeletonization of almost any

polygonal model. It is based on a purely geometric analysis of the given model. The

other solution is more restrictive about the models with which it can work, assuming

•211

them to be human-like or animal-like figures. It relies not only on a geometric analysis

of the model but also on an anatomical assessment of the model and on anatomically

based heuristics. For most human-like or animal-like figures, it is capable of producing

a more anatomically accurate control skeleton than the general solution.

The algorithms for each solution begin by constructing a voxelization of the polyg­

onal data. The voxclizcd mode! is fed into an algorithm that computes a close ap­

proximation to a Euclidean distance map (EDM). This map represents the depth of

each voxel from the surface of the figure. The distance map is then processed by an

algorithm that extracts the discrete medial surface (DMS) for the object by tracking

the ridges implied within the map. Information from the EDM and the DMS is used

at various points within both control skeleton generation algorithms.

For the more general algorithm, the DMS is used as the domain for the generation

of a tree-like structure of voxel paths. The set of paths is then smoothed and divided

into a series of interconnected segments. These segments and the intervening joints

form the base structure for the control skeleton. Each segment corresponds to a

chain of DMS voxels, and applying the inverse distance transform to each voxel of a

chain helps reveal the region of the model’s interior over which a particular segment

should exert influence. These regions of influence are used to determine the set of

control segments to which a vertex of the original model should be anchored. .-\fter

the polygonal data has been attached, it will be deformed appropriately whenever

the pose of the control skeleton is changed.

The anatomically based algorithm uses some additional tools. The voxels of the

DMS are partitioned into sets according to an analysis of the shortest paths between

212

its voxels, and a graph called the level graph is constructed based upon the connec­

tivity of these sets. The level graph is processed using a few simple heuristics in

order to determine the anatomical features present in the model. Parts of the level

graph and DMS are classified as particular body parts of the figure, and voxel paths

within the DMS are generated for each of those body parts. These paths are modified

according to certain heuristics so tha t they follow more closely along the main lines

of what might be expected of an anatom ical skeleton for the figure. Other heuristics

are invoked to produce a segmentation of the paths that is meant to correspond to

expected joint locations for that anatom ical skeleton. .As with the general algorithm,

the inverse distance transform is used to help anchor the model's vertices to the seg­

ments of the control skeleton. The articulation capabilities of the control skeletons

produced by the anatomically based algorithm are believed to be reasonable accurate

with regard to the anatomy that the model might be expected to possess.

.As an extension to the anatomically based algorithm, the system can autom ati­

cally produce individual models of bones. Thus, polygonal models of the bone struc­

ture of a human-like or animal-like figure can be generated. Since the individual bone

models are constructed within the coordinate spaces of the appropriate segments of

the control skeleton, the bones will move in accordance with the control skeleton.

These models provide a foundation for further anatomically based modeling.

10.2 Contributions

The following list presents the main contributions of the research:

• A fast algorithm for fully automatic generation of control skeletons for 3D mod­

els. W ith the aim of alleviating tedium and shortening the time required for

213

a user to create a control skeleton for a given model, an algorithm has been

designed and implemented that automates the entire process. In relatively lit­

tle time and with very little user input, the algorithm produces a reasonable

control skeleton for a wide variety of polygonal models.

• Use of anatomical knowledge to improve automatic skeleton generation for

human-like and anirnal-like figures. Drawing from sources on comparative

anatomy, an algorithm has been developed and implemented to generate more

anatomically appropriate control skeletons for certain common classes of fig­

ures. The articulation abilities of these control skeletons are designed to mimic

the expected flexibility of the figure. For the most part, the algorithm operates

quickly and produces control skeletons tha t are quite reasonable for animating

the given figures in a realistic fashion.

• .4 variant of a contour propagation algorithm for approximating the Euclidean

distance map in 2D or 3D. The details of the algorithm are explained clearly, and

the algorithm operates in an intuitive manner. Its implementation is straight­

forward. and it offers a very close approximation of the EDM. The algorithm

may be extended in a straightforward fashion to compute close approximations

to the EDM in any dimension. Furthermore, regardless of the dimension, the

algorithm maintains a linear time complexity.

• An approach for computation of the discrete medial axis for a 2D object and

the discrete medial surface for a 3D object. Using a contour-based approach,

the algorithm offers incremental computation of the DMA or DMS that, at any

stage of the execution, is accurate for the set of voxels that have already been

214

processed. It operates under nearly linear time complexity and can be readily

extended to higher dimensional spaces.

• Use of the inverse distance transform in automatically anchoriny surface points

of a model to control skeleton segments. The Euclidean distance map. through

the application of the inverse distance transform, offers a convenient means to

help determine the skeletal segments that should exert influence over the various

regions of a figure. Combining this process with a simple weighted average of

anchor points fixed in the frames of those influencing segments provides an

effective technique for attaching the surface points of the model to the skeletal

segments in a flexible manner.

• Automatic generation of bone and joint anatomy for a 3D model. Having con­

structed an anatomically appropriate control skeleton, the system can generate

individual component models for the bones of a skeletal system. These bone

models could be used as a base layer for further anatomically based modeling.

10.3 Future Research

This research offers useful approaches to the problem of automatically generating

a control skeleton for use in anim ating a given figure. There are several avenues for

improving or extending the research.

One way of improving this research would be to allow for an adaptive voxelization

of the figure. This could involve the adaptive subdivision of an initially coarse vox­

elization, possibly through the use an octree. \ arious regions of the figure could thus

be partitioned with differently sized voxels so that there would always be an appro­

priate number of voxels representing those regions. It may be possible to autom ate

215

the adaptive subdivision based on a distance map computation to ensure that the

centralized portions of the DMS are computed at a sufficient discrete depth from the

surface. This would allow the DMS to approximate the continuous medial surface at

an appropriate level for any region of the figure. This could help to centralize the

control skeleton better in various parts of the figure as well as to ensure that the

control skeleton effectively represents both the main protrusions of the figure (arms

and legs, for instance) as well as its finer protrusions (such as the fingers).

Related to the idea of adaptively computing the DMS is the hierarchical DMA

concept of Ogniewicz and Kiibler [OK95. Ogri95]. discussed on page 2.2.1 of this dis­

sertation. It may be that similar ideas could be developed for computing a hierarchical

DMS and for autom atically pruning that DMS to a representative level appropriate

for an object. Fruits from such research could benefit automatic generation of control

skeletons, not just in regard to having a control skeleton whose complexity is appro­

priate with respect to a given model, but also with respect to modifying that control

skeleton to have more or less detail in appropriate regions.

Perhaps a sort of hierarchical control skeleton could be generated automatically for

a given object. Such a structure might offer various levels of detail (LOD) with respect

to the articulation of a particular model by allowing the instantiation of a specific

control skeleton a t any of a number of levels of complexity for that model. These levels

of articulation could be defined either with respect to the one original surface of the

model or with respect to several different LOD representations of that original surface.

In the latter case, as an animation switched between different LOD representations,

so would it switch between différent level of articulation representations of the control

skeleton.

216

It might even be possible to generate appropriate LOD representations by devel­

oping a specialized mesh compression algorithm. The compression algorithm, when

given a polygonal data model and its hierarchical control skeleton, would produce

specific LOD representations of the model (for specific instances of the control skele­

ton) with the goal of preserving surface details in correspondence with the flexibility

n F t h a c n r f a r A i m n l t p r l K \ ' f h p n n r l p r H ' i n c r m n f m l c L ' n l p r n n f n r T O O

.A.nother area for extending the research involves the cinatomical models. Proce­

durally defined models of bones could significantly improve the results of automated

generation of a skeletal system for a given figure. .Automated generation of a figure's

musculature is another possibility for future work.

10.4 Final Thoughts

This research has focused on the idea of automation. .Although automation is

a very powerful cool, it does have limits. With this research, the automation ap­

proaches a breaking point when applied to anatomically appropriate control skeleton

generation. .A type of "software bloat'’ starts to creep in as the implementation grows

ever larger, becoming more and more like an expert system whose goal is to handle

all the special cases tha t the diversity of the natural world can bring.

Instead of trying to autom ate everything, it might be useful to have a healthy

combination of automation and user interaction. The more mathematically or geo­

metrically tedious affairs lend themselves well to programmatical solutions, but the

elements tha t rec^uire a higher level of intelligence are probably best left in the hands

of a user.

211

The best platform for constructing control skeletons would probably be a combi­

nation of three main elements. First, it would have a group of relatively standard

but well-designed user interface tools for manually constructing or modifying control

skeletons. The second element would be a set of templates for commonly animated

figures. The templates would be designed to produce prefabricated control skeletons

whose joints a user would then drag into proper alignment and orientation with re­

spect to the user's model. Templates would be provided not just for generic bipeds

and quadrupeds, but also for more specific creatures: different types of birds, rep­

tiles. mammals, and so forth. There would be realistic as well as cartoon versions

of the skeletons. Furthermore, the templates would have parameters for dictating

such characteristics as the number of fingers on a hand or the number of segments to

use in the trunk of the figure. Given the continual push towards more anatomically

based modeling, the templates might include complete bone and muscle models for

the creatures. The final element would be a few well-conceived, robustly implemented

routines for automatically generating control skeletons. The control skeletons gener­

ated by these routines would already be positioned inside a given model, so perhaps

only minor tweaking of the results would be necessary. One routine might automat­

ically take one of the prefabricated template-based skeletons as selected by the user

and fit it into a given model. Another routine might create a customized skeleton for

more general figures. It would be designed to handle models that do not correspond

to the standard templates, especially those with numerous appendages or with more

complex branching structures. As was described in Section 2.3. commercially avail­

able animation software already contains the first two elements (though the varie tv

218

of templates is still somewhat limited). It will probably not be long before the fully

autom ated methods of control skeleton generation are included as well.

219

APPENDIX A

GLOSSARY OF ANATOMICAL TERMS

The following is a list of the anatomical terms used in the text. Many of the

definitions are taken directly (either word for word or with minor adaptations) from

one of the following sources: [KenST. \VcbS4. .\Iad94. Sch96. Mad85j.

abdomen the part of the body between the thorax and the pelvis.

abduct to move a part away from the main axis: the opposite of adduct.

adduct to draw or pull a part toward the main axis: the opposite of abduct.

amphibian any of various cold-blooded, srnoothed-skinned vertebrate organisms of
the class Amphibia, such as a frog, that typically hatch as aquatic larvae that
breathe by means of gills, and metamorphose to an adult form with air-breathing
lungs.

ankle the joint tha t connects the foot with the leg; the proximal segment of the pes.

ankylose to fuse in an immovable articulation,

anterior toward the front; the opposite of posterior.

appendicular skeleton the portion of the skeleton pertaining to the girdles and
limbs.

articulation m ethod or manner of jointing.

axial skeleton the portion of the skeleton pertaining to the trunk, head, and tail.

220

b a ll-an d -so ck e t jo in t a joint allowing three rotational degrees of freedom, such as
the shoulder or hip Joint.

b iceps b rach ii the large muscle at the front of the upper arm that flexes and
supinates the forearm.

b iceps fem oris the large muscle at the back of the thigh that flexes the lower leg.

b ip e d a two-footed animal.

bo n e the dense, semirigid, porous, calcified connective tissue of the skeleton of most
vertebrates.

b rach ia lis a muscle of the upper arm that hexes the forearm.

b ra ch io rad ia lis a forearm muscle that flexes the forearm at the elbow.

b ra in case the part of the skull containing the brain.

ca rp a ls the bones of the carpus.

c a rp u s the wrist: the proximal segment of the manus.

c a r tila g e a tough white fibrous connective tissue attached to the articular surfaces
of bones.

cau d a l of. at. or near the tail or hind parts: posterior.

c au d a l v e r te b ra e the vertebrae in the portion of the spine pertaining to the tail,

cep halic located on. in. or near the head.

cerv ica l v e r te b ra e the vertebrae in the portion of the spine pertaining to the neck.

c h o rd a te any of the numerous animals of the phylum Chordata, including all verte­
brates and certain marine animals having a notochord.

clav icle a bone linking the sternum and the scapula: the collarbone.

coccyx a small bone at the base of the spinal column in humans, composed of several
fused vertebrae.

c ra n iu m the skull.

d e lto id eu s a thick, triangular muscle covering the shoulder joint, used to raise the
arm from the side.

d ep ress to lower; the opposite of lift.

221

d ig e s tiv e t r a c t the system of organs and tissues responsible for digestion,

d ig it a finger or toe.

d ig itig ra d e walking on curved digits with wrist and ankle elevated, as cats and dogs
do.

d is ta l located far from the origin or line of attachment: the opposite of proximal.

d o rsa l of. toward, or near the back: the opposite of ventral.

d o rso v e n tra l axis the line of the body running from the belly to the back.

e lb o w the joint between the upper arm and the forearm.

e m b ry o n ic of or relating to an organism in its early developmental stages.

ep a x ia l m uscles the dorsal muscles of the trunk and tail: the oblique and longi­
tudinal muscles along the spine, collectively functioning in straightening the
vertebral column and in lateral flexion of the body.

ev o lu tio n the historical development of a related group of organisms: the theory
tha t groups of organisms, as species, may change over time so that descendants
differ morphologically and physiologically from their ancestors.

e x te n d to straighten: the opposite of flex.

e x tr in s ic a p p e n d ic u la r m uscles the appendicular muscles arising on the axial
skeleton or fascia of the trunk and inserting on a girdle or limb.

fem u r the thighbone: the proximal bone in the hind limb.

fib u la the outer and smaller of the two bones in the shank.

fiex to bend: the opposite of extend.

fo re a rm the portion of the forelimb between the elbow and the wrist, containing the
radius and ulna.

fu s ifo rm tapering at each end; spindle shaped.

g a s tro c n e m iu s a muscle in the back of the shank that extends the foot.

g ird le the pelvis or pectoral arch; the portion of the skeleton between a pair of limbs
and the axial skeleton.

g lu te u s the large muscles of the buttocks.

9 9 0

h in g e jo in t a joint allowing a single rotational degree of freedom, such as the knee
or elbow.

h ip the joint between the femur and the pelvis: alternatively, the lateral projecting
prominence of the pelvis.

hom ologous corresponding in structure and evolutionary origin, such as the flippers
of a seal and the arms of a human.

h u m e ru s the long bone of the upper arm.

h y p ax ia l m uscles the ventral muscles of the trunk: the sheet-like muscles of the
body wall, functioning to hex the spine and to contain the innards of the trunk.

in n a rd s the internal bodily organs.

in se r tio n the distal site of attachm ent for a muscle, as opposed to the origin.

in s te p the arched middle part of the human foot or the analogous part in animals:
the middle segment of the pes. containing the metatarsals.

in tr in s ic a p p e n d ic u la r m uscles the appendicular muscles that arise on a girdle or
limb and insert more distally on the limb.

k in g d o m the largest taxonomic category into which organisms are placed: Monera.
Protista. Fungi. Plants, and .\nimals.

k n ee the joint distal to the femur tha t provides the articulation for the tibia, fibula,
and patella.

la tis s im u s d o rs i a wide muscle of the back that originates on the spine and inserts
on the humerus, functioning to extend and adduct the arm or forelimb.

lif t to raise: the opposite of depress.

lim b an animal's jointed appendage, used for locomotion or grasping, as an arm. leg,
wing, or flipper.

lo n g itu d in a l ax is the line of the body running from the head to the tail.

lu m b a r v e r te b ra e the vertebrae in the portion of the spine between the ribs and
the pelvis.

m a m m a l a member of the vertebrate class Mammalia, such as a human or a dog.
distinguished by self-regulating body temperature, hair. and. in the females,
mammae.

223

mandible the lower jaw: the jawbone.

manus the end of the vertebrate forelimb, consisting of the wrist, palm, and digits,

metacarpais the bones of the palm.

metamerism the condition of having the body divided into a series of homologous
segments.

metatarsals the bones of the instep.

muscle a tissue made up of fibers that can contract and relax to effect bodily move­
ment.

muscle belly the bulging part of a muscle.

musculature the system of muscles of an animal or body part.

notochord a cordlike skeleton of the back: the primitive backbone.

origin the proximal site of attachm ent for a muscle, its opposed to the Insertion.

palm the middle segment of the manus. containing the metacarpais.

patella a flat, triangular bone a t the front of the knee.

pectoral girdle the skeletal structure attached to and supporting the forelimbs and
consisting of the scapulae and. if present, the clavicles.

pectoralis a muscle mass on the ventral side of the thorax that functions to adduct
the humerus.

pelvic girdle the skeletal structure of bone or cartilage by which the hind limbs or
analogous parts are supported and joined to the vertebral column.

pelvis a basin-shaped skeletal structure that connects the lower limbs to the spine.

pentadactyl Having five digits.

peristalsis Wavelike muscular contraction that push contained m atter along tubular
organs.

pes the end of the vertebrate hind limb, consisting of the ankle, instep, and digits,

phalanx a bone of a finger or toe.

phylum a taxonomic category applied to animals that follows kingdom and lies above
class.

224

p la n tig ra d e walking with the entire lower surface of the foot on the ground, ius
humans and bears do.

p o s te r io r toward the rear: the opposite of anterior.

p rocess a part extending or projecting from an organ or organism.

p ro n a tio n rotation of the forearm to turn the palm of the hand to face downward
or backward: the opposite of supination.

protract t o e x t e n d u i p r u t r u d e , t h e u p p u s i t e u f r e t r a c t .

p ro x im al near the central part of the body or a point of attachm ent or origin: the
opposite of distal.

q u a d ric ep s fem oris the muscles on the front and sides of the thigh that act to to
extend the shank or adduct the thigh.

q u a d ru p e d a four-footed animal.

rad iu s the shorter and thicker of the two forearm bones.

re p tile a cold-blooded, usually egg-laying vertebrate of the class Reptilia. such as a
snake, lizard, crocodile, turtle, or dinosaur, having an outer covering of scales
or horny plates and breathing with lungs.

re tr a c t to draw back: the opposite of protract.

r ib one of a series of long, curved bones extending from the spine to the sternum.

rib cage the enclosing structure formed by the ribs and the bones to which they are
attached.

sac ra l v e r te b ra e the vertebrae to which the pelvic girdle is attached.

sac ru m a bony complex consisting of a number of sacral vertebrae tha t have fused
together, located a t the dorsal side of the pelvis.

scap u la either of a pair of large, flat, triangular bones that form the back part of
the shoulder.

sh an k the portion of the hind limb between the knee and the ankle, containing the
tibia and the fibula.

sh o u ld e r the joint proximal to the humerus: alternatively, the region of the body
between the upper arm and the neck.

225

sk e le to n the internal vertebrate structure composed of bone and cartilage that pro­
tects and supports the soft organs, tissues, and parts.

sk u ll the framework of the head of vertebrates, made up of the bones of the brain
case and face.

socket the hollow part of a joint that receives the end of a bone.

so m a tic m uscles the muscles primarily responsible for interacting with the external
environment.

sp ec ies a fundamental taxonomic classification category consisting of organisms ca­
pable of interbreeding.

sp in a l co lum n the assemblage of articulated vertebrae extending from the cranium
to the cocc\-x or the end of the tail, encasing the spinal cord and forming the
supporting axis of the body.

sp in e the spinal column: backbone.

s te rn u m a long flat bone forming the midventral support of most of the ribs and. if
present, the clavicles.

su b p h y lu m a taxonomic category ranking between a phylum and a class.

su p in a tio n rotation of the forearm to turn the palm of the hand to face forward or
upv.ard: the opposite of pronation.

sy m p h y sis a growing together.

sy n sa c ru m a bony complex in birds resulting from the ankylosing of the last thoracic
vertebra, all the lumbar and sacral vertebrae, the first few caudal vertebrae, and
associated ribs.

ta rs a ls the bones of the tarsus.

ta rs u s the ankle; the proximal segment of the pes.

te n d o n a band of tough ineltistic fibrous tissue connecting a muscle with its bony
attachment.

te t r a p o d a vertebrate having two sets of paired limbs: a vertebrate that dwells on
land or had land-dwelling ancestors.

th ig h the proximal segment of the hind limb, containing the femur.

th o ra x the part of the body between the neck and the abdomen, partially encased
by the ribs.

226

th o ra c ic v e r te b ra e the vertebrae to which the ribs are attached.

t ib ia the inner and larger of the two bones in the shank.

tra p e z iu s a superficial muscle of the shoulder region which acts to raise the shoul­
ders.

tr ic e p s a large three-headed muscle running along the back of the arm and function­
ing to extend the forearm.

u llia the; large;! u f t h e Lvvu f u r e a n u b o n e s .

u n g u lig rad e walking on the fingertips, such as the hoofed mammals: horses, cattle,
deer, and so forth.

u p p e r a rm the proximal segment of the forelimb, containing the humerus.

v e n tra l relating to or located on or near the belly: the opposite of dorsal.

v e r te b ra any of the bones or cartilaginous segments making up the spinal column.

v e r te b ra te having a backbone or spinal column: a member of the subphylum Ver-
tebrata that includes the fishes, amphibians, reptiles, birds, and mammals, all
of which have a segmented bony or cartilaginous spinal column.

v estig ia l existing or persisting as a rudimentary or degenerate structure.

v isce ra l m uscles the muscles primarily responsible for internal body functions.

w ris t the junction between the hand and the forearm: the system of bones forming
this junction.

227

BIBLIOGRAPHY

[ABH~94] Francisco Azuola. Xorman I. Badler. Pei-Hwa Ho. loannis Kakadiaris.
Dimitri Metiixas, and Bond-.Jay Ting. Building anthropometry-based
virtual human models. In Proceedings IMAGE VII Conference. June
1994.

[.A.G85] William W. Armstrong and Mark W. Green. The dynamics of articulated
rigid bodies for purposes of animation. The Visual Computer. I(4):231-
240. December 1985.

[.A.KOO] Nina .A.menta and Ravi Krishna Kolluri. .A.ccurate and efficient unions of
balls. In Proceedings of the 16th .Annual .ACM Symposium on Computa­
tional Ceometry, pages 119 -128. 2000.

[.Ale94] R. McXeill Alexander. Bones: The Unity of Form and Function. Macmil­
lan. New York. 1994.

[.A.S79] Norman .Adams and Joe Singer. Drawing .Animals. Watson-Guptill Pub­
lications. New York. 1979.

[BBGS99] Robert Blanding, Cole Brooking. Mark Ganter, and Duane Storti. .A.
skeletal-based solid editor. In Solid .Modeling 99 (Proceedings of the Fifth
.ACM Symposium on Solid Modeling and .Applications), pages 141-150.
June 1999.

[BBZ91] Norman I. Badler, Brian Barsky. and David Zeltzer. editors. Making
Them Move: Mechanics, Control, and .Animation of .Articulated Figures.
Morgan Kaufmann, 1991.

[BGKW95] Heinz Breu, Joseph Gil. David Kirkpatrick, and Michael Werman. Lin­
ear time Euclidean distance algorithms. IEEE Transactions on Pattern
.Analysis and Machine Intelligence. P.A.MI-17:529-533, May 1995.

[BL99] Jules Bloomenthal and Chek Lim. Skeletal methods of shape manipula­
tion. http://www.unchainedgeometry.com. 1999.

228

http://www.unchainedgeometry.com

[CLR90]

[CurOO]

[CZ92]

[Boo79] Fred L. Bookstein. The line-skeleton. Computer Graphics and Image
Processing. 11:123-137. 1979.

[Bor86] G. Borgefors. Distance transformations in digital images. Computer
Vision, Graphics and Image Processing.. 34:344-371. 1986.

[BPVV93] Norman I. Badler. Cary B. Phillips, and Bonnie Lynn Webber. Simulating
Humans: Computer Graphics Animation and Control. Oxford University
Press. 1993. ISBN 0-19-507359-2.

[CHP89j John E. Chadwick. David R. Haumann. and Richard E. Parent. Layered
construction for deformable animated characters. In Jeffrey Lane, edi­
tor. Computer Graphics (SIGGR.XPH 'S9 Proceedings), volume 23. pages
243-252, July 1989.

Thomas H. Cor men. Charles E. Leiserson. and Ronald L. Rivest. Intro­
duction to Algorithms. MIT Press. Cambridge. M.A.. 1990.

Curious Labs web site, http://www.curiouslabs.com. 2000.

David T. Chen and David Zeltzer. Pump it up: Computer animation of a
biomechanically based model of muscle using the finite element method.
In Edwin E. Catmull. editor. Computer Graphics (Proceedings of SIG-
GRAPH '92). volume 26. pages 89-98. July 1992. ISBN 0-201-51585-7.
Hold in Chicago. Illinois.

[Dan80] Per-Erik Danielsson. Euclidean distance mapping. Computer Graphics
and Image Processing, 14(3):227-248. November 1980.

[DH90] Debasish D utta and Christoph M. Hoffmann. .\ geometric investigation of
the skeleton of CSG objects. In B. Ravani. editor. Proceedings of the 16th
ASM E Design Automation Conference: Advances in Design .Automation.
Computer Aided and Computational Design, volume I. pages 67-75. 1990.

[DisOO] Discreet w ebsite, http://www.discreet.com. 2000.

[EBD56] W. Ellenberger, H. Baum, and H. Dittrich. .An .Atlas of .Animal .Anatom.y
for .Artists. Dover Publications, Inc.. New York, second revised and ex­
panded edition, 1956.

[EgiOOj egi.sys web site, http://www.egisys.com. 2000.

[EngOO] Engineering Animation, Inc. web site, http://www.eai.com . 2000.

[FS99] Carol Franger and Linda Stevens. MetaCreations Poser f User Guide.
MetaCreations Corporation, Carpinteria, California. 1999.

229

http://www.curiouslabs.com
http://www.discreet.com
http://www.egisys.com
http://www.eai.com

[FW88] David R. Forsey and Jane Wilhelms. Techniques for interactive manip­
ulation of articulated bodies using dynamic analysis. In Proceedings of
Graphics Interface ’8S. pages 8-15. June 1988.

[GF96] Vaorong Ge and J. Michael Fitzpatrick. On the generation of skeletons
from discrete Euclidean distance maps. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 18(11). November 1996.

[GG94] Jean-Dominique Gascuel and Marie-Paule Gascuel. Displacement con­
straints for interactive modeling and animation of articulated structures.
The Visual Computer. 10(4):191-204. March 1994. ISSN 0178-2789.

[GKHS98] Nikhil Gag\ani. Dilip Kenchammana-Hosekote. and Deborah Silver. Vol­
ume animation using the skeleton tree. In IEEE Sgmpo.iium on Volume
Visualization, pages 47-54. October 1998. ISBN 0-8186-9180-8.

[Gol99] Christopher Gold. Crust and anti-crust: one-step boundary and skele­
ton extraction algorithm. In Proceedings of the 15th .Annual .ACM Sym-
po.Hiarn on Computational Ceornetry, pages 189-196. 1999.

[GS99] Nikhil Gagvani and Deborah Silver. Realistic volume animation with
alias. In Volume Graphics, chapter 15. Springer-\erlag. October 1999.

[GVKD91] John A. Goldak. Xinhua Yu. .Alan Knight, and Lingxian Dong. Con­
structing discrete medial axis of 3-D objects. International .loumal of
Computational Geometry and .Applications.. 1(3):327 339. 1991.

[Har99] Dr. Tony Hare. .Animal Fact File: Head-to-tail Profiles of More than 90
.Mammals. Facts On File. Inc.. New York. 1999.

[HiI95] Milton Hildebrand. Analysis of Vertebrate Structure. John Wiley & Sons.
Inc.. New York, fourth edition, 1995.

[HKGLOO] Perry Harovas. John Kundert-Gibbs, and Peter Lee. .Mastering Maya
Complete 2. SYBEX. Inc., San Francisco. 2000.

[Iga99] Takeo Igarashi's Home Page. http://w w w .m tl.t.u-
tokyo.ac.jp/'takeo/teddy/teddy.htm , 1999.

[IMT99] Takeo Igarashi. Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: .\
sketching interface for 3D freeform design. Proceedings of SIC C R A P H 99.
pages 409-416. .August 1999. ISBN 0-20148-560-5. Held in Los .Angeles.
California.

230

http://www.mtl.t.u-

[JBD'^00] Angie Jones. Sean Bonney, Brandon Davis, Sean Miller, and Shane Olsen.
3D Studio Max 3 - Professional Animation. New Riders Publishing,
Indianapolis. Indiana. 2000.

[Joh94] Jinny Johnson. Skeletons: .An inside look at animals. The Reader’s Digest
.Association. Inc.. Pleasantville. NY. 1994.

[KenST] George C. Kent. Comparative .Anatomy of the Vertebrates. VVm. C.
Brown Publishers. Dubucjue. Iowa, seventh edition. 1987.

[Kir79j David G. Kirkpatrick. Efficient computation of continuous skeletons. In
Proceedings of the 20th .Annual Symposium on Foundations of Computer
Science, pages 18-27. 1979.

[KM95] Ioann is .\. Kakadiaris and Dimitri Metaxas. 3D human body model
acquisition from multiple views. In Proceedings of the Fifth Intemational
Conference on Computer Vision, pages 618-623. 1995.

[Lap99] Jeffrey Lapierre. Matching anatomy to model for articulated body ani­
mation. M aster’s thesis. L'niversity of California. Santa Cruz. December
1999.

[LKC94] Ta-Chih Lee. Rangasami L. Kashyap. and Chong-Nam Chii. Building
skeleton models via 3-D medial surface/axis thinning algorithms. CVGÎP:
Graphical Models and Image Processing, 56(6):462-478. November 1994.

[LV99] Francis Lazarus and .Anne \ ’erroust. Level set diagrams of polyhedral
objects. In Solid Modeling '99 (Proceedings of the Fifth .ACM Sympo.num
on Solid Modeling and .Applications), pages 130-140. June 1999.

[LW99] Jeffrey Lapierre and Jane Wilhelms. Matching anatom y to model for
articulated body animation. In M. H. Hamza, editor. Proceedings of the
lASTED Intemational Conference on Computer Graphics and Imaging.
The International .Association of Science and Technology' for Develop­
ment (LASTED). .ACT.A Press. 1999.

[Mad85] Sylvia S. Mader. Inquiry into Life. Wm. C. Brown Publishers. Dubuque.
Iowa, fourth edition. 1985.

[Mad94] Sylvia Mader. Understanding Human Anatomy & Physiology. Wm. C.
Brown Publishers. Dubuque. Iowa, second edition, 1994.

[Mae96] George Maestri. Digital Character Animation. New Riders Publishing.
Indianapolis. Indiana. 1996.

231

[May95] Stephen F. May. AL: Animation language reference manual. Technical
Report .ACC.AD-11/94-TR3. .ACCAD. The Ohio State University. .July
1995.

[MorOO] R. Shamms Mortier. The Poser 4 Handbook. Charles River Media, Inc..
Rockland. Massachusetts. 2000.

[MTT90] Nadia Magnenat-Thalmann and Daniel Thalmann. Computer .Anima­
tion: Theory and Practice. Springer-Verlag, Tokyo, second revised edi­
tion. 1990.

[Mul92] James C. Mullikin. The vector distance transform in two and three dimen­
sions. CVGIP: Graphical .Models and Image Processing. 54(6):526-535.
1992.

[Ggn95j Robert L. Ogniewicz. .Automatic medial axis pruning by mapping char­
acteristics of boundaries evolving under the Euclidean geometric heat
flow onto voronoi skeletons. Technical Report 95-4. Harvard Robotics
Laboratory. 1995.

[OK95] Robert L. Ogniewicz and O. Kiibler. Hierarchic voronoi skeletons. Pat­
tern Recognition. 2S(3):343-359. 1995.

[Pag92| David VV. Paglieroni. Distance transforms: Properties and machine vision
applications. CVGIP: Graphical .Models and Image Processing. 54(1):56 -
74. 1992.

[ParSS] Steve Parker. Eyewitness Books: Skeleton. .Alfred .A. Knopf. New Abrk.
1988.

[Par90] José M. Parramon. Human Anatomy. VVatson-Guptill Publications. New
Y o rk ,1990.

[PG87] Jim Piper and Erik Granum. Computing distance transformations in
convex and non-convex domains. Pattern Recognition, 20(6):599-615.
1987.

[Rag92a] Ingemar Ragnemalm. Fast erosion and dilation by contour processing and
thresholding of distance maps. Pattern Recognition Letters. 13:161-166.
1992.

[Rag92b] Ingemar Ragnemalm. Neighborhoods for distance transformations using
ordered propagation. Computer Vision. Graphics, and Image Processing.
Image Understanding. 56(3):399-4G9. November 1992.

232

[Ros98] A. Rosenfeld. Digital geometry: introduction and bibliography, chapter 1.
Springer, 1998. ISBN 981-3083-94-8. edited by R. Klette and .4.. Rosenfeld
and F. Sloboda.

[S.AR95] D. J. Sheehy. C. G. .Armstrong. . and D. J. Robinson. Computing the
medial surface of a solid from a domain delaunay triangulation. In Chris
Hoffman and .larek Rossignac. editors. Solid Modeling '95 (Proceedings
of the Third .ACM Solid .Modeling Conference), pages 201-212. May 1995.

[Sch96] Coenraad Frederik Scheepers. .Anatomy-Based Surface Generation for
.Articulated Models of Human Figures. Ph.D. thesis. The Ohio State
University. 1996.

[SPB95] Evan C. Sherbrooke. Nicholas M. Patrikalakis. and Erik Brisson. Com­
putation of the medial axis transform of 3-D polyhedra. In Chris Hoff­
man and Jarek Rossignac. editors. Solid .Modeling '95 (Proceedings of the
Third .AC.M Solid Modeling Conference), pages 187-200. May 1995.

[SPCM97] Ferdi Scheepers. Richard E. Parent. Wayne E. Carlson, and Stephen F.
May. .Anatomy-based modeling of the human musculature. Proceedings
of S IG G RA p 'h 97. pages 163-172. August 1997. ISBN 0-89791-896-7.
Held in Los .Angeles. California.

[ST94] Toyofumi Saito and .Jun-Ichiro Toriwaki. New algorithms for Euclidean
distance tranformations of an n-dimensional digitised picture with appli­
cations. Pattern Recognition. 27(11):1551-1565. 1994.

[Sta96] Richard C. Staunton. An analysis of hexagonal thinning algorithms
and skeletal shape representation. Pattern Recognition. 29(7): 1131-1146,
1996.

[Sv097] M. G. J. R. Staipers and C. W. .A. M. van Overveld. Deforming geometric
models based on a polygonal skeleton mesh. .Journal of Graphics Tools,
2(3): 1-14, 1997. ISSN 1086-7651.

[SW98] Philip J. Schneider and Jane Wilhelms. Hybrid anatomically based mod­
eling of animals. Computer .Animation '9S. June 1998. Held in Philadel­
phia. Pennsylvania, USA.

[Tea98] The Maya Documentation Team. Using Maya: Animation.
.Alias I Wavefront, Inc., Toronto. Canada. 1998.

[Tea99] The Maya 2 Documentation Team. Using Maya: Character Setup.
.Alias I Wavefront, Inc., Toronto. Canada. 1999.

233

[TF84] Yea-Fu Tsao and King-Sun Fu. Stochastic skeleton modeling of objects.
Computer Vision. Graphics and [mage Processing. (USA). 25:348-370.
March 1984.

[TG98] Russell Turner and Enrico Gobbetti. Interactive construction and ani­
mation of layered elastically deformable characters. Computer Graphics
Forum. 17(2): 135-152. 1998. ISSN 1067-7055.

[TraOO] Transom Technologies. Inc. website, http://ww w .transom .com . 2000.

[TT98j Marek Teichmann and Seth Teller. .Assisted articulation of closed polyg­
onal models, h ttp ://graphics.lcs.rnit.edu/'nu irek t. 1998.

[\’in9l] Luc \'incent. Exact Euclidean distance function by chain propagations.
In Proceedings CVPR '91 (IEEE Computer Society Conference on Com­
puter Vision and Pattern Recognition), pages 520-525. IEEE Computer
Society Press. 1991.

[\’SCOO] Nathan \bgel. Sherri Sheridan, and Tim Coleman. Maya 2 Character
.Animation. New Riders Publishing. Indianapolis. Indiana. 2000.

[\'A'D89] Ben .1. H. Verwer. Piet W. Verbeek. and Simon T. Dekker. .An efficient
uniform cost algorithm applied to distance transforms. IEEE Transac­
tions on Pattern .Analysis and Machine Intelligence. 11(4):425-429. 1989.

[Wai88] Stephen Wainwright. Axis and Circumference: the Cylindrical Shape of
Plants and Animals. Harvard University Press. Cambridge. 1988.

[\Veb84j Webster's I I New Riverside University Dictionary. Houghton Mifflin
Company. Boston. 1984.

[WG97] Jane Wilhelms and .Allen Van Gelder. .Anatomically based modeling.
Proceedings of SIC C R A P H 97. pages 173-180. .August 1997. ISBN 0-
89791-896-7. Held in Los .Angeles, California.

[Wil87| Jane Wilhelms. Using dynamic analysis for realistic animation of artic­
ulated bodies. IEEE Computer Graphics and .Applications. 7(6):12-27.
June 1987.

[Wil94] Jane Wilhelms. Modeling animals with bones, muscles, and skin. Techni­
cal Report UCSC-CRL-95-01, Baskin Center for Computer Engineering
and Information Sciences, University of California. Santa Cruz. 1994.

[Wil97] Jane Wilhelms. .Animals with anatomy. IEEE Computer Graphics &
Applications, 17(3):22--30, May - June 1997. ISSN 0272-1716.

234

http://www.transom.com
http://graphics.lcs.rnit.edu/'nuirekt

[WPOO] Lawson Wade and Richard E. Parent. Fast, fully-automated generation
of control skeletons for use in animation. In Proceedings of Computer A n­
imation 2000. 2000. .-V lengthier version is available as Technical Report
OSU-.A.CC.A.D-9/99-TR3. The Ohio S tate University, .\dvanced Comput­
ing Center for the Arts and Design. 1999.

[WW92] .A.Ian Watt and Mark W att. Advanced Animation and Rendering Tech­
niques: Theory and Practice, .\ddison-Wesley Publishing Company.
Wokingham. England. 1992.

[YamS4] H. \am ada. Complete Euclidean distance transformation by parallel
operation. In Proceedings of the Seventh Intemational Conference on
Pattern Recognition, pages 69-71. 1984.

[YR91] C. \'ao and .J. G. Rokne. straightforward algorithm for computing
the medial axis of a simple polygon. International .loumal of Computer
.Mathematics. 39:51-60. 1991.

235

