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ABSTRACT

The animation of an articulated figure is typically accomplished through the use
of a corresponding control skeleton. Although the control skeleton is an effective tool.
the manual construction of the skeleton can be a laborious process often requiring
several hours of work and a fair degree of proficiency with the animation software
used.

The focus of the research described here is the automatic generation of such control
skeletons. To this end. two solutions to the problem are presented. one general and
one specific. In both cases. the input is required to be a set of polvgonal data that
defines the figure. and the output is a description of a control skeleton to be used in
animating that figure.

The general solution is widely applicable: it makes very few assumptions about
the figure given as input or about the type of control skeleton that should be gener-
ated. A system is described that divides the problem into a series of steps. each of
which is performed automatically. The basic process involves discretizing the figure,
approximating its medial surface, and using that surface to construct a control skele-
ton. The system can produce a reasonably good control skeleton for any of a variety

of figures in as little as one or two minutes on a low-end PC.

i



The specific solution builds upon the general one but is geared toward producing
more desirable skeletons for the very common case involving human-like and animal-
like figures. Certain assumptions are made about the figure and about the type
of control skeleton desired. In addition, heuristics based upon human and animal
anatomy are invoked to adjust the control skeleton so that it is more anatomically
appropriate. The motivation for this soiution 1s the beliet that a more anatomically
appropriate control skeleton allows for more natural looking movement of a human
or animal-like figure.

Partly to support that claim. the system can produce geometry for individual
bones that might function as the anatomical skeleton of the fignre. This skeletal
geometry can form the foundation for additional anatomical modeling that might

add more realism to the animation of the figure.

iii



To Kathy

iv



ACKNOWLEDGMENTS

So many people have helped me in so many ways. [ will always be grateful for
their insight. enthusiasm. support. and wisdom.

[ would like to thank my adviser. Rick Parent. for his assistance with this research
and for his support throughout my graduate studies. I have especially appreciated
his willingness to listen to my ideas and to share his vast knowledge and experience in
computer graphics. [ also wish to thank the other members of my committee - Rafe
Wenger and Wayvne Carlson. Rafe has been an excellent teacher and has been quite
helpful and supportive of my research efforts. Wayne introduced me to the ACCAD
environment and has provided me with a number of research assistantships: [ have
greatly appreciated his encouragement and advice.

[ especially want to thank Meg Geroch, Matt Lewis. and Pete Carswell for count-
less lengthy discussions about the research. Meg has been tremendously helpful with
her careful review of the dissertation, and Matt generously provided several humanoid
data models for my use. [ also want to say thanks to Meg and Matt for encouraging
me to continue the research when everything seemed so bleak. Pete has offered me
various research assistantships: it has been a joy to work with him and to join him in
so many intriguing conversations on mathematics.

I would like to thank all of the teachers I have had. Of special mention are

Kerm Almos. Kurt Anderson, David Block, Larry Booth, Harold Brockman. George



Carver, Joanne Dawson, John Detrick. Tom Gearhart, Tim Hildreth. Jerry [zzo.
Dennis Kapenga. Carol Krell, Larry McElwee. Kevin Michael. Kelly Moody. Scott
Neal. Larry O'Flvnn. Jordan Pollack. Peggyv Rinehart. Gary Ross. Lou Schultz. Steve
Shaffer. Edie Sidwell. Neelam Soundarajan. Ken Supowit. David Trowbridge. and
Howard Wilson.

I wisht tu thank the stafl of the Computer and [uformation Scieuce Deparunent:
Tom Fletcher. Sandy Hill. Marty Marlatt. Elizabeth O'Neill. and Eleanor Quinlan.
Ellie was especially helpful during my time as a graduate teaching associate.

[ would like to thank the staff and faculty at ACCAD. both current and pre-
vious: Chuck Csuri. Aline Davis. Viki Dennis. Barb Helfer. Ruedy Leeman. Steve
Mayv, Mike Miller. Phil Ritzenthaler. Elaine Hamilton Smith. Steve Spencer. and
Traci Temple. Steve May offered valuable comments and suggestions and created
the AL programming language. Many of the figures in this document and numerous
supporting animations were created with AL and rendered with RenderMan®.'

[ would also like to thank the other graduate students [ have known: from CIS.
Debashis Basak. Paolo Bucci. Matt Camuto. Al Fencl, Mark Fontana. Neeraj Gupta.
Julie Hartigan. Scott King, Nathan Loofbourrow, Raghu Machiraju. Neal McDon-
ald, Torsten Nloeller. Klaus Mueller. Saty Raghavachary, David Reed. Doug Roble.
Kevin Rodgers, Ferdi Scheepers. Carl Schuyler, Naeem Shareef, Ed Sindelar. Karan
Singh, Sara Susskind. Ed Swan. Suba Varadarajan, and Pete Ware: from Biome-
chanics, Kinda (Khalaf) Abdullah: and from ACCAD, Julie Apley. Ian Butterfield.
Wooksang Chang, Pete Gerstmann. John Gladden, Heath Hanlin. Wobbe Koning,.

Heesung Koo, Melissa Kupper. Zil Lilas. Janet Lucroy, Brandon Morse. Todd Sines,

'RenderMan is a registered trademark of Pixar Animation Studios.

vi



Clarke Stallworth, Scott Swearingen, Nathania Vishnevsky, and John Warren. Being
with such friendly. helpful. funny. intelligent. and inspiring people has been one of the
best things about graduate school. I particularly want to thank Pete Gerstmann for
creating a number of data models for the research and lan Butterfield for helping to
make the last few months more enjovable with his humor and conversation. A spe-
clal Lhatks goes (0 Joiin Warren for tie informative and eniightening brain-storming
session from which this research was spawned.

Finally. [ would like to acknowledge my family and friends - [ greatly appreciate
their love and support. To Mike and Julie Reid and John and Janene Metzger. thank
vou for being such good friends and for cheering me on. To Larry and Charlotte. Mark
and Angie. and Jen and Bob. thank vou for caring. To my parents. Robert and Ann
Wade. thank vou for your guidance and encouragement and for sharing the wisdom
that only one’s parents seem to have. To Sam and Tina and to John and Chrissy.
thank you for vour unquestioning acceptance and unwavering confidence. To Michael.
thanks for allowing me the jov of being a parent. And to my wife. Kathy., thank vou
for vour patience and understanding. vour cheers and celebration. the occasional kick

in the butt, and for making the world a much happier place.

vii



VITA

May 12,1969 ... ...t Born - Dayton. Ohio

1991 .. B.A. Computer Science/Mathematics
Summa Cum Laude
Capital University. Columbus. Ohio

1993 . M.S. Computer and Information Science
The Ohio State University. Columbus. Ohio

PUBLICATIONS

Research Publications

Lawson Wade and Richard E. Parent. “Fast. fullv-automated generation of control
skeletons for use in animation™. In Proceedings of Computer Animation 2000. 2000.

Lawson Wade and Richard E. Parent. “Fast. fullv-automated generation of control
skeletons for use in animation”. Technical Report OSU-ACCAD-9/99-TR3. The Ohio
State University. Advanced Computing Center for the Arts and Design. 1999.

Lawson Wade and Richard E. Parent. “Practical issues for implementation of a DDT
algorithm for polyhedra”. Technical Report OSU-ACCAD-5/99-TR1. The Ohio State
University. Advanced Computing Center for the Arts and Design. 1999.

K.A. Khalaf, M. Parnianpour, L. Wade, and S.R. Simon. -“Feature extraction and
modeling of the variability of performance in terms of biomechanical motion patterns
during MMH tasks”. In Proc. Rocky Mountain Bioengineering Symposium, pages
35-40. 1997.

K.A. Khalaf. M. Parnianpour, L. Wade. P.J. Sparto. and S. Simon. “The impor-
tance of dvnamic strength models for proper ergonomic task analysis®™. In Proc.
International Society for the Study of the Lumbar Spine”. pages 166-168, 1996.

viil



K.A. Khalaf, M. Parnianpour. L. Wade. and P.J. Sparto. ~Biomechanical simulation
of manual multi-link coordinated lifting”™. In Proc. The Fifteenth Southern Biomedical
Engineering Conference. pages 197-198. 1996.

David M. Reed. Lawson Wade. Peter G. Carswell. and Wayne E. Carlson. “Particle
tracing in curvilinear grids”. In Visual Data Erploration and Analysis II (Proc. SPIE
2410). Georges G. Grinstein and Robert F. Erbacher. editors. pages 120-128. 1995.

David M. Reed. Lawson Wade. Peter G. Carswell. and Wavne E. Carlson. “Particle
tracing in curvilinear grids™. Technical Report OSU-ACCAD-6/94/TR1. The Ohio
State University. Advanced Computing Center for the Arts and Design. 1994.

Peter Carswell. Wavne Carlson. David Reed, W. Seun. and Lawson Wade. “kitchen-
VIEW: an interactive interface to heat flow solutions in commercial kitchens™. Tech-
nical Report OSU-ACCAD-1/93/TR4. The Ohio State University. Advanced Com-
puting Center for the Arts and Design. 1993.

FIELDS OF STUDY

Major Field: Computer and Information Science

Studies in:

Computer Graphics  Dr. Richard E. Parent
Algorithms Dr. Rephael Wenger
Artificial Intelligence Dr. Jordan Pollack

ix



TABLE OF CONTENTS

Page

Abstract . . . . . L L i

Dedication. . . . . . . . . .. iv

Acknowledgments . . . . . ... v

Vita . . e e viii

List of Tables . . . . . . . . . . . . xiii

List of Figures . . . . . . . . . . . Xiv
Chapters:

1. Introduction . . . . . . . . L 1

1.1 Motivation . . . . ... Lo 2

1.2 Problem Description . . . . . .. ... ... T

1.3 Overview of the Solution . . . . . . . . ... ... ... ... . ... 8

1.4 Overview of the Document . . . .. ... ... ....... .... 10

2. Background . . . .. ... 13

2.1 Distance Maps . . . . . .. ... 13

2.2 Medial Axis/Medial Surface . . . . . .. ... oL 20

2.2.1 Continuous versus Discrete Geometry . ... . .. ... .. 25

2.3 Control Skeleton Generation . . . . . . ... ... ... ... .... 32

2.3.1 Commercial Products . . ... ... ... ... .. ... ... 32

2.3.2 Control Skeleton Research . . . . . . ... ... ... .... 37

2.4 Anatomically Based Modeling and Animation . . . . . . .. .. .. 46



Approximating the Euclidean Distance Map . . . . . .. .. .. ... .. 34

3.1 Overview of the Algorithm . . . . . . ... ... ... ... ... .. 35
3.2 The Reference Table . . . . . . .. .. ... ... ... ....... 36
3.3 Propagation of References . . . .. ... .. ... ... ... .. 63
3.4 Analysis and Discussion . . . . .. ... ... 0oL !
Constructing the Discrete Medial Surface . . . . . .. .. .. .. ... .. 81
1.1 Overview of the Algorithm . . . .. . .. .. ... ... ... .... 82
4.2 Local Exposure Calculation . . .. .. ... ... ... .. ..... 83
4.3 Extracting the DMA/DMS . ... ... oo 88
44 Results ... ... ... 99
4.5 Analysis and Discussion . . . . ... ... 105
Automated Generation of Control Skeletons . . . . . ... ... ... .. 110
3.1 Goals . . . . . .. 111
5.2 The Algorithm . . . . . . . .. ... .. 113
3.2.1 Volumetric Discretization . . . . . . .. ... . ... .... 113
5.2.2 Distance Map Computation . . . . . . . .. .. .. ... .. 115
3.2.3  Medial Surface Extraction . . . . . . ... ... ... 116
3.2.4 Path Tree Generation . .. ... .. ... ... ....... 116
3.2.5 Control Skeleton Construction . . . .. ... ... ..... 126
3.3 Results . .. . . . 134
3.4 Conclusion . . .. . .. ... 143
Comparative Anatomy of Vertebrates . . . . . . . ... ... ... .... 145
6.1 Vertebrate Structure in General . . . . . . . ... ... ....... 147
6.1.1 Bilateral Symmetry . . .. ... .. ..o 147
6.1.2 Two Sets of Paired Limbs . . . . . . ... ... ....... 148
6.1.3 Cpylindrical Shape . . ... ... .. ... ... ... ... 148
6.1.4 Metamerism . . . .. ... .. ... ... 149
6.1.5 Form Follows Function . . . .. . . . ... ... ....... 149
6.2 Skeletal Anatomy of Vertebrates . . . . . . ... ... ....... 150
6.2.1 Differences . . . ... ... ... .. .. ... .. 153
6.3 Muscular Anatomy of Vertebrates. . . . . . . .. ... ... ..., 154
6.3.1 MuscleBasics . . . .. ... ... ... 154
6.3.2 The Musculature . . . . .. .. ... ... ... ... 155

xi



7.  Automated Identification of Anatomical Features . . .. . . . . . . ...
T.1 Constraints . . . . . . . . . e
7.1.1 Structural Constraints . . . . . . . . . ... . ...
7.1.2 Postural Constraints . . . . . . . . . . ... ...
7.2 Heuristics for Identification . . . . . . . . . ... ... .. ..
7.3 Implementation [ssues . . . . . . . . .. ... oL
7.3.1 Creating the Level Graph . . . . . .. ... ... ... ...
7.3.2  Marking tihe Level Grapn Vertices . . . .. ... ... ...
7.3.3 Labeling the Level Graph . . . . . .. ... ... ... ...
T4 Results . . . . .
8. Automated Generation of Anatomically Appropriate Control Skeletons
8.1 The Axial Skeleton . . . . . . . . . . ...
8.2 The Appendicular Skeleton . . . . . . .. ... ... ... ... ..
8.3 Attachment . . . . . . ..
8.4 Results . . . . . .
9. Creating Anatomical Component Models . . . . . .. ... ... ... ..
9.1 A General Skeleton Model . . . . . . . . . ... ...
9.1.1 Results and Discussion . . . . . . . . . ... . ... .....
9.2 A General Musculature Model . . . . . . . ... L.
9.3 Fatty Tissueand Skin . . . . . . . .. ... ... ... ..., .
10. Conclusion. . . . . . . . . e
10.1 Summary . . . . . . ... e e
10.2 Contributions . . . . . . . . . ...
10.3 Future Research . . . . . . . . . . . . ... ...
10.4 Final Thoughts . . . . . . . . ... ... ... ... ... ...,
Appendices:
A.  Glossary of Anatomical Terms . . . . . . . .. . ... ... ... .....
Bibliography . . . . . . . ..

Xil

173

173
179
184
185

198

198
200
208
210

211

211
213
215
217

220



LIST OF TABLES

Table Page
3.1 Reference table for 2D distance map construction . . . . .. .. ... 59
3.2 Reference table for 3D distance map construction . . . . . ... ... 62
3.3  Execution times for 2D and 3D EDM approximation algorithms . . . 72
3.4 Observed errors for 2D and 3D EDM approximation algorithms . . . 73
4.1 Execution times for the DMA/DMS implementations . . . . . . . .. 106
5.1 Execution results for the skeletonization algorithm . . . . . . . . . .. 136
3.2 Input parameters for the skeletonization algorithm . . . . . . . .. .. 137
6.1 Simplified skeletal components of vertebrates . . . . . .. ... . ... 151
8.1 Ratios used in segmentation of limbs . . . . . . .. ... .. .. ... 182

xiii



LIST OF FIGURES

Figure Page
1.1 The two classes of articulated figures . . . . . . ... ... ... ... 4
2.1 The two forms of the 2D Euclidean distance map . . . ... ... .. 14
2.2 Vector and grayscale displays of the distance map . . . . . . . . . .. 15
2.3 The medial axis of a rectangle . . . . . . . ... ... ... .. ... 21
2.4 The medial surfaceofabox . . .. ... ... ... .. .. ..., . 21
2.5 The inverse medial axis transform . . . . . ... ..o 23
2.6 Thediscrete medialaxis . . . . ... ... ... ... ... ... . 27
2.7 The 2D distance map viewed as a height field in three dimensions . . 30
3.1 Reference grid for 2D distance map construction . . . . . . . .. . .. 38
3.2 Distance map computation (propagation steps 0-3) . . .. . . .. .. 65
3.3 Distance map computation (propagation steps 4-7) . . . . . .. . .. 66
3.4 Distance map computation (propagation steps 8-11). . . . . . . . .. 67
3.5 Distance map computation (propagation steps 12-13) . . . . . . . .. 68
3.6 Pseudocode for the distance map algorithm (initialization) . . . . . . 69
3.7 Pseudocode for the distance map algorithm (propagation) . . . . .. 70



3.8

3.9

4.1

4.8

4.9

4.10

4.11

o
=~

Error example for computing 2D Euclidean distance map . . . . . . . 01

Voronoi diagram for the error example . . . . . ... ... ... ... 8
The relative exposure of neighboring disks . . . . . . ... ... ... 33
Exposure calculation in the DMA/DMS algorithm . . . . . . . . . .. 86
Complete grid of exposure values . . . . ... ... .. ... .. ... 87
Discrete medial axis computation (steps 0-3) . . . . . .. ... .. .. 90
Discrete medial axis computation (steps 4-7) . . . . . . . . .. .. .. 91
Discrete medial axis computation (steps 8-11) . . . . ... .. .. .. 92
Discrete medial axis computation (step 12. output) . ... ... ... 93
Discrete medial axis using other thresholds . . . . . . .. ... .. .. 100
DMAs produced by the algorithm . . . . .. .. ... ... ... ... 101
Two DMSsofabox. . . .. . .. .. o 103
DMSs of a voxelized horse as produced by the algorithm . . . . . .. 104
The 2D Euclidean distance map for a discretized polygon . . . . . . . 115
The heart and extreme points for a DMS ofahorse . . . ... .. .. 119
Examples of coverage of three disks . . . . . .. .. ... ... .. .. 121
Forming path tree extensions . . . . . . ... ... .. ... .. ... 123
The completed path tree for the horse . . . . . ... ... ... ... 124
Smoothing of a path treechain . . .. ... ... ... .00 126
The smoothed path tree for the horse . . . . . . ... ... ... ... 127
Error and splitting of a skeletal graphedge . . . . . . ... ... ... 129

XV



3.9

(S]]
—
o

(S]]
—
o

3.8

8.9

8.10

9.1

9.3

9.4

The skeletal graph for the horse . . . . . . . ... ... ... ... .
The horse and a few random poses . . . . . . . . ... . ... ....
An analysis of execution times for the skeletonization algorithm
Control skeleton and pose for a human figure . . . . . . ... ... ..
Skeletons and poses for an octopus and a jellvfish . .. ... ... ..
DMIS and level graph oi the horse shaded according to heart values
Head-to-tail chains of horse and human . . . . . . ... ... ... ..
Girdle spheres for the horse control skeleton . . . . .. ... ... . .
Anatomically based control skeletor for a horse . . . . ... ... ..
The horse in various poses . . . . . . .. . .. ... ...
Anatomically based control skeleton for a human figure . . . . . . ..
A human figure in various poses . . . . . . . . .. ... L.
Anatomically based control skeleton fora bird . . . . . ... ... ..
Anatomically based control skeleton foradog . . . .. ... ... ..
Anatomically based control skeleton for a cartoon-style human figure
Anatomically based control skeleton for a dragon . . . . .. ... ..
Bone models generated for the skeleton of a horse . . . ... ... ..
Anatomical illustration of the skeleton of a horse . . . ... ... ..

Bone models generated for the skeleton of a human figure . . . . . . .

181

187

188

189

190

191

203

Bone models generated for the skeleton of a cartoon-style human figure 204

xvl



9.5

Bone models generated for the skeleton of a dragon

Xvil



CHAPTER 1

INTRODUCTION

Articulated figures abound in computer graphics. They appear most frequently in
the areas of character animation [CHP89. Mae96. \'SC00] and human figure modeling
and animation [BPW93. SPCM97. WGIT]. and their study typically garners at least
a chapter or two in most books on computer animation in general [MTT90. WW92].
Indeed. there is at least one book devoted entirely to the topic of articulated figures
[BBZ91].

The animation of such a figure is generally accomplished through the use of a
control skeleton - an articulated structure of segments and joints combined with
information detailing how the surface geometry of the figure is anchored to that
structure. The control skeleton is sometimes referred to as the skeleton rig or the
IK skeleton. The latter term is derived from the frequent use of inverse kinematics
when posing or animating the structure.

When an animator is faced with the problem of animating a complex model,
he or she can create a cont:ol skeleton that corresponds to the model. specifving
each individual segment and joint and attaci:ing parts or regions of the model to
nearby segments. Next. the animator can specify a set of joint values in order to
pose the control skeleton. and the attachment informatio': is then used to reposit on

1



the original figure in a corresponding manner. Animation of the figure can thus be
performed by animating the figure's skeleton and updating the geometry of the figure

in turn.

1.1 DMotivation

An articulated Houre (or articulated model) consists of tw
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figure to be animated and a control skeleton to be used to animate it. The figure to
be animated is usually some geometric model which. by itself. is a motionless object.
[t is the control skeleton which imparts articulation and flexibility to that object.
Articulated figures can be divided into two basic classes according to how the
geometry of the figure is defined. In the first class. the geometry is a single model
that is usually a surface or shell considered to be the skin of the figure. When the
figure is animated. this skin is deformed to match the pose of the skeleton. A figure
of this kind will be termed a continuous model. In the second class. the geometry
is a collection of component models. Normally each component is intended to be a
separate movable part of the articulated structure. During animation. each individual
component is typically transformed in rigid fashion to align with a related part of the
control skeleton. though occasionally some minor deformation of the components
is performed near the joints. Even though the separate components suggest the
structure of an articulated figure. a control skeleton still must be paired with the
geometry in order to form an articulated figure capable of hierarchical movement of
those components. A figure belonging to this second class will be referred to as a

segmented model.



Figure 1.1 shows examples of the two classes. The human figure is modeled with
a single polvgonal mesh. The robot model is a composition of primitive shapes: two
boxes for its trunk. a couple of cvlinders for each of its arms and legs. and a few
ellipsoids to represent its head. hands. and feet. Note that these shapes are simply
transformed when the robot is posed. while in contrast the polygonal mesh for the
numan figure is deformed when it is posed.

The control skeleton defines the movement capabilities of an articulated figure.
The control skeleton is composed of an interconnected structure of segments and
joints as well as a collection of attachment information that defines how the geometry
of the figure is anchored to that structure.

A segment is usually a rigid form that serves to provide locations for joints and
anchors. Segments are connected to each other by joints. which are the points of
articulation for the control skeleton. Tvpically. a joint is used to connect a pair
of segments. The exception is the root joint. which is the foundational joint for the
structure, providing a pivot point between the control skeleton and the world in which
it exists. A joint has a fixed position relative to each the segments it adjoins. and
it provides a set of degrees of freedom (DOFSs) that constrains the relative motion
between its adjacent segments. To obtain a pose for the interconnected structure. a
user may specify a set of values for the DOF's at each joint; these values are then used
to compute the relative configuration for each connected pair of segments and thus
the overall configuration of the structure.

The attachment information is the means of connecting the surface of the figure
(that is, its geometry) to the structure of segments and joints. Although methods of

attachment vary, a common method uses special points which will be called anchors.



(a) Human model (b) Robot model {¢) Skeleton

(d) Human (posed) (e) Robot (posed) (f) Skeleton (posed)

Figure 1.1: The two classes of articulated figures. The human (a), a continuous model.
is a single polygonal mesh, while the robot (b). a segmented model, is composed of
geometric primitives. Both models are anchored to a control skeleton structure (c).
When the skeleton is posed (f), the models are deformed accordingly (d, e).



An anchor is a point. defined in the local coordinate frame of a segment. that relates
to the position of a point on the surface of the figure. The local position of an anchor
is thus fixed. but the global (or world-space) position of an anchor will vary with the
movement of the segment containing that anchor. A set of one or more anchors on one
or more segments may be used to attach a single surface point to the structure. Such
a 3¢t caii tlienr be used to recomipute the position of its cotrespouding sutface point.
when only one anchor is used. its global position is copied as the updated location
of the surface point: when two or more anchors are used. their global positions are
combined in a weighted average to obtain the updated location of the surface point.
Usually. if the surface geometry of the figure is defined as a set of polvgons. then each
vertex will have a dedicated set of anchors: if the geometry is defined using spline
surfaces. then each control point will have a dedicated set of anchors. Whenever the
structure of segments and joints is posed in a new configuration. each set of anchors
is used to reposition its corresponding surface point. and thus the entire surface of
the figure is remolded accordingly.

Undoubtedly the control skeleton is a useful tool integral to the animation of
articulated figures. Its use simplifies the problem of posing or animating a complex
geometric object into the problem of specifying values for the joints of an easily
understood structure which has an obvious and inherent correspondence to the more
complex object.

[t is unfortunate. then, that the construction of a suitable control skeleton for
use with a given geometric model can be such a tedious and time-consuming task.
Many sophisticated modeling and animation packages include support for working

with articulated figures, usually providing users with an interface that enables them



to construct a control skeleton for use in anitnating a model. Nonetheless. the creation
of a control skeleton can be a laborious undertaking sometimes requiring several hours
of work. and a user typically must possess a fair degree of proficiency with a package
to obtain even rudimentary motion via a control skeleton.

Equally unfortunate is the fact that so much of the monotonous work is often
neediessiy replicated when constructing simitar control skeletons for different objects.
Such is often the case when producing control skeletons for such common figures as
humans and animals. which make up a significantly large portion of the articulated
models created.

Examination of an articulated figure usually reveals a special relationship between
the figure's geometry and the underlying control skeleton. Notable protrusions of the
geometry are typically reflected in the control skeleton by segments that extend into
those protrusions. and junctions of geometric parts are generally marked by specific
joints within the skeleton. In addition. areas of branching in the geometrv often
correspond to branching configurations of segments and joints in the control skeleton.
This is no coincidence. The effective manipulation of the geometry through use of
the control skeleton requires a similarity in the structure of both.

Such a close relationship between the geometry and the control skeleton suggests
that some type of automated process can be used to generate the control skeleton.

Furthermore, automation can alleviate the monotony and tedium and speed up the

creation process.



1.2 Problem Description

Depending on the ordering of construction tasks. there are two basic approaches
to creating articulated figures. If an animator knows the articulation he or she desires
of the figure. then the animator can first build its skeleton - or rather the articulated
structure of segments and joints. The actual geometry of the figure is added later.
usually in conjunction with information as to its attachment to the structure. This
completes the construction of the control skeleton and the articulated figure as a
whole.

The other method. likely the more common of the two. involves creating the geom-
etry first. Most people are probably anxious to model a figure they have envisioned.
wanting quickly to realize the intricate details of the shape and quality of its sur-
face. and delaving the possibly more mechanical task of building segments and joints.
Or perhaps the model already exists. having been created by someone else at an
earlier time, possibly through some digitizing process. and now a person wishes to
animate the model. Presumably the animator already has a rough idea of how the
figure should move and a reasonable mental sketch of the placement of most of its
segments. [f the shape of the figure is human-like or animal-like, then that mental
image of its movement capabilities is likely very clear, as the animator no doubt has
observed countless humans and animals in action.

The research presented here deals with the latter method and assumes that the
geometric model has already been created. Specifically, it addresses the problem of
automatically generating a control skeleton for a given model. It is applicable regard-
less of whether the model was created with the intention of articulated movement or

whether it was originally developed as only a static model.
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The problem is confronted from two perspectives. In the general view. few restric-
tions are placed on the form of the given model. The objective is simply to produce.
in an automated fashion. a corresponding control skeleton for use in animating that
model. The control skeleton generated is expected to resemble the model both in
structure and complexity.
ic model is human-like or animal-
like. as is often the case when creating articulated figures. Here. correspondence
between the model and the generated skeleton should be stronger. because certain
structural assumptions can be made. The resulting articulated figure (that is. the

model in conjuction with the control skeleton) should be capable of more natural

looking motion - motion that one might expect of a human or animal.

1.3 Overview of the Solution

I[n response to the two views of the problem. both a general and a specific solution
are presented. Both solutions have been implemented within the context of a single
system which is described in the text. The input to the system is a set of polyg-
onal data that defines the geometry of the figure. The output is a set of files that
functions as a description of the control skeleton for the figure. Various methods for
visualization of the control skeleton are available within the system.

The general solution is widely applicable. because it makes very few assumptions
about the form of the figure given as input or about the type of control skeleton
that should be generated. The solution consists of a series of steps, each of which is
performed automatically. First, the figure is converted to a voxel representation. and

an approximation to its discrete medial surface is constructed. Next the medial surface



is simplified into a tree structure. and that tree is divided into an interconnected
structure of segments and connecting joints. Finally, the voxel representation and
the medial surface are used to generate anchors for attaching the vertices of the
polyvgonal data to the segments.

The specific solution builds upon the general one: however. it is geared toward

model is provided as input. In this case. certain assumptions are made about the
model and its form - assumptions such as how it is posed and about the relative
sizes of its features. Assumptions are also made about the structure of the control
skeleton that should be generated. leading the svstem to produce tree-structured
skeletons with some degree of bilateral svmmetry. Many of the same steps involved
in the general solution are executed: but heuristics based upon human and animal
anatomy are also invoked to adjust the control skeleton so that its segments and joints
correspond more closely to the bones and joints of the anaromical skeleton that might
be expected in such a being. In short. the heuristics are used in an attempt to make
the control skeleton more anatomically appropriate and thus capable of more natural
looking motion.

Although the system is not without its shortcomings. it is shown to produce a rea-
sonably good control skeleton for any of a variety of figures in as little as cne or two
minutes on a low-end personal computer (specifically. a PC with a 133 MHz Intel®
Pentium® processor).? It is capable of producing a slightly better and more repre-

sentative control skeleton when allowed to run for a longer period. but this is mainly

*Pentium is a registered trademark of Intel Corporation.



the result of a trade-off between the execution time and the level of discretization of
the model.

When the input provided is a human-like or animal-like figure. then the system is
shown to produce a control skeleton with an observable anatomically justified quality.
In further validation of the anatomical basis. the svstem can generate geometric
models of bones for visual realization of an anatomical skeleton that corresponds o the
anatomically based control skeleton. This skeletal geometry can form the foundation
for additional anatomical modeling. providing attachment points for layers of muscles.
fatty tissue. and skin. Such anatomically based modeling has been shown to add more
realism to the animation of the figure. Chadwick et al. appear to have acted as the
pioneers of the layered construction approach for articulated figures [CHP89|. More
recent works by Scheepers et al. and bv Wilhelms and Van Gelder have demonstrated
the realism achievable through closer adherence tc principles of anatomically based
modeling [SPCM97. WG97]. For further discussion of anatomically based modeling
in the literature. see Section 2.4.

The attempt has been made to keep the implementation of the two solutions as
general as possible. Neverthcless, due to the complexity of the task at hand and
to further complications involved in creating a useful but general svstem. various

assumptions and simplifications have been made and are documented throughout the

text.

1.4 Overview of the Document

This chapter is a brief introduction to the material presented in this dissertation.

Section 1.1 defines the concept of the articulaced figure. provides general information
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about its kev component, the control skeleton. and discusses factors which have moti-
vated this research. Section 1.2 describes the problem addressed by this research and
how it fits in to the methods by which articulated figures are created. Section 1.3 then
presents an overview of the general and specific solutions to the problem. introduc-

ing the concept of anatomically based modeling and its relationship to the research.

the document.

Chapter 2 provides relevant background information. The geometric concepts of
distance maps and the medial surface are described. along with their relationship to
the general problem of automated control skeleton generation. Other work in the
area of control skeleton generation and anatomical modeling is also presented.

Chapters 3 and 4 discuss the discrete geometry algorithms developed for the re-
search. The first algorithm computes a close approximation to the Euclidean distance
map. and the second algorithm finds the discrete medial surface for a voxelized object.
These two algorithms are the main underlving components of the general solution.

Chapter 5 details the various steps involved in the general solution to the problem.
It describes the discretization of the model and how that discretization is used both
in the creation of the articulated structure of segments and joints as well as in the
appropriate anchoring of the geometric model to that structure.

Chapter 6 introduces the anatomical knowledge upon which the specific solution
to skeleton generation is based. Comparative anatomy of vertebrates is discussed.
specifically with respect to the structure of the skeleton and musculature.

In Chapter 7. the assumptions behind the specific solution are discussed. These

assumptions form the foundation for the heuristics developed to help identify the
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anatomical features of the model. Implementation issues related to the application
of the heuristics are mentioned.

Chapter 8 describes further use of anatomical knowledge in the context of control
skeleton generation for human-like and animal-like figures. More heuristics are devel-
oped and applied in order to create more anatomically appropriate control skeletons.
Again. implementation issues are prosented.

Chapter 9 discusses the creation of geometric models for anatomical components.
it describes a generalized model for component models of bones and proposes a gen-
eralized model for the musculature as well. In doing so. it demonstrates the visual
realization of the general anatomical skeleton as an enhancement to the specific so-
lution.

Chapter 10 summarizes the research and lists the main contributions. Possibilities

for extending or enhancing the research are suggested.



CHAPTER 2

BACKGROUND

This chapter describes various concepts related to the research. citing relevant
publications in each area. Section 2.1 introduces the distance map. and Section 2.2
presents the medial axis and medial surface. Together these two sections provide
the background for the discrete geomertry forming the foundation of the research.
[n Section 2.3. other work in the area of control skeleton generation is discussed.
Finaily. Section 2.4 presents a brief look at the ever-expanding area of anatomically

based modeling.

2.1 Distance Maps

The distance map is a frequently used tool in computer graphics. [t is especially
useful in areas such as image processing, image analysis. computer vision. and pattern
recognition. and it often arises wherever discretization is employed. The distance map
is sometimes referred to as the distance transform or the digital distance transform.
although it is more accurate to use these “transform” terms to refer to the process
used to generate the distance map.

The input to the distance transform is a grid of discrete points with each point

marked as being either a feature point or a background point. The output of the

13



| I U RO SR N B B B 457261 52 45 40 37 36 37 40 45 52 61 52 41 32 25 20 17 16 17 20 25 32 41 52 65 80 97

MEEECTE R S B N TR B TR 20 R O B R B S 74615041 342926252629 3441504534 25181310 9 10111825 M4SSATIN
1124338348838 88321; 6552413225201716172025324140292013 8 5 & 5 8 132029405368 85
124510999999 99999998521 _ $8453425181310 9 1013182532372617105 2 1 2 510172637 506582
1258101099999 99099 910131613841 53402920138 5 4 S 8131825322516 9 4 3 1 4 9162538496481
12458854434 34848485813171052 11 S0372617105 2 1 2 5 8 1318252617105 2 1 2 5101726375061 74
1124421111131 1112501313841 493625169 4 1 1 25 813202920138 5§ 4 5 8 13202532415265
vy 7T Ty 2510169 41 493625169 &4 1 | 1 2510172617105 2 1 2 5 10131825344558

Pl AR LR 50372617105 2 1 1 4 91625169 41 14581320008

_v25108 41 53402920138 & 1, 149162517105 21 21 2 51017263750
149941 5345342517105 2 1 1 2 510172620138 S & 1, 1 4 9186253649
) ) 149941 6552402920138 5 4 4 5 8132020171613105 21 2 § NITHWS
palo bl r Lty __rasean 61524534251813109 9101318103210 910138 5 4 5 8 132029405
Zrrrra st r vt e 149941 5041342926252017161617202013 8 § 4 5§ 81310 9 10131825 44552
. 124444434444 83211251094871 4132252017181617202526261710 5 2 1 2 5 101716 1720253241 5265
1125890099999 998654358139 481 34251813109 9101318252516 9 4 1t 3 9 101318253441506174
1245813108 9999909 91013109 91013169 4 1 2920138 5 4 4 5 813202617105 2 1 2 5 4 5 8132020405261 72
1 4810138 54444344485 081316161720169 4 1. 2617105 2 1 1 2 510172620138 5 4 5 2 1 2 510172834 415061
i3 orrTilllll3 33308 0 QB e 4 ) _| 1 4 v IesBINE 41 4NN BRORN
T v4vs08 2] TTT T v 2sw17228169 ¢ 11 217106 2 1] 1 & 9162525181348 5 2 1 1 2 5 9101318253445
vas ey . _ 149162525169 4 1 169 41 __1 2510172518138 5 21 _ 14445 813202940
14910852 1; TTT T T v2swwsasiss s 1 2617108 21 2 S 8132020138 5 2 1 123125107287
V4913885211 11311125 813161720169 & 1 2020138 5 4 S 613182517105 2 1 _ 1 111, _1 4 01628538
14813138 544444484 458131001013169 4 1 3425181310 9 1013182525169 4 1 _ 1 2 3 1125100783
TV 2581313109 99999 9 9101385358139 4 1 __ 413225201716172025322516 9 4 1 _ 1 4 211 2 4 5 813202940
125899999999099985212589821 S0413420262526 2934372617105 2 1 2 5 5 4 4 5 8101318252448
T124444388484808821 1284821 61524540373637404540202013 8 5 4 5 8109 910133172025 2241 52
[ BEEEEEEEEEEE RN IEEEERIN 746558535049 505358 453425181310 9 10 13 17 16 16 17 20 25 29 34 41 50 61
S R A B T SR N [ 198073686564 6568655241 3225201716 1720252525262934 Q4SRRI T2

(a) (b}

Figure 2.1: The two forms of the 2D Euclidean distance map. The empty squares
represent the feature points. and the shaded squares represent the background points.
with each valie being the square of the Euclidean distance to the nearest feature point.
In (a). the feature points form a boundary surrounding the background points. and
the distance map provides information about the internal area of a discretized letter a.
In (b). the feature points are contained within an array of background points: such a
distance map might provide useful information concerning the locations of oil deposits
buried beneath some terrain. Note that the two maps are unrelated: thev merely serve
to illustrate the different manners in which the distance map tvpically appears.

distance transform is the distance map, which is a corresponding grid with a label
for each background point reflecting its relative distance to the nearest feature point.
Note that this “relative distance” may or may not be the Euclidean distance between
the points; if it is. then the map is called a Euclidean distance map (EDMI).
Distance maps appear in either of two forms according to whether the feature
points form a simple boundary around the set of background points or whether the

feature points are contained amidst a field of background points. The formulations
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Figure 2.2: Vector and gravscale displays of the distance map in Figure 2.1(b). In
(a). a portion of the map (roughly the lower right quadrant) has been relabeled using
vectors pointing to the nearest feature point: in (b). the entire map is redisplaved
using grayvscale values.

have different uses. and the selection of which form to use is entirelv dependent on
the application: the first form focuses on the internal structure of an object: the
second form permits the examination of an object or objects in relationship to the
surrounding environment or to each other. The two formulations are illustrated in
Figure 2.1 along with the concept of the Euclidean distance map.?

As is the case with Figure 2.1, the distance map is often displaved as a grid of

values. An alternative is to show the coordinates of vectors that refer to the nearest

3The design for Figure 2.1 was borrowed from one of the many excellznt diagrams appearing in
a paper by Ogniewicz and Kiibler [OK93]; for a summmary of the paper. see page 31.



background points. as is done in Figure 2.2(a). The distance map can also be viewed
as a gravscale image (see Figure 2.2(b)).

How a distance map is displaved does not necessarily correspond to how it was
computed. The actual computation may involve the use of either scalar values or
vectors. Scalars suffice when only the magnitude of the distance is needed. If it is
iow the dircction to the nearcst feature point. then vectors are
tvpically used. in which case the computation is sometimes referred to as a vector
distance transform or a nearest-neighbor transform.

Integer operations are usually preferable in distance map construction. For maps
involving vectors. this comes naturally. For maps with scalars. however. simple tricks
are sometimes used: in the case of the EDM. for example. instead of working directly
with the Euclidean distance. it can be just as convenient to use the square of the
Euclidean distance (and this permits storage of the distance values as integers).

For many applications that utilize distance maps. working with the Euclidean
distance map is ideal. There are several potential pitfalls involved in the construction
of an exact Euclidean distance map. however. and this has caused many people instead
to use fast or easilv-implemented algorithms that compute useful approximations
to the EDM. Some of these approximations utilize non-Euclidean metrics such as
manhattan distances. chessboard distances. octagonal expansions. or chamfer metrics
(for a discussion of these. see Paglieroni [Pag92]). Nevertheless, efficient algorithms
for correct computation of the EDM in two dimensions do exist. some even having
linear time complexity with respect to the number of grid points [BGIKW95]. The
problem has also led people to use non-rectangular grids; for instance. Vincent offers

an effective solution for computing the EDM for a hexagonal grid [Vin91]. For an
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extensive list of papers offering approximation techniques and a shorter list of papers
presenting exact construction methods. the reader is referred to Rosenfeld’s massive
bibliography on digital geometry [Ros98].

Most of the algorithms for computing the distance map use one of four approaches.
depending primarily on how distance values or vectors are propagated through the
grid. Th

The first approach. one that can often take advantage of computer hardware. uses
raster scanning [Dan80. Bor86. Mul92]. This technique is sometimes referred to as
a sequential local transformation. In this method. the grid for the distance map is
initialized with either scalars or vectors - zeros for the feature points and sufficiently
large values or vectors for the background points. The grid is scanned two or more
times. usually in alternating directions (horizontally or vertically for 2D grids). As
each grid point is processed. a neighborhood of points around it is examined. and
the results can be used to update the value or vector of the grid point or those of its
neighbors in order to reflect shorter distances. For each scan. a different neighborhood
mask is used according to the directions in which the scan traverses the grid. After
a sufficient number of scans (typically two or four), the resulting grid is a distance
map. This technique is generally applied only to rectangular grids, such as in the
formulation in Figure 2.1(b). For a discussion of the method as applied to more
complex domains, see Piper and Granum [PG87]. The main drawback of the raster
scanning approach is its inefficiency of computation - much of the propagation that
occurs in the grid is effectively wasted when the propagation from one scan overwrites

values or vectors from previous scans.
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The second approach uses ordered propagation. [t can be applied equally well to
either formulation for the distance map. and it involves propagating distance values
or vectors simultaneously in an outward direction from each feature point (initializa-
tion of the grid is performed as in the raster scanning method). Two stvles of ordered
propagation exist. Piper and Granum [PG87|. Ragnemalm [Rag92b|. and Vincent
(Viud1] provide aigurithuns that exhibil the {irst style. This consists of propagating
values/vectors throughout the grid in a slightly independent fashion somewhat rem-
iniscent of the particles in the simulation of a particle system. Each feature point
spawns an initial generation of values/vectors in the direction of neighboring back-
ground points. If a value/vector can be used to improve the value/vector stored in
the corresponding neighbor to which it is directed. then that neighbor point is up-
dated and it spawns values/vectors during the next generation of propagation. If a
value/vector cannot improve what is stored in the neighbor. then it effectively dies.
Successive generations of propagation are computed until no more values/vectors ex-
ist to be propagated. signaling that no further improvements can be made to the
distance map. Because a point potentially can be updated numerous times. there is
an inherent inefficiency associated with this stvle of propagation. Piper and Granum
[PG87] as well as Vincent [Vin91] note that the number of points that must be up-
dated more than once is typically low in practice: however. this does not rule out the
possibility of pathological cases. Neither group claims their algorithm to have linear
time complexity. Ragnemalm does claim linear time complexity of his algorithm,
though no formal proof is given.

The second style of the ordered propagation approach ensures that each point of

the grid is processed only one time through the use of bucket sorting. Algorithms
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by Verwer, Verbeek, and Dekker [V'V'D89] and by Ragnemalm [Rag92a] fall into this
categoryv. Each grid point. when its distance value is computed, is placed into a
bucket with other points sharing that value. The buckets are processed in increasing
order. and as a bucket is processed. the points it contains can propagate values to
neighboring points. The propagation develops as a single contour from each feature
puint. and contours {rom adjacent or distant fealure points can terge into a single
contour as the propagation unfolds.

The third approach to distance map computation involves a two-step process.
First. each row of the grid is scanned independently to computing the 1D distance
map within that row. Next. each column of the grid is scanned independently in order
to transform those 1D distance maps into a 2D distance map for the entire grid. The
technique allows for the efficient use of memory during the computation. since only
one row or column is being processed at any time. Examples of this method include
the works of Paglieroni [Pag92] and Saito and Toriwaki [ST94].

For each of the three approaches already described. the given method can operate
in linear time when computing non-Euclidean distance maps or approximations to
the EDM. When an exact EDM is required, however. none of the above methods has
vielded a linear time algorithm (a possible exception to this is Ragnemalm'’s algorithm
[Rag92b]. though nothing other than experimental verification of certain test cases is
given to prove that the algorithm computes the exact EDM in all cases).

The fourth approach to computing the distance map is apparently the first prov-
able method to operate in linear time complexity when computing the exact EDM.
The approach is due to Breu et al. [BGKW95], and it achieves linear time by com-

puting portions of the Voronoi diagram as it processes each row of the grid.
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The task of distance map computation lends itself to parallel implementation.
Yamada presents a massively parallel algorithm for computing the EDM that uses
one processor for each background or feature point [Yam84]. He shows that parallel
propagation of distance map values can resolve the approximation errors that plague
sequential algorithms and that make correct computation of the EDM so difficult.
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distance map is easilv extended to three or more dimensions.’
proaches to computing the distance map also generalize. though the particulars of
creating efficient algorithms are more intricate. It is unclear whether the fourth ap-

proach can be extended to three dimensions. Linear time computation of exact 3D

Euclidean distance maps is apparently still unresolved.
2.2 Medial Axis/Medial Surface

The medial azris (also called the symmetric azis) can be thought of as a sort of
branching geometric centerline of a 2D object. When the concept is applied to a 3D
object. the centerline can become a centralized surface. so the term medial surface
is used instead. Mlore precisely, the medial axis (MA) of a 2D object is defined as
the locus of the centers of all maximal disks interior to the object that touch the
boundary of the object at two or more points. Figure 2.3 demonstrates this definition
as applied to the MA of a rectangle. In like manner, the medial surface (MS) of a
3D object is defined as the locus of the centers of all maximal spheres interior to the

object that touch the surface of the object at two or more points. Figure 2.4 shows

1Again, see [Ros98] for a listing of relevant papers.



(a) (b)

Figure 2.3: The medial axis of a rectangle. In (a). several maximal disks interior to
the rectangle are shown. along with their centers (marked with “x™). The centers are
points on the medial axis. which is shown in gray in (b).

Figure 2.4: The medial surface of a box. It consists of 13 sheets: four triangles and
eight trapezoids - each of which extends to a particular edge of the box - and one
centrally located rectangle. The visible edges of the box are drawn in black.



the MS of an elongated box. The concept of the medial axis and medial surface can
also be extended to higher dimensions.

Interestingly enough in the context of this research. the medial axis or medial
surface is often referred to in the literature as the geometric skeleton. or more simply.

as the skeleton. In order to avoid confusion with the control skeleton. though. only

1.~
tie term

medial axis and medial surface will be used here?

Data structures for storing the MA/MS are often equipped to hold additional
information - in particular. the radii of the maximal disks or spheres. The motivation
is simple: in conjuction with such radial information. the MA/MS can be used to
reconstruct the original object. This operation is termed the inverse transform. the
inverse distance transform. or the inverse medial aris/surface transform: an example
is shown in Figure 2.5. The power of the inverse transform and the simplistic but
representative structure of the MA/MS has prompted many to argue for the use of
the MA/MS as an alternative shape representation (see the paper by Blanding et al.
[BBGS99] for an example of a solid model editing system based on altering the MS of
an object). Other arenas for application of the MA/MS include pattern recognition.
robot navigation, and offset surface construction.

The MA/MS arises from the generalization of the Voronoi diagram. Whereas the
Voronoi diagram is usually defined for a set of points in a domain, dividing the domain
into regions according to the closest point of the set. the generalized Voronoi diagram
can be defined for sets of points, line segments. curves. polygons, surfaces. shapes.

or any combination thereof. The domain is thus divided into regions according to

the closest point, line segment, curve. and so forth. The MA/MS is a subset of the

3The acronyms MA and MS will also be used. and when the discussion holds regardless of the
dimensionality, the acronym MA/MS will be used.

(]
(8]



e . -
. , x
0 Y x x
\\\ xX
. x x
x
~o1 1
—a x x x
N x x
N x x
0 “‘0 &/\A
. D
(a) (b)

Figure 2.5: The inverse medial axis transform. In (a). the medial axis from Fig-
ure 2.3(b) is shown with radial information at endpoints and junction points (to be
linearly interpolated). From this representation. the original rectangle can be recon-
structed. In (b). several maximal disks have been reconstructed using the information
in (a). and their images have been merged (the centers of the disks are marked with
“x"). Reconstructing more disks will improve the approximation to the original rect-
angle: in the limit. the original rectangle will be obtained.

boundaries between the Voronoi regions. In the event that the defining components
of the generalized Voronoi diagram form a boundary for some 2D or 3D object. then
usually only the Voronoi regions interior to that boundary are considered. As an
example. the MA in Figure 2.3(b) can be seen as dividing the interior of the rectangle
into four regions according to which edge of the rectangle is closest to each interior
point. Similarly. in Figure 2.4, the MS can be viewed as dividing the interior of the
box into six regions corresponding to the six faces of the box: points in each region

have the same closest face.®
8Note that in both examples, the objects are convex. so the medial axis/surface uses all boundary

edges/surfaces between adjacent regions of the generalized Voronoi diagram. When concavities are
involved. some of the Voronoi boundaries may not appear in the medial axis/surface.

23



'

The Delaunay triangulation (DT)" is the dual of the Voronoi diagram. For a
Voronoi diagram and a DT defined on a common set of points. the structural com-
ponents correspond in a one-to-one fashion such that. for instance. each edge of the
2D Voronoi diagram (or each face in the 3D Voronoi diagram) has an associated
perpendicular edge in the DT.

The rriangles of the 2D DT /and th
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have a spedial
property: for any particular triangle of the 2D DT (or any particular tetrahedron of
the 3D DT). the circumscribing disk (or sphere) does not contain any point of the set
in its interior. This property is tvpically the basis for algorithms for the construction
of the DT.

Because of the duality mentioned earlier. the construction of the DT is often used
as a stepping stone in the construction of the Voronoi diagram. This is especially true
for the 3D case. Also. methods used to construct the Voronoi diagram can sometimes
be modified to produce the MA/MS. Thus. it is not surprising to see algorithms for
the construction of the MA/MS based upon triangulation.

Kirkpatrick presents a medial axis algorithm based directly on the construction
of the 2D generalized Voronoi diagram [Kir79]. Gold discusses a method for MA
construction using both the Voronoi diagram and the DT [Gol99]. Some other 2D
constructions use algebraic techniques instead of triangulation [Boo79. YR91]. For
the 3D case. Goldak et al. describe a method for medial surface approximation based
on constructing the DT of a discrete set of points scattered on the surface of an object
[GYKD91]. Sheehy et al. present a similar but more thorough construction technique

that uses a special type of DT known as the domain Delaunay triangulation [SAR93].

“In three dimensions, the DT is often referred to as the Delaunay tetrahedralization. For sim-
plicity, the term Delaunay triangulation (or DT) will be used for either the 2D or 3D case.
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Other. more algebraic methods for generating the medial surface are due to Dutta
and Hoffmann [DHI0] and to Sherbrooke et al. [SPB93] In a paper describing an
efficient way to represent a 3D object as a union of spheres. Amenta and Kolluri
[AKOOQ] show that the set of sphere centers of their approximation converges to the

MS of the object as the number of spheres used in the approximation increases.
2.2.1 Continuous versus Discrete Geometry

The previous discussion of the MA/MS and the construction techniques just men-
tioned are given in the context of continuous geometry. In continuous geometry. the
object is defined using a continuous representation. usually as a polygon. polvhedron.
or some closed curve or surface: and the MA/MIS is defined using curves. surfaces. or
continuous approximations to either (for example. polylines or polyvgonal meshes).

When the same ideas are applied in the realm of discrete geometry (also called
digital geometry). there is more approximation involved. (For the purposes of this
research, discrete geometry will refer to applications on a regular. rectilinear grid
such as is formed by the integer points in a Cartesian coordinate system.) An object
defined in a continuous space must be approximated as a set of discrete grid points (in
two dimensions. the object is said to have been pixelized. whereas in three dimensions.
the object is said to have been voxelized). The medial axis or medial surface of the
object must be approximated as well: typically it takes the form of a subset of the
pixels or voxels that comprise the discretized object. In this formulation. the MA or
MS is sometimes referred to as the discrete medial axis (DMA) or the discrete medial

surface (DMS). respectively.

[N
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Whereas the mathematical definition of the continuous MA or MS results in the
existence of a unique MA or MS for any given 2D or 3D object (respectively). approx-
imation methods vary for constructing the DMA or DMS. Since there is no precise
mathematical definition. there can be very noticeable differences between the DMAs
or DMSs of the same object as constructed by different algorithms. Furthermore.
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object. the topological structure of a DMA/DMS as constructed may be radically
different from that of the discrete object. Nevertheless. certain desirable properties
for DMAs or DMSs are suggested in the literature. The list that follows is based on

properties mentioned by Ge and Fitzpatrick [GF96] and by Staunton {Sta96]:

e Similar Topology: The DNMA/DMS should have the same basic connectivity.

or topology. as the object.

e Centering: The DMA/DMS should be centered with respect to the boundary

of the object.

e Exact Reconstruction: The set of points generated by the inverse distance
transform - that is, by using the distance values at the points of the DMA
(or DMS) and plotting discrete disks (or spheres) with corresponding radii (see
Figure 2.5) - should be identical to the set of points of the original discretized

object.

o Rotational Invariance: The general appearance of the DMA/DMS should be

the same regardless of how the object might be rotated before being discretized.

¢ Immunity to Noise: Even in the presence of surface noise (defined as the
presence or absence of individual pixels or voxels near the boundary of the
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Figure 2.6: The discrete medial axis (DMA) of the object from Figure 2.1(a). The
DMA cells are drawn in black with white distance map values. This DMA exhibits
three desirable properties from the list on the previous page of the text: it has the same
topology as the object. it is well-centered. and the presence of radial information (in
this case. the distance map value for each DMA cell) allows for an exart reconstruction
of the object via an inverse distance transform.

object). the DMA/DMS for an object should be very close in appearance to the

DMA/DMS of the object without the surface noise.

Note that the last two items are actually desired properties of an algorithm for
producing a DMA/DMS, rather than desired properties of a specific DMA/DMS: of
course. the first three items would be desired in the output of such an algorithm.
Figure 2.6 shows a specific example of a DMA that possesses the first three charac-
teristics.

Note that there is another characteristic that is sometimes sought: thinness.

Sometimes it is desirable to have a DNMA/DMS that is as thin as possible, having
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only the bare bones required to be in topological agreement with the original object
and thus providing the most concise description of the object. The goal of thinness.
however. almost always conflicts with the goal of exact reconstruction. and it can
occasionally undermine the goals of centering and rotational invariance in subtle
ways. In order to present a coherent list of desirable qualities. thinness has been left
out of the list.

Closely related to the DMA and DMS and to the goal of thinness is the topic
known as thinning. Thinning refers to the process of removing pixels or voxels from a
discretized object in an attempt to whittle the object down in topological fashion to a
more simple representation consisting of connected. unit-width pathways of pixels or
voxels. In three dimensions. the simplified representation may also include unit-width
surfaces of voxels. The pathways and surfaces of the simplified structure tvpically
have a centralized location with respect to the corresponding part of the object. The
main focus of thinning algorithms is the preservation of topology. with the primary
purpose being to aid in the identification of basic structure. In application. thinning
algorithms are frequently used in fields such as medical imaging in order to visualize
networks of blood vessels or branching patterns of air passageways in the lungs.

Thinning algorithms often make use of information from a distance map of the
object to be thinned. Such a distance map can aid in the gradual. even thinning of the
object: however. the use of the distance map is not absolutely necessaryv. Depending on
how well distance information is used, the result of the thinning process can be a fairly
close approximation to a DMA or DMS of the object. Not surprisingly. thinning is a
fairly common technique for computing the DMA or DMS. Lee. Kashvap. and Chu,

for example. present a parallel algorithm for constructing the DMS of a discretized
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object. employing several concepts from digital topology [LIKC94]. Their algorithm
uses specially constructed tables for preserving the Euler characteristic of a discrete
3D object as it is thinned. After finding the DMS. the algorithm can be reapplied
to the DMS in order to find the DMA of the DMS itself. Lee et al. call this DMA
the medial axis of the 3D object. though the use of the term medial axis (or discrete
medial ayig) to refer to the simplificatior he medial surfac
surface) of an object does not appear to be standard terminology.

For a presentation of thinning algorithms as applied to hexagonal grids. see
Staunton {Sta96]. Along with their work in designing a solid model editing syvs-
tem around modification of the MS of an object. Blanding et al. [BBGS99] provide a
comparison between Delaunay-based methods and thinning methods for medial sur-
face construction. weighing such issues as ease of implementation. execution speed.
and memory usage. Rosenfeld [Ros98| provides a list of over 160 papers dealing with
thinning of 2D and 3D objects. and he also lists numerous papers specifically geared
toward DMA or DMS construction: note. however. that the vast majority of these
papers deal with the problem in two dimensions.

Another approach frequently used to construct the DMA or DMS is the direct
extraction of the DMA or DMS from the (Euclidean) distance map of the object. The
2D distance map can be interpreted as a height field and viewed as a 3D landscape:
the ridges of the landscape represent branches of the DMA. Thus. extracting the
DMA (or DMS) from a 2D (or 3D) distance map amounts to finding and following
the ridges implied within the map: the main difficulty comes in handling saddle points
along the ridges. Figure 2.7 shows the distance map from Figure 2.1(a) viewed as a

landscape.



Figure 2.7: The distance map from Figure 2.1(a) viewed as a height field in three
dimensions. The center point of each cell in Figure 2.1(a) has been raised to a height
equal to its (unsquared) Euclidean distance: black lines connect the raised center
points. Compare the ridges of the resulting landscape with the discrete medial axis
shown in Figure 2.6.

In implementing the extraction approach. some sort of filtering is performed. either
on a local or a global scale, in order to identify points that are the centers of maximal
disks (in two dimensions) or spheres (in three dimensions). In effect. these maximal
center points dot the ridges of the distance map. Additional, intermediate points are
typically added in order to link the maximal center points, completing the ridges and
forming a connected DMA/DMIS for the object. In this context, Danielsson proposes
an easy extension to a raster scanning implementation of a 2D distance map algorithm

that utilizes a simple 3 x 3 filter for identifving points of the DMA [Dan80j.
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Ge and Fitzpatrick take the approach a step further [GF96]. After constructing
the 2D Euclidean distance map. they take each locally maximal center as detected
by Danielsson’s algorithm and perform a gradient-based search to weed out center
points according to whether the corresponding discrete disk is contained in any other
discrete disk implied by the distance map. In the process. saddle points are identified.
The remiaining centers, which are the true centers of maximal disks {C3MDs) as would
be found by global filtering, are then connected by paths of points generated from
steepest ascent searches from the CMDs and saddle points. Their results are very
good. and their algorithm and the DMAs it generates exhibit the first four of the
desirable properties mentioned on page 26. The extension of their algorithm to three
dimensions. however, is problematic due to the difficulties in defining and identifving
saddle points in the 3D Euclidean distance map.

Perhaps the most interesting work in the context of 2D DMAs is that of Og-
niewicz and Kiibler [OK95]|. Their approach is a hybrid combining ideas from both
continuous and digital geometry. From the boundary points of a discrete 2D object. a
Voronoi diagram is constructed. The boundary edges of the Voronoi diagram are then
intersected with the discrete object to form the DMA. Ogniewicz and Kiibler define
various measures of importance of DMA points. depending on the size of the point’s
corresponding disk and how important the point is for the connection of the DMA.
Measurements are computed automatically and assigned to the points of the DMA:
these same measurements are used to decompose the DMA into a layered structure -
a hierarchical DMA. A range of threshold values can be applied to the hierarchical
DMA in order to realize a specific DMA at a particular level of detail. A high thresh-

old will result in a very simple DMA that relates to the basic overall structure of the
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object; a low threshold will result in a more detailed DMA that corresponds better to
all of the protrusions and intrusions of the object’s boundary. In a further paper by
Ogniewicz, an algorithm is demonstrated whereby a good. representative threshold
can be calculated automatically. thus allowing for automatic pruning of the DMA

[Ogn95]. In the paper. several examples are shown which illustrate the effectiveness

propriate to the object as a whole. It is certainly possible that a similar approach
could be taken for 3D objects and that the same benefits would be seen: however.
none of the importance measures defined in the first paper has a clear and obvious

extension when applied to a 3D object.

2.3 Control Skeleton Generation

As noted at the beginning of Chapter 1. a control skeleton is a fundamental
component of an articulated figure and includes a hierarchical structure of segments
and bones together with information detailing how the surface geometry. or skin. of
the figure is connected to that structure. This section will describe various commercial
and non-commercial systems or methods that can aid a user in the steps involved in

constructing a control skeleton for a given model.
2.3.1 Commercial Products

Several commercially available modeling and animation packages include support
for working with articulated figures and their control skeletons. For the most part.
control skeleton creation within these packages is a manual task performed via the
user interface. though certain features are often provided as convenience routines to

help speed up the process. A complete discussion of the control skeleton related
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aspects of commercial software is beyond the scope of this dissertation: the following
paragraphs merely serve to present the reader with a basic understanding of the
skeletal apparatus in each of a few well-known packages and to highlight some of the

special convenience tools they contain.
Maya®

Maya is a very popular modeling and animation package. and character animation
is only a small arena of its possible applications.® Facilities in Maya allow a user
to build a control skeleton for an object by modeling individual segments (termed
“bones” within Maya) and joints as part of a connected hierarchy [Tea98. Tea99].
Each joint possesses three rotational degrees of freedom about a set of orthogonal
axes. though joint parameters can be set to limit movement about any of the three
axes. A segment acts as a spacer between the two joints it connects and indicates
which of the two joints is the parent (that is. which joint is the closer of the two to
the root joint). The interface also provides numerous means for creating skeletons.
such as for creating chains of joints and segments by specifving a set of points. for
inserting or removing joints within a skeleton. for splitting a skeleton into two by
disconnecting it at a particular joint. for merging two skeletons into one. and for
changing the direction of the hierarchy by specifving a different joint to be the new
root joint. A feature called “mirroring” allows a user to duplicate a portion of the
skeleton. possibly to make a reflected copy - this is especiallv useful for creating
symmetric skeletons. for example. allowing a user to build a skeletal subhierarchy for

the left arm of a character which is then automatically mirrored and duplicated to

8Maya is a registered trademark of Silicon Graphics. Inc.. and exclusively used by
Alias{Wavefront. a division of Silicon Graphics Limited.
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create a skeletal subhierarchy for the right arm. Other features allow for the automatic
setting of certain joint parameters, such as having the program guess joint limits or
orient joint axes either to align with the world axes or instead to align relative to
each joint's first child joint.

Attaching a figure’s surface geometry to the skeleton is known as “skinning” in
Maya. .\ user may invoke Mava's myriad selection tools to choose the points definiiig
a portion of the object and then bind those points to specific bones/joints of the skele-
ton. Alternatively. each point can be bound automatically to the closest bone/joint.
though a user may have to re-bind points that are grouped incorrectly. Mava offers
two basic methods of skin binding: rigid skinning and smooth skinning. Under rigid
skinning, each point is bound to only one bone/joint: under smooth skinning. each
point may be bound to multiple bones/joints. with the influence of each bone/joint
determined by sets of weights. Whereas the weighted influencing of bones/joints in
smooth skinning allows for automatic flexing and deforming of the skin around joints.
such effects are not possible under rigid skinning without the use of additional tools
such as “flexors” or “deformers™. Flexors. which are used only with rigid skinning. are
free-form deformation (FFD) tools that allow for smoothing, rounding, and creasing
of the skin surface around a bending joint. Deformers, of which there are several
varieties, can be used with either skinning method and provide more options for skin
deformation. Wrinkle-formation and muscle bulging effects, for example. are often
performed through the use of deformers. Posing or animating the skeleton can be

accomplished through the use of forward or inverse kinematics toolkits. For more

information regarding Maya. see the references [Tea98. Tea99, HKGL00. V'SC00].
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3D Studio MAX®

Another popular modeling and animation package is 3D Studio MAX.? In addition
to having several other graphics tools. this package presents a reasonable interface for
creating control skeletons and attaching surface points of the object to the control
skeleton. Many people who use 3D Studio MAX for character animation. however.
choose to use a special plug-in for the package called Character Studio®.

Character Studio provides a more advanced interface for creating control skeletons
[Dis00]. It consists primarily of two components: Biped® and Physique®. Biped is
specially geared towards modeling and animating two-legged characters. It contains
an interface to allow quick creation of a skeleton structure consisting of segments
and joints. The interface acts as a template of sorts for producing bipedal skele-
tons. containing boxes that a user can check to generate various additional parts of
the structure (such as a skeletal chain for a tail) or to specify how manyv joints and
segments should be used in a particular limb. Biped will automatically produce a
generically-posed skeleton structure conforming to the user’s requests. The structure
has the additional advantages that values for various segment and joint parameters
have been defined in meaningful ways for a humanoid skeleton. and miscellaneous
additional aids such as inverse kinematic chains have been produced to help in the
animation of the skeleton. Not everything is done automatically, however. The user
must still reposition the generically-posed skeleton so that the joints and segments

align with the figure the user is trving to animate. Also. the user must use other parts

93D Studio MAX is a registered trademark of AutoDesk. Inc. Character Studio is made by
Discreet, a division of AutoDesk, Inc. Character Studio. Biped. and Physique are all registered
trademarks of the company.



of the interface to anchor the geometry of the figure to the skeleton structure. Never-
theless. Biped does streamline the process of generating articulated. bipedal figures.
In addition. Biped provides a sophisticated system for animating the locomotion of
the figure by allowing a user to specifv footprints for the movement and also for han-
dling dynamically realistic motion of the figure. not to mention facilities for importing

N
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figure created in Biped to be mapped to another figure created in Biped. effectively
separating the animation from the figure and making it reusable.

Physique is the other main part of Character Studio. [t contains the tools that
allow a user to attach the surface geometry to the skeletal structure. In addition.
it provides means for producing muscle bulging effects. including the apparent ac-
tion of tendons. based on the bending of the skeleton. A user may even define the
profile at various points along a muscle for more control of the details. Tools for
other skin altering effects such as creasing and vein deformations are also present in

Physique. More information on 3D Studio MAX and Character Studio is available at

the company’s web site [Dis00] or in books such as [JBD™00].

Poser

A product specifically designed for the purposes of modeling, posing, and rendering
articulated characters is Poser.!® Poser provides libraries of predesigned characters.
complete with surface geometry, shading information. and control skeletons [FS99].
[t also contains libraries for various props. shading models. and lighting models that

can be used during scene design and construction. If a user is satisfied with one of
10\ etaCreations Poser™ had been a trademark of MetaCreations Corporation, the former owner

of Poser. In April 2000, Poser was purchased from MetaCreations by a company named egi.sys and
is now a product of Curious Labs, an egi.sys company [Egi00. Cur00].
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the predesigned characters. he or she may proceed straight to the task of posing the
character or creating animation sequences for the character. Poser even possesses a
library of some common animation sequences (walk cyvcles. for instance) that a user
can apply to a character. Custom design of a character is more cumbersome. A user
can either modify one of the predesigned characters or can import some geometry for
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the geoiietry is itnporied. thei the User st work
svstematically with Poser's Hierarchy Editor in order to set up a control skeleton for
the figure. specifving which parts of the geometry are parents of which other parts.
specifving how the geometry should be deformed when the skeleton moves. and setting
various parameters to ensure that the joints are placed and oriented appropriately. If
various parts of the geometry are named according to a standard used by Poser. then
part of the process can be performed automatically during importation: nonetheless.
much is still required on the part of the user. In fact. if a user wants to take advantage
of certain animation tools provided by Poser. then the geometry must adhere to
Poser’s standard naming convention. Poser can propel a possibly novice user into the
world of articulated character manipulation. but it seems best suited for users who

are willing to work with libraries of predesigned characters. For more information on

Poser. see [Mor00].
2.3.2 Control Skeleton Research

As exemplified during the discussion of commercially available software. several
steps have been taken to automate a few of the more mechanical tasks involved in
creating a control skeleton for a given object. Still. some research has been done

which has vet to be incorporated into commercial packages.
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Perhaps the earliest work on automatic skeleton generation is that of Tsao and
Fu [TF84|. Their method operates entirely in the domain of discrete geometry. It
begins with a 2D or 3D bitmap representing the object. upon which thev perform
a distance transformation that vields an approximation to the Euclidean distance
map. The distance map is then processed using a local filtering method to iden-
tify individual points of the discrete medial axis or surface. These scattered DMA
or DMS points are preserved in a subsequent thinning operation which results in a
connected DNMA/DMS. The DMA/DMS is then converted into a graph whose ver-
tices are the DMA/DMS points and whose edges indicate adjacent pairs of those
DMA/DMS points. Once formed. the graph can be randomly manipulated through
vertex modification. insertion. and deletion. During modification. the vertices of the
graph may move to other grid points so long as the adjacency relationships are main-
tained. The vertex modification routines thus permit the bending and repositioning
of the DMA/DMIS within the confines of a Cartesian grid. Since distance map values
are stored for each vertex of the graph. an inverse distance transform can then be
used to construct a new bitmapped representation of the object that corresponds to
the modified DMA/DMS.

In effect, the graph in Tsao and Fu's program fﬁhctions as the control skeleton for
the original bitmapped object. with the graph vertices being the joints and the graph
edges being the segments (though Tsao and Fu themselves never use the terms joint
or segment). In fact. it is not clear that Tsao and Fu ever think of their modeling
technique in the context of creating an animatable articulated figure: nowhere do they

mention animating the graph or the object. Apparently. they only intend for their

system to be used to create random but similar objects based on simple repositioning
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of the skeleton graph. Note also that their graph has two basic differences from
the control skeleton as presented in Chapter i. First, the control skeleton segments
(the graph edges) are not rigid. Their lengths are the distances between neighboring
voxels, and these lengths can change. such as when two diagonally adjacent vertices
are repositioned to be orthogonally adjacent. This means that the skeleton joints (the
grapi vertices) are not necessarily {ixed in the local coordinate space of the skeieton
segments. Second. the boundary of the object is not preserved. Instead of being
attached to the control skeleton in some fashion. it is completely re-created during the
inverse distance transformation. This fact. combined with the simplicity of the graph
modifications. causes many of the resulting reconstructions of their example objects
to have a somewhat blobby appearance. Hard edges and sharp convex or concave
corners of the original boundary are almost always rounded over in the randomly
posed instances. Perhaps this is why Tsao and Fu comment that their method might
work best for stochastic modeling of natural objects such as clouds and trees.

Tsao and Fu's research dates back to 1984. Recently there have been other efforts
to provide tools that automate parts of the control skeleton creation process.

A method somewhat similar to that of Tsao and Fu is one by Gagvani. Kencham-
mana-Hosekote, and Silver [GKHS98]. It also operates entirely in the discrete domain
and contains steps to compute a distance map and a discrete medial surface for an
object. The distance map is constructed using a quasi-Euclidean 3-4-5 distance metric
(this is a specific type of chamfer metric which is named according to the initial
distance values assigned to boundary voxels: use of this metric results in a distance
map that has properties similar to those of the Euclidean distance map, hence the term

*“quasi-Euclidean”). After the distance map is constructed, a local filter is applied to
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each of its voxels to identify DMIS points. A “thinness” parameter may be supplied
by a user to influence the thickness and connectedness of the DMS - a lower value
results in better connectivity but a thicker DMS: a higher value results in a thinner
DMS with poorer connectivity. The DMS is converted into a fullv-connected graph

with one vertex for each DMS point. Each edge is assigned a weight according to its
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it connects. Based upon these edge weights. a minimum spanning tree is constructed.
Here again. a user may specify a “connectivity” parameter that indirectly influences
the resulting spanning tree by changing the calculation of the edge weights. The
authors of the paper suggest that the spanning tree can be converted into a control
skeleton by marking certain vertices as joints and using those joints to divide the
tree into sections: each section of unmarked vertices and edges would form a rigid
segment of the control skeleton. No details are provided as to how joint vertices
might be marked as such. and only very simple examples are provided showing any
articulation of the spanning tree control skeleton. with each example demonstrating
only a single joint. As with Tsao and Fu's method. the inverse distance transform is
used to generate new voxelized instances of the object for various poses of the control
skeleton.

Gagvani and Silver have also implemented their method as a plug-in for Maya
[GS99]. This plug-in can be used to convert the spanning tree into a control skeleton
in Maya's internal format: however. simple. straightforward conversion with each
DMS point being used to form a joint usually results in a control skeleton that is
entirely too complex. Instead. Gagvani and Silver suggest that a user merely view

the discrete medial surface while manually constructing a control skeleton whose
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segments run along stretches of medial surface voxels. They show how the animation
of the control skeleton within Mava can be exported and used to drive the animation
of the voxelized figure.

Teichmann and Teller have presented a svstem for assisting in the generation
of control skeletons [TT98]. Given a closed polyvhedral model. their algorithm first
coliipites a Vorolivi diagratn fur satupie points vn the surface of the polyhiedrou. This
set of sample points must be sufficiently dense in order to ensure that the Voronoi
vertices interior to the polvhedron lie approximately on its medial surface. The user
then selects Voronoi vertices that should be endpoints of branches of the control
skeleton. and the Voronoi graph (that is. the graph made from the vertices and edges
of the Voronoi diagram) is simplified in order to produce a spanning tree whose
leaf nodes are those Voronoi vertices the user has selected. The Voronoi graph is not
necessarily connected. and only the largest connected component of the Voronoi graph
is simplified: any other components are ignored. Next. the user specifies nodes of the
spanning tree as points of articulation: these nodes become the joints of the control
skeleton. The user is also provided with tools that allow manual reorientation of the
coordinate frame for each joint. Segments of the control skeleton are constructed by
simplifving portions of the spanning tree lying between joints and/or endpoints; thus,
each segment corresponds to a chain of spanning tree vertices.

A sophisticated network of springs is created for the purpose of attaching the
polyhedral model to the control skeleton structure. To achieve this. a 3D Delaunay
triangulation is performed on the combined set of polyhedron vertices and spanning

tree vertices. Edges of the tetrahedra formed are examined. and anv edge connecting

a polyhedron vertex to a spanning tree vertex is converted into a spring. If any
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polyhedron vertex is not adjacent to any such edge. then a spring is created to attach
it to the closest spanning tree vertex. Each edge of the polvhedron is also converted
into a spring. Thus. the polvhedral edges form a network of springs that is connected
to the control skeleton using additional springs. When the control skeleton is posed.
the vertices of the spring network are first repositioned along with their corresponding
cottrol segluents. a situulation is then performed Lo atlow the network of springs to
reach a stable configuration. At that point. the vertex positions can be used to redraw
the surface polygons. Teichmann and Teller include a table of results in their paper
indicating that the time required to create a control skeleton using their system ranges
from about 13 minutes to 6 hours. depending on the complexity of the polvhedral
model. They also mention that models consisting of large numbers of polvgons should
probably be simplified beforehand. The original model may be used for animation
once the control skeleton has been generated. but Teichmann and Teller do not state
how the spring network. as constructed for the simplified model. should be extended
to work with the original. complex model.

In a method proposed by Bloomenthal and Lim. a control skeleton for an object
is automatically produced from the medial surface of an object [BL99]. First. the
medial surface itself is automatically produced using an implicit method Bloomenthal
and Lim have developed based upon examining how the direction to the nearest
surface point changes as a point of examination is moved within the object - large
or obvious changes in the direction signal the presence of the medial surface. For
each point in a grid of sample points, the direction to the nearest surface point
is computed. Adaptive subdivision is employed along grid edges whose endpoints

have substantially different directions (as determined using a threshold parameter).
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The medial surface is constructed as a polvgenal mesh of the points resulting from
the subdivision processes. Additional information is stored with the mesh as to the
distance from the mesh points to the surface of the object. The control skeleton
structure can be derived automatically from the medial surface mesh. though no
details are provided as to how this is accomplished. The points of the medial surface
iesl ate then anchoted Lo the controt skeleton structure. Using the conttul sheleton
to reform the surface of the object involves a two-step process: first. the control
skeleton is used to modifv the position of the medial surface mesh: then. an inverse
distance transformation is applied to the mesh in order to reconstruct the surface. The
reconstructed surface is thus defined implicitly but approximated using a polvgonal
mesh. Note that here. as with Tsao and Fu's method (see page 38). the original
surface is not preserved: rather. the surface is completely reconstructed for each new
pose - such is typical of the use of the inverse distance transform. whether in the
discrete case or the continuous case.

Few details are provided by Bloomenthal and Lim with respect to the construction
of the control skeleton. the quality of the results. or the time required to execute the
algorithm. Their method appears to restrict the input object to be a single. closed
surface. Also, implicit methods typically require more computation time than non-
implicit methods. Bloomenthal and Lim apparently plan to release a commercial
version of their algorithm in a product called Actionizer.

Stalpers and van Overveld also use an underlying polygonal mesh in connection
with the control skeleton [SvO97]. Their method focuses on the problem of attaching
the surface of the object to the control skeleton. It starts with two pieces of input: a

closed polygonal surface model for the object, and a polygonal mesh representing the
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structure of the control skeleton - in reality, the polyvgonal mesh is itself anchored to
an articulated structure consisting of a hierarchy of hinge joints. A dual-connectivity
search is performed. examining vertices of the surface mesh in conjuction with those
of the skeleton mesh and determining a mapping of the one set to the other. The
mapping is constructed according to the vertex-polvgon adjacencies of the surface
moesh and the skeleton mesh.  Two surface vertices adjacent to the same surface
polyvgon are mapped either to a single skeleton mesh vertex or to two skeleton mesh
vertices that themselves are adjacent to a shared skeleton mesh polvgon. In order
for there to be an effective mapping. Stalpers and van Overveld mention that the
skeleton mesh should resemble the surface mesh in its general structure. Once the
mapping is completed. it is used to construct a weighted anchoring of surface mesh
vertices to skeleton mesh vertices. In order to prevent undesired surface creases from
forming during deformation of the skeleton mesh. additional hinge normal vectors
can be computed and integrated into the weight averages. Unlike Bloomenthal and
Lim’s approach. Stalpers and van Overveld’s method preserves the surface mesh of
the object but deforms it based on the positioning of the skeleton mesh. which itself
is deformed and posed via the specification of the hinge joint angles for the control
skeleton. The authors of the paper recommend that the hinge joint axes of the control
skeleton should be aligned with the shared edges of the skeleton mesh, noting that
otherwise, non-planar skeleton mesh polygons can adversely affect the shape of the
deformed surface. They also recommend the alternative use of free-form deformation
(FFD) methods for relatively spherical objects. where a polvgonal skeleton mesh may

not adequately correspond to the basic structure of the surface mesh, or the use
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of other skeleton-skin attachment schemes in the event that hinge joints alone are
insufficient for the motion of the control skeleton.

A concept potentially useful for automated control skeleton generation is that of
level set diagrams as applied to polvhedral objects. such as in the work of Lazarus and

Verroust [LV99]. In their work. the construction of the level set diagram (LSD) begins

shortest distance along surface edges to the source vertex. The field of distance values
at surface vertices becomes the domain for the generation of isocontours of particular
distance values. Through analysis of the isocontours on either side of vertices with
local maximum values (at which point the topology of the isocontour set may change).
a tree-shaped structure can be generated whose root is the source vertex and whose
branching points and leaves are local maximum vertices. This structure approximates
the branching shape of the object’s interior by viewing only the boundary of the
object. As such. it is a fairlv rough approximation that may or may not correspond
well with the medial surface (although contour centers can be used to centralize the
limbs of the tree. the branching points of the tree lie on the surface of the object
and thus not on the medial surface). Nevertheless. the construction does offer some
possibilities for control skeleton generation: it provides a one-dimensional branching
structure with possible articulation points (that is. the branching points): and the
surface polygons, by virtue of the distance values at their vertices and their use in
the generation of isoéontours, can be readily divided into sets corresponding to the

limbs of the tree, leading to a fairly straightforward anchoring of surface to skeleton.



2.4 Anatomically Based Modeling and Animation

Anatomically based modeling and animation can be described as modeling and
animation whose goal is a close and apparent similarity to anatomical shape and
movement of that shape. especially with regard to outward appearance of the skin.
and possibly with regard to the simulation of underlving anatomical forms. Work in
anatomically based modeling and animation is driven by people’s desire for increased
levels of realism in computer graphics. This realism with respect to the way characters
should look or behave may be motivated by such goals as the demand for more
imniersive virtual worlds similar to our own. the quest for seamless integration of
digitally created characters into real-life photography and cinema. or the need for
better modeling and simulation for purposes of medical research such as in the areas
of biomechanics and ergonomics or visualization of surgical planning. Whatever the
motivation. anatomically based modeling and animation appears in various forms.
and the topic has been a growing focus of graphics research for some time.

Because human and animal anatomy are subject to the laws of physics. physically
based modeling as applied to character animation can be viewed as an extension
of anatomically based modeling and animation within a simulated physical world.
Physically based modeling contributes in two basic manners to anatomical modeling
and animation. The first is the application of simulated dvnamics to articulated
figures. as exemplified by the works of Armstrong and Green. Wilhelms. Forsey and
Wilhelms. and the Gascuels [AG83, Wil87, FW88, GG94]. The second is the role of
simulated dynamics in the modeling and animation of anatomical components. such

as with spring-mass systems used to attach the surface to the skeleton for the purpose
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of modeling fatty tissue or the integumentary system. Some examples of this role will
be noted in the works described in the remainder of this section.

Early research in articulated figure modeling involves two basic lavers: skeleton
and skin. The skeleton is the articulated structure of segments and joints and is the
laver controlled by the animator. The skin represents the object to be animated.
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with the skeleton as the structure is moving. Occasionally a third laver is mentioned.
consisting of a behavioral model used to drive the animation of the skeleton. This
third layver. which might also involve dvnamic simulation or inverse kinematics for
positioning the figure. has the effect of further distancing the animator from the
shaping of the skin as the figure moves.

Chadwick. Haumann. and Parent were apparently the first to incorporate an ad-
ditional anatomical layer into articulated figure creation and animation [CHP89).
Pioneering a more advanced notion of layered construction. theyv insert a muscle and
fatty tissue layer between the layers of skeleton and skin. This muscle and fatty tissue
layer allows for such interesting deformations as muscle bulging and secondary motion
effects on the skin. like the swinging of fatty deposits. The foundation for this middle
layer is provided by FFD lattices in which the points of the skin are embedded. For
the muscle model. the control points of the FFD lattice are repositioned based upon
the angles of corresponding joints so that the skin appears to be affected by an under-
lying muscle which can be flexed or extended. For the fatty tissue. the control points
of the FFD lattice become mass points of a spring-mass system. some of which are

rigidly attached to segments of the skeleton. The motion of the spring-mass system



is dynamically simulated based on the kinematic movement of the skeleton and the
dvnamic movement of the mobile mass points from frame to frame.

Chen and Zeltzer have created a finite element model of a muscle [CZ92]. [n their
implementation. a muscle is modeled as a polvhedral mesh comprised of multi-node

finite elements together with spring-like generators imparting both active and passive

to the muscle, they do provide a model that is both biomechanically accurate and
well suited for realistic graphical display.

Laser scanning of humans. which typically has the purpose of creating more re-
alistic skin geometry for human data models. also falls in the realm of anatomically
based modeling. Related research that takes this scanning concept even further is
due to Kakadiaris and Metaxas {KM93]. In their work. which employs image process-
ing techniques using multiple camera views. the goal is to construct an articulated
data model for the human subject. The human is taken through a scripted set of
poses that allow for automatic identification of body parts from the appearance and
disappearance of limb silhouettes in the images. In addition. automatic segmentation
of flexed limb silhouettes is performed and checked for frame-to-frame coherence in
order to identify joint locations for the figure. In this way. a segmented model of a
human subject is constructed. The surface constructed for each limb section appears
to be rigidly attached to the corresponding segment of the control skeleton: special
skin deformation around flexed joints is not performed. though that appears not to
be a goal of their research.

Much research in modeling and animating virtual humans has been done under the

direction of Norman Badler in the Center for Human Modeling and Simulation at the
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University of Pennsylvania [BPW93]. The hub of this research is a software package
known as Jack.!! Jack provides an interface for human modeling and animation
suited for such diverse purposes as ergonomics research. applications involving inverse
kinematics. and goal-directed behavioral simulation of virtual humans. As input for
dynamics simulations on human models. Jack's Spreadsheet Anthropomorphic Scaling
System
segment dimensions. joint type. and joint limits. Animation of a human model in
Jack involves scripting or simulating movement of its control skeleton [ABH™94|.
The surface of the model is deformed based on FFD meshes whose control points are
anchored to the skeleton. though it appears the FFD meshes are used primarily for
the continuity of skin across multiple skeleton segments and not for the simulated
appearance of muscle effects.

Various work in the modeling and animation of anatomical components has been
spearheaded by Jane Wilhelms at the University of California. Santa Cruz. Starting
with a tree-structured skeleton, Wilhelms shows how various anatomical layers can
be constructed for modeling animals [Wil94. Wil97]. Bones and muscles are modeled
as combinations of ellipsoids. “Stuffing” - meant to represent soft tissue and useful
for adding features such as the nose and ears - is also modeled using ellipsoids. Bones
(which for the most part are elongated ellipsoids with spherical knobs at each end)
are rigidly anchored to corresponding segments of the skeleton. The same is true of
the ellipsoids used for stuffing. Each muscle is a scalable combination of three linearly

arranged ellipsoids, with the outer two representing tendons. The linear arrangement

"1 Jack is a registered trademark. Originally developed at the University of Pennsylvania, Jack was
acquired in 1996 by Transom Technologies. Inc.. which was itself acquired by Engineering Animation,
Inc. (EAI) in 1998 and is currently part of the Digital Human Group of EAL. The software is now
available commercially under the trade name Transom Jack [Tra00. Eng00].
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spans from a point of origin on one segment to a point of iusertion on a distal seg-
ment. After the control skeleton is has been posed. each muscle model is rescaled to
fit between its transformed points of origin and insertion. Since the transformation
is designed to preserve the volume occupied by the model. the model will appear to
bulge or stretch appropriately. For these intermediate layers. a user has the option of
re maring modifications or specifving addi-
tional bones. muscles. and stuffing. A polygonal mesh skin is automatically generated
to cover the anatomical components. First. the entire set of ellipsoidal component
models is voxelized: then. repeated filtering is applied to blur the voxelization: finally.
a marching cubes algorithm is emploved to generate a polvgonal mesh for an isosur-
face of the voxel grid. This resulting mesh contains the set of ellipsoids while also
allowing a small gap between itself and the components. Each point of the skin mesh
is anchored to the closest underlying ellipsoid. When animated. vertices of the skin
mesh are initiallv situated after their corresponding ellipsoids are positioned: then the
vertices of the mesh are repositioned during a spring based simulation that allows the
mesh to approach an equilibrium. A user may change the anchoring of the skin for
different portions of the figure, producing a larger or smaller gap between anatomy
and skin: in addition, a user may change spring constants for the skin mesh to change
the apparent flexibility of the skin model.

In work with Van Gelder, Wilhelms has improved the muscle model [WG9T].
Instead of three linearly arranged ellipsoids. a muscle and its tendons are modeled
as a single. generalized, deformable cylindrical mesh with an elliptical cross section.
With two origin points and two insertion points. the mesh aliows for a wider spectrum

of muscles. including broad muscles as in the chest or the back: furthermore. a pivot
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point allows the mesh to be bent. such as when a tendon of one of the quadriceps bends
over the front of the knee. During animation, the length of the mesh is computed
based upon the kinematic positioning of the two bones to which it is attached. and
this length is used to scale the thickness and width of the mesh for approximate
volume preservation. In an interesting twist to the skin surface creation. parts of an
anital wodel such as Lhe hands and feet can be temporarily scaied up before skin
generation in order to generate larger number of polvgons in highly flexible regions.
As an example of the complexity of modeling an entire animal this way. a monkev
is modeled from a hierarchy of 85 skeletal segments. with lavers of 156 bones. 532
muscles. and 52 generalized tissue components. The skin generated for the monkey
model has about 75.000 vertices and 150.000 triangles: nevertheless. the svstem is
capable of interactive speeds when a user is working with the model.

Other work at the University of California. Santa Cruz. has been geared toward
hybrid modeling. Instead of the automatic generation of a skin mesh for an anatom-
icallv modeled animal. the work of Schneider and Wilhelms involves starting with
a skin mesh and constructing the underlying anatomical components to fill in the
volume of the figure (SW98]. This approach provides the benefit of working with
existing polygon mesh models (which typically have fewer polvgons than the auto-
matically generated skin meshes); however, the authors note that manual placement
of underlying component models is a tedious process, even though theyv can start
with an existing set of component models for a similar animal figure and make mod-
ifications. Lapierre and Wilhelms have taken several steps to speed up the process.
adding various features to the interface for helping to match an underlyving animal

anatomy model with a predefined polygonal skin mesh [LW99. Lap99]. Lapierre has
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demonstrated the effective use of super segments. which are groupings of the anatomy
hierarchy into connected chains (such as a hind leg) that can be conveniently rescaled
or repositioned using such techniques as the application of inverse kinematics to the
super segment applied after the user has moved the end-effector for the chain.

Turner and Gobbetti have developed an interactive system for constructing and
le characters [TGO8]. .\ user may create a character
within the system by building successive layvers representing the control skeleton.
bones and muscles. and fatty tissue and skin. The system provides a virtual environ-
ment with interactive tools. and users don head-mounted stereo displavs and operate
3D input devices while creating layvered figures and producing kevframed animation
of those figures.

With the goal of providing more visual realism. Scheepers et al. have modeled mus-
culature in more detail [Sch96. SPCM97]. From thorough analysis of muscles from
an artistic perspective. Scheepers has developed several muscle models according to
the different kinds of muscles present in the human body. The set of available models
includes fusiform muscles. which have a simple. ellipsoidal shape and are attached us-
ing one or two tendon models: multi-belly muscles, which approximate wide muscles
through convenient spacing of a lateral sequence of simple ellipsoidal muscles: and
general muscles. which can bend or twist around other anatomical structures. Each
muscle model is designed with animation in mind and allows for approximate volume
preservation during animation. The muscle models are implemented as classes in a
procedural modeling language known as AL.!? Although the models are generalized

enough to be used for a human figure or any animal with similarities in musculature.

12AL, short for Animation Language. was developed by Steve May at ACCAD [Mav95].
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Scheepers has chosen the upper. right limb of the human as a testbed for the models.
He has also shown how implicit forms of the component models can be used to help
offset the skin surface over a portion of the testbed so that the skin reacts appro-
priately to deformations of the underlving bone and tissue during animation. The

results of both the musculature modeling and the skin modeling are impressive and



CHAPTER 3

APPROXIMATING THE EUCLIDEAN DISTANCE MAP

This chapter and the one that follows describe the discrete geometry algorithms
developed for use in this research. specifically. algorithms for computing the distance
map and the discrete medial axis/surface for a discretized object. The concepts of the
distance map. the medial axis (MA). and the medial surface (MS) were introduced
in Sections 2.1 and 2.2 in the previous chapter.

This chapter focuses on the algorithm designed for computing an approximation
to the Euclidean distance map (EDM). Section 3.1 presents a general overview of
the algorithm. Sections 3.2 and 3.3 then detail the data structures and various steps
involved in propagating distance values through the map, which is basically how the
algorithm works. The algorithm is then analyzed in various ways in Section 3.4.

Chapter 4 presents a similar discussion with regard to the algorithm for construct-
ing the discrete medial axis (DMA) or discrete medial surface (DNIS) of a discretized
object. In both chapters. numerous figures and tables are provided to help explain the
data structures and to demonstrate execution of the algorithms in step-by-step fash-
ion. Although the descriptions for both algorithms are illustrated using the 2D case.
implementation for the 3D case is very similar (some particulars will be mentioned).
and indeed, the algorithms are easily extended to higher dimensions.
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Exactly how these algorithms are used in the rest of the research will be discussed
in Chapter 5. For now. simply note that for the purposes of this research. it is
not necessary to compute the exact EDM. nor is it necessary to compute a precise
DMA/DMS. The algorithms presented here and in Chapter 4 are designed to provide

close approximations and are optimized for efficiency.
3.1 Overview of the Algorithm

As alluded to in the introduction above. the algorithm works by propagating dis-
tance information through the grid. The propagation is performed in a lavered fashion
moving outward. away from the feature points of the grid. During processing. each
grid point receives distance information from its processed neighbors: later. it can
pass distance information along to its unprocessed neighbors as they are processed.
Because distance values are assigned to grid points in increasing order of distance
value. the grid points are essentially processed as a series of broken contours corre-
sponding to each assigned value. A clearer understanding of these contour lavers can
be obtained by jumping ahead temporarily to examine Figures 3.2 through 3.5 on
pages 65 through 68.

As with any distance map algorithm. the input to the one described here is a grid
where each cell is clearly marked as being either a feature point or a background point.
The output of the algorithm is a labeling of each background point with a distance
map value corresponding to the square of the Euclidean distance from its center to
that of the closest feature point. The vast majority of the values assigned will be
equal to values for an exact EDM: in a few cases. however, the value computed is

slightly greater than the square of the shortest Euclidean distance to a feature point.



though tvpically the error is negligible. Reasons for the errors are mentioned in the
analysis and discussion which follows the presentation of the algorithm.

Because this research deals with voxelized objects and because it involves com-
puting distance map values for interior voxels. instead of being presented in terms
of feature points and background points. the algorithm will be presented in terms of
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exterior voxels and interio
tency. the term vorel will also be used when the discussion involves 2D grids. even
though the term pirel is perhaps more appropriate. Note too that although the algo-
rithm is described for the set-up where the feature points surround the background
points (as in Figure 2.1(a) on page 1). the algorithm can be applied - without mod-
ification - in order to compute the distance map for the alternate set-up where the

feature points are amidst a field of background points (as in Figure 2.1(b)).

3.2 The Reference Table

The initial step of the process is the construction of a look-up table for use in
propagating distance values through layers of interior voxels. Actually. instead of
propagating distance values directly. the algorithm works by propagating reference
numbers, each of which has an associated distance value. These reference numbers
and their corresponding distance values are available in a look-up table known as
the reference table. To aid in the creation of the reference table, an array called the
reference grid is constructed which will contain all possible reference numbers and
distance map values that might appear in a particular EDM.

The reference grid is an array with each cell containing two items: a distance map

value and an associated reference number. Figure 3.1 on page 58 shows the first eight



rows of the reference grid for the 2D implementation. The distance map value for a cell
(Ar. Ay) is calculated using the expression (Ar)*+(\y)*. where Ar and \y represent
the relative distances along each of two orthogonal directions from a particular interior
voxel to a particular exterior voxel. Note that when direction is important. as in the
construction of a vector distance map such as shown in Figure 2.2(a) on page 13. there
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however. where the magnitude of the distance is the main item of interest. it suffices
to ignore direction to some degree. The syvmmetric nature of the squared distance
calculation collapses the four cases into one: furthermore. the diagonal symmetry
that results from transposing Ar and Ay makes it necessary to use only the diagonal
cells and the cells of either the upper or lower triangle of the reference grid. In the
case of Figure 3.1. for instance. this can be stipulated by applving three constraints:
Ar > 0. Ay > 0. and Axr < Ay. For the reference grid in the 3D implementation. the
squared distance for a cell (Ar. Ay, Az) is given by (Az)” + (Ay)* + (Az)°. and only
a tetrahedral portion of the 3D array is used. with the constraints being as follows:
Ar>0. Ay >0. Az >0,and Az < Ay < A:x

Reference numbers are assigned to the cells of the reference grid in increasing
order according to the squared distance values. In the event of a tie (for example.
cells (0. 5) and (3, 4) both have the distance value 23). reference numbers for the
tving cells are awarded in order of increasing maximum coordinate (continuing the
example. since 4 < 3, cell (3, 4) is labeled as 718 and cell (0. 5) is labeled as r14). The
motivation for favoring the cell with the smaller maximum coordinate is that fewer

propagation steps are required to reach that cell from the representative exterior cell,

cell (0. 0) of the reference grid.
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Figure 3.1: The reference grid for use in approximating the 2D Euclidean distance map
(only the first eight rows are displayed). Although the reference grid may resemble
a distance map, note that it is not a distance map. It is merely an array of the
potential relationships between an interior and an exterior voxel that mayv occur in
a distance map. and its sole purpose is to aid in the creation of the the reference
table (Table 3.1). In the reference grid above, each cell’s distance map value (shown
in boldface type) is computed as (Az)? + (Ay)?, which is simply the square of the
Euclidean distance from the center of that cell to the center of the lower left cell
labeled r0 (which represents the nearest exterior cell). Reference numbers (shown in
italics directly above each distance map value) are assigned in increasing order based
on distance map values. with ties broken as described in the text.



4-adjacent || 8-adjacent
Reference | Squared || Generating | Generating
Number | Distance || Reference Reference
r0 0 - -
rl 1 r0 (0) -
r2 2 — ro (0)
r3 4 rl (1) -
1 5 r2 (2) rL (1)
| ra hi — r2 (2)
ré 9 r3 (4) -
rv 10 rd (3) r3 (4)
r8 13 ra (8) r4 (3)
r9 16 r6 (9) -
ri0 17 r7 (10) r6 (9)
ril 18 - r> (8)
ri2 20 r8 (13) r7 (10)
ri3 25 ril (18) r8 (13)
rid 25 r9 (16) -
ris 26 rlo (17) r9 (16)
ri6 29 r12 (20) r10 (17)
riv 32 - ril (18)
ris 34 ri3 (25) ri2 (20)
rl9 36 rid (23) -
r20 37 rls (26) rid (23)
r21 40 rl6 (29) rl3 (26)
r22 11 rl7 (32) r13 (25)
r23 45 ri8 (34) rl6 (29)

Table 3.1: The reference table for construction of the 2D distance map (the first 24
references are displayed in increasing order). Each row corresponds to a labeled cell in
Figure 3.1. The first two columns show the reference number and distance map value
from the corresponding cell. The third column lists the 4-adjacent reference (and. for
convenience, its associated distance map value) that can generate the row’s reference
number; likewise, the fourth column lists the 8-adjacent reference that can generate
the row’s reference number. These generating references correspond respectively to
the cells directly below and diagonally below and to the left of the row’s associated grid
cell. As an example. for the eighth row (for r7), the corresponding cell in Figure 3.1.
labeled r7, has 10 as its distance map value. The cell labeled 4 is directly below it.
and the cell labeled r3 is below and to the left.



To jump ahead for just a moment, note that as the distance map is computed.
many different voxels may be labeled with the same reference number. As an exam-
ple. any interior voxel whose closest exterior voxel is precisely a knight’s move away
(using chess terminology) will be labeled with an r{ reference. This illustrates an-
other important point mentioned two paragraphs earlier. namely. that each reference
similar dircctional distance relationships: for instance.
even though it appears in cell (1. 2) of the reference grid. the r4 reference corresponds
to any of the following eight directional relationships between an interior voxel and
its closest exterior voxel. as measured from the exterior voxel: (2.1). (1.2). (-1.2).
(=2.1). (=2.-1). (=1.=2). (L. =2). and (2. =1).

As reference numbers are assigned within the reference grid. the reference table is
created. Each separate assignment causes a single. corresponding row to be appended
to the reference table. Table 3.1 shows the first 24 rows of the table for the 2D
implementation; these rows can be created using the grid in Figure 3.1.

Each row of the reference table consists of a reference number. the distance map
value associated with that reference number. and references to the cells of the reference
grid that can generate that row’s reference number during the propagation process.
These latter items are termed generating references. If a reference r; is a generating
reference for reference r;, then r, is called a descendant reference of r;. Reference r4.
for instance, is a descendant reference of r! and r2: conversely, r! and r2 are the
generating references for r4.

Fundamentally, in the 2D case. propagation of the reference from a given voxel

can occur in two basic directions heading away from the nearest exterior voxel: or-

thogonally or diagonally. In the context of the reference grid in Figure 3.1, orthogonal
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propagation occurs when the reference in cell (Ar. Ay — 1) is used to generate the
reference in cell (Ax, Ay). and diagonal propagation occurs when the reference in cell
(Ar — 1.Ay — 1) is used to generate the reference in cell (Ar. Ay). In the former
case, the two voxels involved in the propagation must be {-adjacent. sharing a com-
mon edge: in the latter case. the two voxels must be 8-adjacent. sharing a common
in grid cell (Ai. Ay) are stored in
the appropriate columns of the corresponding row of the reference table. Obviously.
the cells along the diagonal of the reference grid will not have {-adjacent generating
references: likewise. the cells along the left edge of the reference grid will not have
8-adjacent generating references.

Construction of the reference table for the 3D implementation is similar. though
since there are three fundamental directions of propagation in the 3D case. there are
three columns for generating references. These correspond to 6-adjacency (when the
two voxels involved in the propagation share a common face). 18-adjacency (when
the two voxels share a common edge), and 26-adjacency (when they share a common
vertex). The respective generating references corresponding to the reference number
in cell (Az. Ay, Az) of the 3D reference grid are contained in cells (Ar. Ay, Az — 1),
(Az. Ay—1.Az—-1),and (Az—1, Ay — 1. Az —1). Table 3.2 shows the first 32 rows
of the reference table for the 3D implementation.

Through the use of dynamic data structures. the reference table and the grid used
to generate it can be incrementally computed to whatever size is necessary in order
to complete the reference number and distance value propagation. In the execution

shown in Figures 3.2 through 3.5 in the next section. for example. the largest distance
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6-adjacent || 18-adjacent || 26-adjacent
Reference | Squared || Generating || Generating || Generating
Number | Distance || Reference Reference Reference
r0 0 - - —
rl 1 r0 (0) - -
r2 2 - 0 (0) -
r3 3 - - r0 (0)
r4 1 1) - =
rd 3 r2 (2) rl (1) -
6 6 r3 (3) - rl (1)
r7 S — r2 (2) -
r8 9 - r3 (3) r2 (2)
r9 9 r4 (4) - -
r10 10 r5 (3) rd (4) -
ril 11 r6é (6) r4 (4)
rl2 12 - - r3 (3)
rl3 13 ri (8) r3 (3) -
rid 14 r8 (9) r6 (6) ra (3)
rls 16 r9 (9) - -
rl6 T ri2 (12) - ré (6)
h L7 rio (10) r9 (9) -
r18 18 ril (11) - r9 (9)
rl9 18 - rv (8) —
r20 19 - r8 (9) r7 (8)
r21 20 ri3 (13) r10 (10) -
r22 21 rid (14) ril (11) r10 (10)
r23 22 - r12 (12) r8 (9)
r21 21 ri6 (11) - F1L (11)
r25 25 r19 (18) r13 (13) -
r26 25 ris (16) - -
r27 26 r20 (19) rid (14) r13 (13)
r28 26 ri7 (17) r15 (16) -
r29 27 - - r12 (12)
r30 27 ri8 (18) - rl3 (16)
r3l 29 r23 (22) ri6 (17) ri4 (14)

Table 3.2: The reference table for construction of the 3D distance map (only the first
32 rows are shown). The first two columns show the reference number and distance
map value for each reference, and the final three columns list the corresponding 6-
adjacent. 18-adjacent. and 26-adjacent generating references.
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map value assigned is 26 (corresponding to r/5): hence. in that case. growth of the
reference table stopped after 16 rows had been computed.

Note that if the sizes of a reference table anc its reference grid are sufficient.
the same reference table may be used in the construction of multiple distance maps.

In theory. there is a single. infinitely large 2D reference table that suffices for all

table that suffices for all 3D applications of the algorithm: Tables 3.1 and 3.2 simply
show the initial portion of these tables. For applications involving the construction
of numerous distance maps. rather than recomputing the reference grid and reference
table for each map. it may be useful to precompute a sufficiently large reference grid
and reference table and to store the reference table in a file for quick recall prior to

distance map construction.
3.3 Propagation of References

Reference numbers are propagated to voxels in increasing order based on informa-
tion stored in the reference table. During propagation, all reference numbers play two
roles: first as a descendant reference (when voxels are labeled with that reference).
then later as a generating reference (in order to propagate their own descendant ref-
erences). The exception to this is r0. which is not a descendant reference of any other
reference but is simply a label assigned to all exterior voxels during initialization.

In order to propagate references efficiently, a dynamic array of linked lists is main-
tained. Each linked list of the array is used for storing pointers to voxels with a
particular reference number. The linked list for the array index “0" contains pointers

to the exterior voxels: the list with index “1” contains pointers to voxels labeled with
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r1 references: the list for =2 has pointers to the r2 voxels. and so forth. When a
voxel is labeled with a particular reference. a pointer to that voxel is inserted into
the matching linked list. When voxels with a particular generating reference need to
be examined for potential propagation of a descendant reference. the program can
simply access the linked list corresponding to the generating reference and examine
each voxel in the list,

The first row of the reference table. for r0. corresponds to the initialization process
for the voxel grid. As mentioned earlier. each exterior voxel is labeled as an ro voxel.
and each interior voxel is initialized as unlabeled. As each successive row of the
reference table is computed. the set of unlabeled interior voxels is examined to find
the set that should be labeled with the reference number for that row. This amounts
to examining voxels labeled with the associated generating reference to see whether
they are adjacent to unlabeled interior voxels in the appropriate direction. When the
row for rl is computed. for instance. all unlabeled interior voxels that are horizontally
or vertically adjacent to an r0 voxel are labeled as r! voxels (this is done by stepping
through each voxel in the linked list of r0 voxels and examining its orthogonally
adjacent voxels). When the next row (for r2) is computed. all unlabeled interior voxels
diagonally adjacent to an r0 voxel are labeled as r2 voxels. This process continues
as the reference table is created and stops when all interior voxels have been labeled.
Figures 3.2 through 3.5 on the next four pages demonstrate each propagation step
involved in the execution of the distance map approximation algorithm on a collection

of voxels designed for illustration purposes. Pseudocode is provided in Figures 3.6

and 3.7.
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Figure 3.2: Distance map computation (propagation steps 0-3). The figures above
and on the following three pages show the results of each propagation step during
an execution of the distance map algorithm. In figure (a) above, the initial step
involves assigning the reference r0 to each exterior voxel. Each successive diagram
shows the result of assigning the next consecutive reference number from Table 3.1
to appropriate voxels, which are drawn in black and labeled with their distance map
values (d). In the actual implementation, the reference numbers are stored as well.
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Figure 3.3: Distance map computation (propagation steps 4-7). For the step in figure

(a) above. all previously unlabeled voxels that are diagonally adjacent to a “1” (or

rather. to an r! voxel that in the diagram just happens to be labeled with distance

(or rather, to
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map value of 1)

step corresponds to the row for 4 in the reference table (Table 3.1 on page 59).
66

an r2 voxel) are assigned to be r4 voxels with distance value 5.



LI TETT]

(1]

(L] T LI

~e[dv == =[]
- - -~ T TN~ -
NN~ |[rt om0 e~
D121 -~ SR o o ~
D1.1 _1495E941
D12211125¢0l!¢3lg41
s ol Ro0me~
re0 0002 RR2war--
- v o EEENEE - « -|

- e o DENEEEES - ~ -]
~-o CHHEERIR? - ~ -

~re0ol mﬂws941u
- rr NWHODOODO OB ON ™
[([ljrreoctecrtarace-

LITTTTT]

16).

{(b) Finding r9 references (d

13).

HEEEEEN

:
3

11241L124444211H
- N - -t 00O ®IY —
D12211125w17..43..941l.
125544458””85411
148.n|.999‘0|.3..ﬂ.0..5211n
rroCee o PR 0w
~eo 2 IHEBHE: 2 v «~ -
149.3..”....”.6841”
reol 282200« ~| |
—-rNTIDOONOOWY WIDN -
[([Jrroaectecraraee-
—III.—H_111111D1111
CTTTT TV O]

HEN L1111

1
1
4
8
9

18).

(d) Finding r1! references (d

17).

Note how in the

1
2
L)
10

4
9

1
2 1

14813 W18 5

4
5

@ < <10 o PRIKKE 0 10

-« 9990m.052
- 9.‘!.!!‘9 - -
coREHANENS »
<
<
-

-
<
rrran 2 e <
<
-

[
1
2
1052112
HEREERN

LTI TT]

171780 17 KR

1 4913109 1013fJ1616 9 4

- EI SRR -
oo HREEES o o

<
<
N T W oMo oth ¢ W
<
-

(- = = - = =[]~
(10 (LI

LLTITTTT]

LTI T IT]
1
2
8 5
(a) Finding r8 references (d
12599985
148131616105 2 1 1
1 2 s 10ff@169 4 1
14 8138169 4 1
14 916 Il 9
1 4 9 16 JAEE] 10
12510
1259854581316138
1454421259929
142111
HIRRINN|

L]

n

HEEEREENEEE

. which in these diagrams represents an r5 voxel).

(c) Finding r10 references (d
its 8-adjacent generating reference (that is, there are no unlabeled voxels diagonally

not have a {-adjacent generating reference and there are no applicable instances of
adjacent to an *8"

propagation step in figure (d) above. no ri! references are generated. as ri// does

Figure 3.4: Distance map computation (propagation steps 8-11).
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Figure 3.5: Distance map computation (propagation steps 12-15). Note in figures
(b) and (c) above how the propagation of different reference numbers may result in
the same distance map value being produced during separate steps. The accuracy of
the approximation algorithm depends upon being able to distinguish between such
cases, which is why it is important to propagate the reference numbers and not just
the distance map values. After the step in (d), there are no more unlabeled interior
voxels, so execution terminates. having produced the distance map values as shown.
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// handling the reference table

generate the reference grid RG and reference table RT to a
sufficient size (alternatively, the rows of the reference grid and
reference table may be dynamically generated on an as-needed
basis during the propagation computations shown on the next page)

// initialization: flag exterior voxels with reference number zero
// and count the number of interior voxels

numinterior + 0
for each voxel V
if V is an exterior voxel
ref(V] + 0
insert V into list{0]
else
ref[V] « UNKNOWN
numinterior < numinterior + 1
end-if
end-for

Figure 3.6: Pseudocode for the initialization phase of the distance map algorithm.
This figure and the one that follows provide pseudocode for the primary part of the
distance map algorithm; they should be read consecutively. Note that list is an array
of linked lists: list[.V] is the linked list designated to hold the voxels to which the
reference number N is assigned. The two arrays ref and distance are designed to
store the reference number and the distance map values for each voxel. RG and
RT refer to the reference grid and the reference table. respectively. Comments are
preceded by a double slash.
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// propagation: in each iteration. the objective is to find and
// label the voxels that should have reference number NV

numlabeled +— 0
N «1
repeat until (numlabeled = numinterior)
// handle the 4-adjacent references
if there is a {-adjacent generating reference in row NV of RT
G « {-adjacent generating reference from row N of RT
for each vaxel V in liet[ ]
for each 4-adjacent neighbor X of V
if (ref{.X] = UNKNOWN)
ref(X] « N
insert X into list[:V]
numlabeled «— numlabeled + 1
end-if
end-for
end-for
end-if
// handle the 8-adjacent references
if there is an §-adjacent generating reference in row V of RT
G + 8-adjacent generating reference from row NV of RT
for each voxel V in list[G]
for each strictly 8-adjacent neighbor X of V
if (ref[X] = UNKNOWN)
ref[X] « N
insert .X into list[.V]
numlabeled + numiabeled + 1
end-if
end-for
end-for
end-if
N«N+1
end-repeat

// assigning distance map values

for each voxel V
N « ref[V]

distance[ V] « squared distance value from row N of RT
end-for

Figure 3.7: Pseudocode for the propagation phase of the distance map algorithm.
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3.4 Analysis and Discussion

During execution. each voxel is examined a constant number of times (once for
initialization. then one time from each adjacent voxel). Construction of the reference
grid and reference table is linear with respect to the number of references computed.
and because the grid and table are incrementally computed only to whatever size
is necessary. the number of distinct references is bounded by the number of interior
voxels. The overall time complexity of the algorithm is thus linear with respect to
the sum of the number of interior voxels and the number of feature point voxels. In
the case when the feature point voxels consist only of the exterior voxels in the laver
immediately surrounding the interior voxels. the number of feature points is bounded
by a constant multiple of the number of interior voxels. and the time complexity is
more simply stated as linear with respect to the number of interior voxels. Although
the constant multiplier increases as the dimensionality increases (the number of voxels
potentially adjacent to a particular voxel increases with the dimension). the linearity
of the time complexity holds regardless of the dimension. See Table 3.3 for typical
execution times of the 2D and 3D implementations.

Note that if a vector distance map is desired. a post-processing step can be applied.
In order to do this. the reference table must be extended to include the corresponding
row and column (with respect to the reference grid) for each reference number. After
each reference number has been computed in the final grid, the reference number for
a given voxel v can be used to index into the reference table to find the corresponding
row and column of that reference in the reference grid. This provides an offset vector
(Az, Ay) that suggests where to look for the relative location of the exterior voxel

causing that reference. Due to the formulation of the reference grid. the offset vector
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2D DISTANCE MAP 3D DiISTANCE MAPp
Voxel Approximate Voxel Approximate
Grid Execution Grid Execution
Dimensions Time Dimensions Time
256 x 256 0.6 sec 32 x 32 x 32 0.3 sec
312 x 312 2.7 sec 64 x 64 x 64 2.6 sec
1024 x 1024 11 sec 128 x 128 x 128 26 sec
2048 x 2048 37 sec

Table 3.3: Approximate execution times for the 2D and 3D implementations of the
Euclidean distance map approximation algorithm. The times shown are the average
computation times over multiple test runs on grids in which the boundary voxels and
a few other randomly chosen voxels were marked as feature points. Execution was
performed on a Silicon Graphics@ O2® (R3000 Processor Chip).

must be combined with the coordinates of the particular voxel v in each of eight wavs
to test for the presence of the exterior voxel. If the coordinates of v are (a.b). then
the eight voxels to test will have the coordinates (¢ + Ar.a + Ay). (¢ + Ar.a — Ay).
(a—=Azx.a+Ay), (a—Ar.a=Ay). (a+Ay.a+Ar). (a+Ay.a—Ar). (a—Ay.a+ Ar).
and (a — Ay,a— Ar). The test is used to determine the appropriate signs with which
the offset vector should be amended before being assigned as the distance map vector
for v.

The algorithm described in this chapter is a contour style ordered propagation
algorithm along the lines of those of Verwer. Verbeek., and Dekker [VVD89] and
Ragnemalm [Rag92a] (see page 18). In contrast to the algorithm of Verwer et al..
which computes a non-Euclidean distance map with scalar values, the algorithm given
here uses Euclidean distance values and provides a very close approximation to the
EDM. Due to the presence of the reference grid and the fact that reference labels

are propagated as opposed to distance map values, the algorithm given here also



allows easy conversion of the reference labels to create either a (scalar) distance map
or a vector distance map as mentioned earlier. Ragnemalm’s algorithm [Rag92a]
uses Euclidean distances. however. the method of bucketing is based ou the squared
Euclidean distances and is thus not as economical as the bucketing method used here,
which is based on the reference numbers.

There is an additional difference between the algorithms that has to do with the
way the bucketing is performed. The algorithms of Verwer et al. [V'V'D89] and Ragne-
malm [Rag92a| take a voxel from the current bucket and use it to assign values/vectors
to voxels vet to be processed: then. after processing those voxels. those algorithms
insert the voxels into buckets to be processed later. This will be called forward pro-
cessing. The algorithm in this chapter inverts that process. examining voxels in earlier
buckets to determine which voxels should be assigned the current value/reference and
inserted into the current bucket. This will be referred to as inverted processing. Al-
though forward processing may not affect the accuracy of the resulting distance map
when a non-Euclidean metric is emploved. it can have an adverse effect on the ac-
curacy when a Euclidean metric is used. As an example. examine the reference grid
from Figure 3.1 and observe that the reference r6 (d = 9) can generate the reference
r10 (d = 17) along a diagonal. and that the reference r5 (d = 8) can generate the
reference ri1 (d = 18) along a diagonal. Now consider the case of an unprocessed
voxel v being diagonally adjacent to both an r5 and an ré voxel during propagation.
Forward processing would result in the r3 voxel being processed first, thus assigning
v the value 18, which is one greater than necessary. If each voxel is processed only
once. as is the case with these contour stvle ordered propagation algorithms, then

the inaccurate assignment for v would not be corrected. Such an inaccuracy could

73



then be further propagated. causing more errors in the resulting distance map. In
the situation just described. inverted processing would have the result that ¢ is not
assigned a value until the r/0 references are assigned. and so v would be assigned
the more accurate value 17. Closer inspection of the reference grid will reveal that
many more situations like this one can occur during either diagonal or orthogonal
propagation. and it should also be clear that this tvpe of problem can result when
forward processing is used regardless of whether values. vectors. or reference numbers
are the actual elements being propagated. Thus. with respect to approximating the
Euclidean distance map with contour style ordered propagation algorithms. using in-
verted processing will produce distance maps that are at least as accurate if not more
accurate than the distance maps produced when using forward processing.

The algorithm in this chapter produces an approximation to the Euclidean dis-
tance map — errors may be introduced by the method in which references and distance
map values are propagated. These errors. although small. can cause the distance map
not to be an exact Euclidean distance map. Although no formal analysis of all possi-
ble errors of the approximation algorithm has been performed. detailed observations
of errors have been made over hundreds of executions of the algorithm for actual
applications as well as for contrived test data. These observations are summarized
in Table 3.4. The 2D approximation algorithm has been observed to produce a max-
imum error (as compared to the exact Euclidean distance) of about 0.068288 units,
and the 3D approximation algorithm has been observed to produce a maximum error
of about 0.071068 units (in both cases, the error is less than ﬁ of the edge length of
a voxel). Note that the vast majority of distance map values computed by the algo-

rithm are the same as those that would be computed by an exact EDM algorithm.
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Computed | Exact EDM Difference Absolute Relative
Value Value Error Error
dcomp exact deomp — dexact |\/eomp — V/exact ‘/dm\'/“;m“ad‘“‘"‘

2D DisTANCE Mar
170 169 1 0.038405 0.00295422
876 87! 2 0.038 190 0.00118238
484 481 3 0.068288 0.00311366
2045 2041 4 0.044248 0.000979432
3625 3620 3 0.033341 0.000-444741
17530 17524 6 0.022660 0.000171179
15129 15122 T 0.028459 0.000231424
16945 16937 8 0.036732 0.0002361-41
9049 9040 9 0.047317 0.000497664
none observed 10 - -
25405 25394 11 0.034510 0.000216563
38865 58853 12 0.024731 0.000101944
59189 39176 13 0.026719 0.000199836
none observed 14 - -
60736 L 60721 15 0.030434 0.000123508
3D DISTANCE MAP
30 19 1 0.071068 0.0101525
205 203 2 0.070014 0.00491403

Table 3.4: Observed errors for the 2D and 3D implementations of the Euclidean
distance map approximation algorithm. Although the distance map values are given
as squared distances. the absolute and relative errors are computed according to the
actual (unsquared) distances - see the formulas in the second row. and note that dcomp
is the squared distance as computed and dey,; is the exact squared Euclidean distance.
The maximum possible error for each observed deviation from an exact EDM value
is listed: for example. in one instance for the 2D algorithm. an observed value of
361 was computed when the exact value was 360, but the error for this deviation by
1 unit is less than the error for the 1 unit deviation for the case of computing 170
instead of 169; thus. it is the 170 versus 169 case that appears in the table. For the
2D approximation algorithm. the largest observed error is about 0.068288 units: for
the 3D algorithm. the largest observed error is about 0.071068 units.
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As observed for both the 2D and 3D implementations. less than one percent of voxels
receive values differing from the exact EDM (the figure is usually somewhere between
0.01% and 0.1% for most objects used during applications of this research).

For an exact EDM. each voxel has a value or reference reflecting the closest exterior
voxel. This means that the set of voxels whose values or references correspond to a
particuiar exterior voxel v, must be the same set of voxeis whose center points lie
within the Voronoi region defined by v, when viewing the Voronoi diagram induced
by the center points of the exterior voxels. The propagation method used by the
algorithm described in this chapter fails because a sliver section of a Voronoi region
may cause discontinuities between the set of voxels considered to belong to that
Voronoi region. that is. the set may not be connected. Figures 3.8 and 3.9 illustrate
an error caused by propagation around such a sliver region. The voxels of the Voronoi
region for exterior voxel (or feature point) B contain a voxel disconnected from the
rest, and this problem voxel is assigned a reference associated with exterior voxel A
instead. with the result being that the problem voxel receives a distance map value
that is one unit greater than what it should have in an exact EDM.

The root of the problem just described lies in the fact that the use of a local
neighborhood for the simple propagation that takes place in this algorithm is insuffi-
cient for exact EDM computation in the general case. The local neighborhood works
well enough to compute an exact EDM for some cases of input (the example in Fig-
ures 3.2 through 3.5. for instance). As is clearly shown in the example in Figures 3.8
and 3.9, however. in other cases there might be sliver sections of Voronoi regions that

undermine simple propagation based on examination of only a local region of nearby
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Figure 3.8: An example of the type of error introduced by using local propagation
when computing the Euclidean distance map. The black voxel in the upper right. with
reference r78 and squared distance 170, has been labeled incorrectly. Although it is
V170 units away from the feature points A and C. it is only v/169 = 13 units away
from feature point B. The other voxels have been shaded according to which feature
point has caused them to be labeled as they are. Compare this with Figure 3.9.
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Figure 3.9: The Voronoi diagram for the error example of Figure 3.8. The lines are the
boundaries between the Voronoi regions for feature points A. B. and C, and voxels
are shaded according to the Voronoi region containing their centers (note the exact
correspondence with the shading from Figure 3.8). The problem voxel, shaded dark
gray in the upper right, lies in the Voronoi region for B: however, it has no adjacent
voxels that will propagate references corresponding to B.
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voxels. Nevertheless. there are a few ways to circumvent the problem and thus arrive

at a robust algorithm that consistently computes an exact EDM:

1. Change the information that is propagated. For each voxel. save and propagate
references to all exterior voxels to which the Euclidean distance is within one
unit of that to the closest exterior voxel. After processing is finished. simply re-
port the minimum distance value and reference at each voxel. A raster scanning

tvpe algorithm based on this idea is proposed by Mullikin [NMul92].

2. Increase the size of the local neighborhood so that propagation does not have
to occur between adjacent voxels. Theoretically. though. a global neighborhood
is the only neighborhood sufficient to overcome all possible slivers. so by itself.
increasing the local neighborhood will just decrease the error inherent in the ap-
proximation. Unfortunately. use of a global neighborhood results in a quadratic

time algorithm.

3. Compute part or all of the Voronoi diagram either to assist with propagation
or to make propagation unnecessary. For the case of 2D distance maps. partial
computation of the Voronoi diagram has led to an exact EDM that operates
in linear time with respect to the number of voxels [BGKW95]. For higher
dimensions. due to the increased time complexity required for computing the
Voronoi diagram. it is unclear whether its partial computation could lead to

efficient construction of the exact EDM. much less a linear time algorithm.

When considering efficient computation of the exact EDM under any dimension,
the first option offers the most promising approach. Indeed. the 2D and 3D versions of
the approximation algorithm described in this section have been used as the basis for
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exact EDM implementations. with modifications along the lines suggested by the first
option. Precise analysis of the time complexity of these exact algorithms is difficult.

however, and it may be the case that their time complexities are not linear.
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CHAPTER 4

CONSTRUCTING THE DISCRETE MEDIAL SURFACE

This chapter describes the second of the two main discrete geometry algorithms
fundamental to this research. The first algorithm. designed to approximate the Eu-
clidean distance map. is the focus of the previous chapter. This chapter discusses
the algorithm developed for computing the discrete medial axis (DMA) of a 2D dis-
cretized object or the discrete medial surface (DMS) of a 3D discretized object. The
concepts of the distance map. the medial axis (MA) and the medial surface (MS)
were introduced in Sections 2.1 and 2.2 in Chapter 2.

An overview of the algorithm is given in Section 4.1. Section 4.2 then describes the
elements of the exposure calculation and how the concept of exposure is used to help
identify DMA/DMS voxels. The heart of the algorithm is presented in Section 4.3, in
which the stepwise processing of voxels with common distance map values is explained.
Results appear in Section 4.4, and analysis and discussion of the algorithm follow in
Section 4.3.

As with the distance map algorithm in the last chapter, the DMA/DMS algorithm
detailed in this chapter generalizes to higher dimensions. The algorithm will be ex-
plained and illustrated for the 2D case. and both 2D and 3D results will be presented.
Extensions to three dimensions or higher that are not obvious will be discussed.
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4.1 Overview of the Algorithm

The algorithm extracts the DMA/DMIS for an object from its Euclidean distance
map (EDM) by attempting to identify and track the ridges of the EDM (recall the
basic discussion of this process from page 29 in Chapter 2). Whereas in the EDM
approximation algorithm. voxels are basically processed in increasing order of dis-
tance map value. in the DMA/DMIS algorithm presented here. voxels are processed
in decreasing order of distance map value.

During the processing of a voxel. an erposure'? calculation is utilized to help
determine whether a voxel belongs to the DMA/DMS. Two exposure measures are
used: relative erposure. which is the amount by which the disk/sphere for one voxel
protrudes from the disk/sphere for a specific neighboring voxel (this is diagrammed
in Figure 4.1). and local exposure. which is the minimum relative exposure a voxel has
when considering all of its neighbors (the “local™ qualifier will frequently be omitted).

Other processing is performed in order to ensure that each separate region of pro-
cessed voxels contains a single. connected portion of the DMA/DMS. The DMA/DMS
algorithm thus uses two basic classes of DMA/DMS voxels: true DMA/DMS voxels
(whose exposure values meet or exceed a given threshold). and bridging DMA/DMS
voxels (whose exposures values themselves are insufficient. but that act as the con-
necting voxels between clusters of true DMA/DMS voxels).

The input to the algorithm is an EDM (or a close approximation) for a discretized

object - distance map values are assumed to be squared Euclidean distances. Interior

and exterior voxels must be clearly marked. In addition to the distance map. one input

3The term “exposure” was coined to denote the amount by which a disk/sphere for one voxel is
exposed in relationship to one or more disks/spheres for adjacent voxels.
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V10

Figure 4.1: The relative exposure of neighboring disks. The voxel on the left has a
distance map value of 10 and thus an associated disk of radius V10 as shown: the voxel
on the right has a distance map value of 8 and thus an associated disk of radius V8.
The relative exposure of the 10" voxel with respect to the ~8" voxel is the extent to
which the v/10 disk protrudes from the /8 disk and is the length of the double arrow
on the left. Given that the centers of the two voxels are separated by a distance of
one unit. this length is given by the expression /10 + 1 — /8. which is approximately
1.334 units. Similarly. the relative exposure of the “8" voxel with respect to the ~10”
voxel is the length of the double arrow on the right. or V/8+ 1~ 10 = 0.666 units.

parameter can be specified by the user - the exposure threshold. briefly mentioned
in the previous paragraph but described in more detail in the next section. The
output of the algorithm is simply a labeling of each interior voxel as to whether it is

a DMA/DMS voxel.
4.2 Local Exposure Calculation

The algorithm extracts the DMA/DMS from the distance map in part through a
local analysis of the exposure for each voxel, or rather. the exposure of the associated
disk or sphere for each voxel. Recall that the distance map value for a voxel is the

square of the radius of a disk or sphere that is centered at the center of the voxel and
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that just touches the boundary of the object. The exposure. then, provides a measure
useful for determining whether the voxel is the center of a maximal disk or sphere.
which is the pivotal component in the definition of the medial axis or surface (see the
first paragraph of Section 2.2 for the definition). In other words. the exposure of a
voxel is a rough measure of its relative importance to the DMA/DMIS in comparison
‘hat with whether a voxel is considered

~ leo o~ 13n
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1

on a ridge or plateau of the landscape created when the distance map is viewed as
a height field for an object in the immediately higher dimension (see Figure 2.7 and
the related discussion in the text on page 29).

To compute the exposure for a voxel. it is necessary to compare the distance value
for the voxel with that for each of its neighbors in a way that corresponds to the
adjacency relationship between the two voxels. Let d; be the distance map value
for voxel v,. and let v, represent a neighboring voxel (with distance value d,). The
relative exposure of v; with respect to v,. denoted e(v; : v,). is the amount by which
the disk/sphere for v; protrudes from the disk/sphere for v,. This amount can be

computed as follows:

e(vi:ug) = \/z + distance(v;, vn) — \/cz

where “distance(v;, v,)” is the distance between the centers of v; and vy,.

The local exposure e; for voxel v; is the simply the minimum of the relative
exposures of v; with respect to each of its neighbors. For purposes of computation,
it is handy to partition the neighbors into groups according to their adjacency to a
voxel. For the 2D case, let .V} be the set of voxels that share an edge with v; and
let -V be the set of voxels that share a vertex (but not an edge) with v;. The local
exposure is then computed as the minimum of the exposures for each adjacency type
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(e:, is the exposure for v; with respect to its 4-adjacent neighbors. e,, is the exposure

with respect to its strictly 8-adjacent neighbors):

UnEN} tns N}
e, = min e(v, : vp) = min (\/d, + V2 — \/d,)
va€ N g N

e; = muni{e,,.e,}
For the 3D case. the neighbors for a voxel ¢, are partitioned into three sets: 6-adjacent
neighbors (.V¢). strictly 18-adjacent neighbors (.V3). and strictly 26-adjacent neigh-

bors (.Vig). The local exposure is computed in a fashion similar to the 2D case:

e, = min e(y; : vy) = min (\/d, + 1 — /d,)
rn€NE rn 2N}
€y = min e(y; : vy) = min (\/d, + V2 = \/dy)
va SNl ra N},
€ = min e(v;:vy) = min (\d, + V3 = \Jdy)
) Un€Nlg tnd N}

€ = min{elﬁ' €y e!:ﬁ}

Extending the exposure computation to higher dimensions is straightforward.

Note that for the actual implementation. a few CPU cycles can be saved by first
finding the maximum distance value amongst the voxels in each partition. since that
distance value will result in the minimum exposure with respect to the corresponding
partition. [t then suffices to apply the exposure calculation one time for each partition
and to report the minimum of those results. Figure 1.2 on the next page illustrates
this method of computing the exposure.

Potentiallv. exposure values can range from 0 to 2. The vast majority of vox-

els have exposure values less than 0.5, but most voxels that should belong to the
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EXPOSURE FOR THE “4"
Adj | Max Nbr Calculation Exp

T ul J‘-adJ' 9 Vi+1-19 0.090
H1 11111 1[:]D[]1 1 | 8-adj 10 V4 +v2-/10 | 0.252
1444448211121
125999852125 2T Local Exposure 0.000
1 48131616105 2 1 1 2 4 1
12510172516 9 Ef] 1 111 EXPOSURE FOR THE “9"

e g:z;g::::: : : : 1I1 Adj | Max Nbr | Calculation | Exp
14 91625261710 5 2Taaz1m d-ad] 9 VI+1-9 1.000
T e m ey D S 4 VOIS | 0505
(]t 4 913109 1013FF1616 9 4 1 Local Exposure | 0.809

1250854 581316138 4 1

1454421259995 21 EXPOSURE FOR THE “17~
1421111444441 : ;

N B 111111 15 Adj | Max Nbr | Calculation Exp

[T TIT 111 1-adj 16 VIT +1-V16 | 1.123
8-adj 16 V1T+V2-16 | 1.337
Local Exposure

Figure 4.2: Examples of calculating the exposure for the three shaded voxels in the
distance map on the left. The tables on the right show the maximum distance values
for the {-adjacent and strictly 8-adjacent neighbors of the shaded voxels {the column
heading abbreviations are for adjacency. maximum neighbor. and exposure). These
values are plugged into the exposure equation. and the minimum of the results is the
exposure for the voxel. The local exposures for the shaded 4. 9", and ~17" voxels
are thus computed to be 0.0. 0.809, and 1.123. respectively. Figure 1.3 shows the
exposure values for all of the voxels.

DMA/DMS have exposure values of 0.4 to 0.5 or greater. Specifving an exposure
threshold somewhere in the range 0.4 to 0.5 and examining the voxels meeting or
exceeding that threshold gives a good indication of the DMA/DMIS. These voxels are
usually not completely connected; instead, they form connected clusters that dot the
ridges and plateaus implied within the distance map. Such clusters can be seen in

Figure 4.3. in which the exposure threshold is 0.5.
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Figure 4.3: The complete grid of exposure values computed for the distance map
shown in Figure 4.2. Exposure values have been rounded to the nearest hundredth:
values of 0.5 or greater are shown in white lettering to illustrate the clustering that
results from simple application of an exposure threshold of 0.5. Voxels are shaded with
graylevels according to where their exposure values fall in the range from 0 (white)
to 1 (black) - voxels with exposures greater than or equal to 1.0 are colored black.



In most applications. and particularly in the context of this research. it is useful
to have a fully connected DMA/DMIS: for this reason. further processing is performed
to find suitable voxels that will work to connect the clusters. Note that the processing
described in the following section does not directly correspond to the concept of con-

necting clusters as was just mentioned: nevertheless. it should be clear after reading

4.3 Extracting the DMA /DMS

As mentioned above. the exposure value of a voxel is the first indicator of whether
a voxel is a DMA /DMS voxel. but examination of exposure values alone is insufficient
to guarantee a connected DMA/DMS. Some voxels must be used as bridging voxels
to connect the DMA/DMIS even though their exposure values are below the threshold.
In order to help identifyv these bridging DMA/DMS voxels. it is important that voxels
be processed in a certain order. Therefore. before the actual processing of a voxel
is discussed. a few paragraphs will be spent discussing the ordering of voxels to be
processed.

After each voxel has been assigned an exposure value. the voxels are organized into
a sorted array of lists corresponding to each distinct distance map value. Voxels with
a common distance value are inserted into a single, matching list, corresponding to a
particular contour level of the distance map. This array of contour lists is sorted in
decreasing order according to distance value. and the contour lists are then processed
in sequence beginning with the list for the largest distance value. Figures 1.4 through

4.7 on pages 90 through 93 illustrate the execution of the algorithm as it processes each
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contour level of a distance map (the same distance map computed in the illustration
for the EDM approximation algorithm - Figures 3.2 through 3.3).

The distance map value of a voxel thus determines the contour level in which
the voxel will be processed. With regard to the processing of a particular contour.

though. the voxels having the largest number of processed neighbors are given priority.

processed voxels at any stage of the execution and also simplifies the case-wise analyvsis
used to determine how a voxel should be processed. To help achieve the prioritization.
just before a particular contour list is processed. its voxels are partitioned into arrays
(called contour arrays) corresponding to the number of processed neighbors each voxel
has. The processing of the contour. then. consists of stepping through this arrav
of arrays beginning with the one corresponding to the largest number of processed
neighbors.

Each unprocessed voxel keeps a record of how many of its neighbors have been
processed. To help maintain these records. whenever a voxel is processed. it incre-
ments the counter for each of its unprocessed neighbors. If the neighbor has the same
distance value as the current voxel being processed. then reference to that neighbor
must be transferred from its containing contour array to the array corresponding to
having one more processed neighbor. As an example, given that the current voxel
and a particular neighbor both have the same distance value (that of the contour
list). if the neighbor voxel itself has 2 processed neighbors before the current voxel
is processed, then it resides in contour array #2. After the current voxel has been
processed. though, that neighbor will have 3 processed neighbors. and so it will need

to be moved from contour array #2 to contour array #3. In addition to having a
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(a) Step 0: (d = 26).

(c) Step 2: (d = 20

~—

. (d) Step 3: (d = 17).

Figure 4.4: Discrete medial axis computation (steps 0-3). This figure and the three
that follow illustrate the DMA/DMS algorithm. Voxels are processed in decreasing
order of distance map value (denoted by d in the individual captions). In (a). the first
DMA voxels are processed (black with white lettering). More are identified in (b).
In (c). the first three voxels whose exposures are below the threshold are processed
(light gray with arrows denoting direction of steepest ascent); note in (d) how one of
these becomes a bridge (dark gray with white lettering) to help connect the DMA.
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Figure 4.5: Discrete medial axis computation (steps 4-7). Voxels that have not vet
been processed are shaded medium gray with distance map values drawn in black.
Two separated regions of processed voxels are apparent in diagram (a) above - the
genesis of the smaller region occurred in Figure 4.4(d). In (b), a “13” voxel becomes
a special type of bridge. known as a saddle point, that effectively merges the two
regions. No DMA voxels are added in (c). In (d), a bridging path composed of two
voxels is formed to connect the “9” to the rest of the DMA.
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(c) Step 10: (d = 4).

Figure 4.6: Discrete medial axis computation (steps 8-11). In the upper right of (b).
another separated region of processed voxels forms. Both regions continue to grow in
(c) and (d) and are finally merged in Figure 4.7(a) though the use of a saddle point
and several bridging DMA voxels - note how each bridging path traverses its voxels
along the path of steepest ascent. Actually, either “1” between the groups could act
as the saddle point for the merge. but really, both should be considered saddle points.
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(a) Step 12: (d = 1). (b) Final DMA.

Figure 4.7: Discrete medial axis computation (step 12 and output). In (a). the final
level of voxels has been processed. DMA voxels are marked as either black or dark grav
with white lettering: the black voxels have exposures equal to or above the threshold
(0.5). the dark gray voxels have insufficient exposures but act as bridges to help
connect the DMA. Non-DMA voxels are drawn in light gray and shown with arrows
representing the direction of steepest ascent. The output of the algorithm. shown in
(b). is a grid in which the DMA voxels are marked as either true DMA voxels (black)
or bridging DMA voxels (dark gray) and are labeled with their distance map values.

field for the number of processed neighbors. then. a voxel must also have a field that
acts as a subindex into the appropriate contour array. noting the position of the voxel
within that array, so that the transfer can be performed quickly. Note that in the
example, if contour array #2 happened to be the current array being processed. then
processing of the contour arrays would have to step back to process contour array #3
(since that array would contain the neighbor voxel) before returning to finish any

processing of contour array #?2.
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As alluded to in the overview of the algorithm, voxels are processed differently
depending on whether their exposure values are greater than or equal to the exposure
threshold. When a voxel having a sufficient exposure value is processed. it is auto-
matically marked as a DMA/DMS voxel. Following this. a bridging operation may
occur to ensure that this new DMA/DMS voxel is connected to the other DMA/DMS
vuxels i Lie satne region of processed voxels. When a voxel with an insufficient expo-
sure value is processed. a check is performed to determine whether the voxel connects
two or more regions of processed voxels. in which case the voxel is a saddle point. If
it is a saddle point. then a bridging operation is performed for each adjacent region
in order to connect the DMA/DMIS for the conglomeration. Note that these bridging
operations for saddle points can also occur when processing a voxel with sufficient
exposure if that voxel is adjacent to more than one region of processed voxels.

To aid in the bridging process. each voxel maintains two additional pieces of infor-
mation: a group identification number and a potential bridging direction. The group
ID is used to keep track of connected regions of processed voxels: all processed voxels
(whether DMA/DMS voxels or not) that form an 8-connected cluster (26-connected
cluster for the 3D case) will have the same group ID. The bridging direction is used
to determine bridging paths that will keep each portion of the DMA/DMS connected
during formation; each separate group of processed voxels will have its own connected
portion of the DMA/DMS.

Initially, all voxels are assigned a unique group ID and thus reside in their own
one-voxel size group. During processing. groups are merged by applying a union-find
algorithm to the set of group IDs (for details on the union-find algorithm, see Cormen,

Leiserson, and Rivest [CLR90]).
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Bridging directions are assigned to voxels as they are processed. In the current
implementation, the bridging direction is the direction of steepest ascent (what is
actually assigned to each voxel is a pointer to the neighboring voxel in the direction of
steepest ascent). For the steepest ascent computation. neighboring voxels are handled
in separate groups according to their adjacency to the current voxel being processed.
I the 2D case. the 4-adjacent voxels aie all vie init awayv from the current voxel.
and the strictly 8-adjacent neighbors are all v/2 units away. and this relative distance
must be taken into account in the gradient calculation. Using the same symbols as

in the formulation of the exposure calculation (see page 8+4). for the current voxel v,.

the amount of ascent. or slope. to a neighboring voxel v, is computed as follows:

Vi, = /d,
ascent(v; : vp) =

- distance(t,. vy,)

The bridging direction corresponds to the neighboring voxel with maximum ascent
value. As in the exposure computation. though. instead of calculating the ascent to
each neighboring voxel. the 4-adjacent and 8-adjacent neighbors with the maximum
distance map values can be found first to lessen the amount of computation involved.

When a voxel is processed, the neighboring voxels that have already been processed
are examined to determine which groups are represented. Action is taken according
to how many groups are represented, with the possibilities divided into the three cases

from the following list:

e No adjacent groups: No adjacent groups translates into no adjacent voxels
having been processed, so the current voxel simply keeps its own group ID.

Unless the exposure threshold has been set artificially high (that is, greater



than one. in which case the algorithm is not guaranteed to work), the voxel will

have sufficient exposure to be labeled as a DMA/DMIS voxel.

One adjacent group: If the processed neighbors all belong to the same group.
then the current voxel joins that group (this is done by merging the group IDs
of the current voxel and the adjacent group using the union-find algorithm).
If the exposure value of the current voxel is below the threshold. then nothing
else is done (this is the situation for each of the 20" voxels processed in Fig-
ure 4.4(c)). If the exposure is sufficient for the current voxel to be labeled as a
DMA/DMS voxel. though. then an additional step is performed to ensure that
the DMA/DMIS for the group is connected in light of the fact that the current
voxel is a new member of the DMA/DMS. This amounts to finding a bridging
path from the current voxel to another DMA/DMS voxel for the group: any
non-DMA/DMS voxels discovered along the bridging path are relabeled to be
DMA/DMIS voxels. The bridging path is composed of voxels found by starting
at the current voxel and repeatedly moving to the steepest ascent neighbor until
a DMA/DMIS voxel is reached: often. the steepest ascent neighbor is already one
of the DMA/DMIS voxels. so no further action is required. In Figure 4.4(d). the
processing of one of the “17" voxels requires a bridging path to be formed which
causes a 20" voxel to be relabeled as part of DMA/DMS. In Figure 4.5(d). a

longer bridging path results from the processing of a 9" voxel.

Multiple adjacent groups: When the processed neighbors belong to more
than one adjacent group, several things happen. First. regardless of its exposure

value. the current voxel is labeled as a DMA/DMS voxel (it is a special type
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of bridging voxel that corresponds to a saddle point). Next. bridging paths are
found connecting the current voxel to the DMA/DMS of each adjacent group.
effectively connecting the DMA/DMS for the conglomeration (note that to do
this. it is necessary to compute the steepest ascent direction into each adjacent
group). The final step is to merge each adjacent group with the current voxel's

B o R T T IRy o
totiuuple llpPllLd.LlUrl.D ulL

the union-find nierging opetation ou the
associated group [Ds. In the execution illustrated in Figures 1.4 through 4.7.
there are two instances of this merging via saddle points: the first occurs as a
“13” voxel is processed in Figure 4.53(b). and the second occurs in the final step

in Figure 1.7(a) when the large. central group is merged with the smaller group

in the upper right.

The actions in the previous list focused on the bridging process. but remember
that as any voxel is processed. additional steps are required to notify its unprocessed
neighbors that thev have vet another processed neighbor. Through careful coding.
accessing the neighbors for the currently processed voxel can be minimized to total one
access per neighbor plus one access per adjacent group (the latter access results from
initiating any bridging operations that may need to be performed from the current
voxel). Path traversals during bridging operations require accessing each voxel along
the path in order to find its steepest ascent neighbor and to label it as a bridging
voxel of the DMA/DMS.

There is a fair amount of bookkeeping that must be performed for the algorithm
to work efficiently. For convenience. the following list provides a summary of the

information stored with each voxel:
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e Distance Map Value: Obviously, it is necessary to know the distance value

for each voxel.

e Exposure Value: The exposure value of a voxel. the computation of which is
described in Section 4.2. is compared against the exposure threshold to deter-

mine whether the voxel is a DMA/DMS voxel outright.

e Array of Neighbors: Each voxel possesses an array of pointers to voxels
immediately adjacent to it. This array is organized according to adjacency re-
lationships to facilitate the exposure and ascent calculations: for the 2D case. for

instance. the four 4-adjacent neighbors precede the four 8-adjacent neighbors.

e Steepest Ascent Neighbor: This is a pointer to the neighboring voxel in the

direction of steepest ascent. to be used during potential bridging operations.

e Group ID Number: This represents the current region of processed voxels
in which the voxel resides. It is actually an index into the array that serves to

maintain the group affiliations for the union-find algorithm.

e Number of Processed Neighbors: For an unprocessed voxel. this is the
number of neighboring voxels that have already been processed. It also serves
as an index indicating which contour array contains the voxel when the contour
list containing this voxel is being processed. Once the voxel has been processed.

this field is no longer updated.

e Contour Array Sub-index: Whereas the number of processed neighbors tells
which contour array the voxel is in during processing of its contour list, this field

tells which position within that arrayv is held by the voxel. Together, these two
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fields enable the algorithm to shift the voxel from one contour array to another
in constant time as the need arises. This particular field is only used during
the processing of the contour list containing the voxel: it is initialized when the

contour list is partitioned.

¢ DMA /DMS Classification: This field is used for two purposes: labeling the
voxel as to whether it has been processed. and labeling it as to whether it belongs
to the DMA/DMS. Before the voxel is processed. this field contains the value

“unprocessed”: later. after processing. it may contain one of three values: “true

DMA/DMS voxel”. ~bridging DMA/DMS voxel”. "non-DMA/DMIS voxel™.

4.4 Results

By specifving different values for the exposure threshold. various DMAs and DMSs
can be produced. the difference being primarily in the level of detail the DMA/DMS
shows. A low threshold such as 0.4 can extend the DMA into the finer protrusions
of the boundary; a high threshold such as 1.0 is useful for generating a lean DMA
for a concise analysis of the structure of the object’s interior. Threshold values above
1.0 or below roughly 0.25 typically do not result in useful DMA/DMSs. Figure 4.8
shows the DMAs produced by the algorithm by using thresholds of 0.+ and 1.0 for the
distance map used in Figures 4.4 through 4.7. Compare the results with Figure 4.7(b).
For the purposes of this research, fine detail relating to each bump on the surface of
an object is unnecessary, so the exposure threshold is usually set at either 0.5 or 1.0,
depending on the object. More examples of DMAs produced by the algorithm are

given in Figure 1.9.
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Figure 4.8: The discrete medial axis that results from using other exposure thresholds
(denoted by Top). Whereas Figure 4.7(b) shows the DMA computed for an exposure
threshold of 0.5. the two grids above show the DMA computed for exposure thresholds
of 0.4 and 1.0. respectively.

[t is sometimes the case that the voxels with a distance value of one (also referred
to as "1” voxels in the text) have relatively high exposure values when compared to
voxels with other distance values. This can adversely affect the results of the algo-
rithm by causing numerous spurious extensions of the DMA/DMS. For the 2D case.
these extensions can often provide additional information for analysis of the object
(for examples. see Figures 4.9(c) and 4.9(i)); nevertheless. they can often be filtered
out by increasing the exposure threshold (contrast the examples just mentioned with
Figures 4.9(b) and 4.9(h)). For the 3D case, the extra extensions can provide addi-
tional information. though in the vast majority of cases they simply clutter the DMS

without providing anything of real use or significance.
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Figure 1.9: Several DMAs produced by the algorithm. The grid dimensions for each
example are roughly 100 x 100, and exposure thresholds (denoted by T,p) are shown.
The shape in (b) and (c) is loosely based on one used by Ge and Fitzpatrick [GF96].
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Note that these extensions may be technically accurate in the discrete realm. where
the voxels functioning as feature points are perceived as individual elements devoid
of any coherent relationships with other feature point voxels. Contrast this with the
alternative case. where the voxelization is an approximation to a continuous object.
Here. an outside observer would likely group the feature point voxels (which comprise
exterior voxels) into colierent sets Lased on a visual partitioniug
of the object’s boundary: the observer would then expect the DMA/DMS for the
object to respect this partitioning. Unfortunately. the discretization process usually
conceals or discards any inherent partitioning of an object’s boundary elements - and
this problem manifests itself through an undesirable side effect: spurious extensions
of the DMA/DMIS that typically have no correspondence to the continnous medial
surface of the object.

To help limit the growth of spurious branches of the DNMA/DMIS. it is often useful
to ignore the 1" voxels to a certain degree. To do this. all 1" voxels are set to be
non-DMA/DMIS voxels. with the only exceptions being the ~1" voxels that function
as saddle points. which are labeled as DMA/DMS voxels. This helps to keep the
DMA/DMS more clear and concise so that it better corresponds to the continuous
medial axis/surface of the object. Figures 4.10 and 4.11 show examples of DMSs
produced by the 3D implementation of the algorithm. in all cases handling the “1”
voxels as a special case in the manner just described. In each figure. voxels are drawn
as spheres with a radius of ? times the width of a voxel so that a 26-connected
“surface” of voxels, when rendered, will completely occlude anything on the side
farther from the camera. For the 2D implementation. such special handling of “1”

voxels is typically unnecessary in light of the influence had by simply raising the
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(a) Texp = 0.4

(b) Texp = 0.4

Figure 4.10: Two DMSs of a box as produced by the algorithm. The box has the
relative dimensions 2 x 1 x 3. In (a), the box is aligned with the axes. resulting in
a more regular voxelization and DMS. In (b), before being voxelized. the box was
first rotated by 25 degrees about the z-axis and then by 20 degrees about the x-axis
(for comparison with (a). the resulting DMS is shown with a similar viewpoint and
lighting). In both instances, the voxelized box consisted of approximately 35.000
interior voxels, and the exposure threshold was set at 0.4.
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(a) The voxelized horse (b) Texp =0.5

(C) TExp = O-T (d) Texp =1.0

Figure 4.11: DMSs of a voxelized horse as produced by the algorithm. The discretized
horse model in (a) contains roughly 50,000 interior voxels. The other images show
the DMS produced for the voxelized horse using various exposure thresholds (Tep).
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exposure threshold; nevertheless, keen observation of the shading used for DMA voxels
in Figure 1.9 (black for true DMA voxels versus dark gray for bridging DMA voxels)
will reveal which extensions of the DMAs would disappear if 17 voxels were basically

ignored.

4.5 Analysis and Discussion

The time complexity analysis that follows relies on knowledge of the union-find
algorithm and the counting sort algorithm. For more details on these algorithms.
as well as for a discussion of O(nlg'n) time complexity. see Cormen. Leiserson. and
Rivest [CLR90).

If n is the number of interior voxels. then the time complexity of the DMA/DMS
algorithm presented in this chapter is O(nlg™n). Note that lg'n is a function that
grows extremely slowly: in fact. lg'n <5 when n < 2996, Thus. for all practical
purposes. the time complexity for the algorithm is as good as linear time complexity.
The time complexity arises due to the use of the union-find algorithm. which is
implemented using path compression and union-by-rank. and to the fact that the
total number of disjoint-set operations in the algorithm is a constant multiple of the
number of union operations. As for creating the sorted array of contour lists, it
should be observed that the number of distance map values can be no larger than the
number of interior voxels. so a linear time counting sort can be used to help order the
array. Likewise. a counting sort can be used to partition the voxels of the contour list
according to the number of processed neighbors each voxel has. As for the possible
movement of a voxel from one contour array to another as its contour list is processed,

observe that this cannot happen more than k& times for any particular voxel. where k
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2D (DMA) IMPLEMENTATION 3D (DMS) IMPLEMENTATION
Interior Execution Interior Execution
Voxels Time Voxels Time
10.000 0.2 sec 10. 000 0.3 sec
100. 000 3 sec 100. 000 6 sec
1. 000. 000 36 sec 1. 000, 000 78 sec

Table 4.1: Approximate execution times for the 2D and 3D implementations of the
DMA/DMS algorithm. The times shown are the average computation times over
multiple test runs on various grids which had approximately the number of interior
voxels listed in the table. These times were compared to the EDM approximation
algorithm from Chapter 3. which was executed prior to the DMA/DMS algorithm in
order to generate the distance map for input to the DMA/DNIS algorithm. In general.
the DMA implementation required roughly three times as much execution time as the
EDM approximation algorithm. and the DMS implementation required about five or
six times the execution time of the EDM approximation algorithm. Execution was
performed on a Silicon Graphics® O2® (R5000 Processor Chip).

is the total number of adjacent voxels a voxel may have. For a particular dimension.
this is a constant number (A = 8 for two dimensions. k = 26 for three dimensions. and
so forth): thus. the number of transfers also has a linear time bound. Finally. note
that the number of voxels traversed during all of the bridging operations combined
cannot exceed the number of interior voxels; therefore, the extra processing required
for bridging has a cumulative bound that is of linear time complexity.

Actual execution times for the 2D and 3D implementations are given in Table .1.
The timings for the 3D version are roughly twice that of the timings for the 2D
version. The only difference in the two implementations is in the number of possible
adjacencies for a voxel. and this seems quite reasonable for explaining the relationship

between the timings.
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For the purposes of the research behind this dissertation. the DMA/DMIS algo-
rithm works quite well (its use will be made clear in the next chapter): nevertheless.
there are a few problems with the algorithm as it pertains to producing quality DMAs
or DMSs. As for judging the algorithm in terms of the preferable characteristics pre-
sented beginning on page 26 of Chapter 2. the algorithm performs nearly acceptably
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lows along with a discussion of the performance of the algorithm with respect to each

one.

e Similar Topology: For the 2D version. the DMA produced often has the
same topology as the original object. such as in Figures 4.9(b) and 4.9(¢). Such
agreement is definitely not guaranteed. however. and this is especially evident
in the extreme case of grids generated by randomly dropping feature points into
a plane of background points. Even for the more usual case of working with
discretized objects. it is not difficult to design objects where the genus of the
DMA for the interior differs from that of the object. As for the 3D version of the
algorithm, it is more often the case that the genera differ. In Figure 1.11. each
DMS shown has a genus greater than zero (the genus of the voxelized horse).
and in Figure 4.10. although the first DMS shown has genus zero like the box
itself, pin-size holes are visible in the second DMS, indicating a non-zero genus.
Precise determination of the genus of discrete objects turns out to be a fairly
confusing undertaking. and the subject of discrete topology is beyond the scope

of this text.

e Centering: For the most part, the DMAs and DMSs produced by the algorithm
are well centered. Occasionally, however. bridging paths may be created that
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are not as well centered as they could be, since they appear to diverge from
where the continuous MA or MS might pass through the voxelization. This
would seem to indicate that having the bridging paths follow in the direction

of steepest ascent is not the optimal solution to the centering issue.

Exact Reconstruction: If the exposure threshold is set low enough (0.4. for
instance), and if ~1” voxels are processed just like anv other voxel. then the
DMA or DMS produced seems like it could be used to reconstruct the original
voxelization exactly via the inverse distance transform. No formal testing of

this claim has been performed. however.

Rotational Invariance: Here the algorithm often performs fairly well, though
having a sufficiently large number of interior voxels helps to minimize any ob-
servable variance under rotation. Figure 4.10 is somewhat typical of the rota-

tional results possible with the algorithm.

Immunity to Noise: Due to the dependence of the algorithm on the exposure
calculation, noise can affect the local structure of the DMA or DMS produced.
Special handling of the “1” voxels as described earlier can aid the algorithm in

better handling of surface noise.

Thinness: Recall that thinness was a characteristic omitted from the original
list but described afterwards. As for the performance of the algorithm with
regard to this characteristic, note that the application of the exposure threshold
is blind to the thickness of the DMA or DMS at any point. Nonetheless, the
algorithm can produce reasonably thin results (Figure 4.10. for example), and
using an exposure threshold of 1.0 can help (see Figures 4.8(b) and 4.11(d)).
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The basic problem with the 3D implementation (and one that might worsen in
implementations for higher dimensions) is that no special processing is performed
in order to ensure that “surfaces” of voxels are being generated for the DMS. The
bridging paths are all essentially 1D. but perhaps the voxels along the bridging paths
could be made aware of neighboring bridging paths in some attempt to weave a
bridging surface for parts of the DMS.

Wich all of its problems. then. one may ask what the main selling points for
the algorithm are. The simple answers to the question are the algorithm’s relative
ease of implementation for any dimension and its efficient execution. If all that is
needed in an application is a rough approximation to the medial axis or surface. or
a reasonably well connected DMA or DMS. then this algorithm works quite well. As

will be demonstrated in the chapters that follow. the DMA/DMS algorithm is entirely

satisfactory for the research described in this document.
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CHAPTER 5

AUTOMATED GENERATION
OF CONTROL SKELETONS

This chapter details the steps involved in the general solution to the problem of
automatic control skeleton generation for a given polvgonal data model. The basic
goals for generalized skeleton production are outlined in Section 5.1. Section 3.2 then
steps through the discussion of each stage of the algorithm. from the voxelization of
the model through construction of the discrete medial surface and on through to the
creation of the control skeleton. Finally. Section 5.3 provides illustration and analysis
of the results of applying this algorithm to several example models. and Section 5.4
concludes the discussion of the general solution.

Note that many of the steps of the algorithm are nearly identical to those in an
earlier report on this research [WP00]. The main differences between the algorithm
described in this chapter and the one reported on previously are that the one described
here uses the discrete medial surface of the voxelized object, that it includes a step
to smooth the path tree before creating the skeleton structure, and that it provides
the user with slightly more control over the skeletonization process through the use
of several input parameters. The results of this algorithm are siightly better than the

results from the previous method.
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5.1 Goals

The primary goal of the algorithm is the automatic construction of a skeleton for
use in controlling the animation of a given set of polvgonal data. To be effective.
the control skeleton produced by the algorithm must correspond well with the input
object. This correspondence should be present in the three basic respects: structure,
articulation. and attachment. These three areas are further described in the respective

sections of the outline of objectives below:

1. The skeleton and the object should agree in their basic shape and structure.

e The skeleton should be centrally located with respect to the object’s sur-

face.

e Major branches of the skeleton should match the major protrusions of
the object. and minor branches of the skeleton should match the minor

protrusions of the object.

2. The flexibility. or articulation ability, of the skeleton should be appropriate for
the object. This means that the joints for the skeleton should reside at locations

such that the skeleton exhibits the following qualities:

e Skeletal segments should have meaningful lengths in relation to the nearby

surface elements of the object.

e The articulation of the skeleton in a particular region must seem appropri-
ate with respect to the local topology of the object: in other words. joints
should be placed at points where the object intuitively should be able to
bend.
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e The articulation at a particular joint must seem appropriate with respect
to the local geometry of the object. meaning that the joint’s axes should
be aligned with the proximal and distal segments so as to allow easier

specification of joint angles for animation.

e The skeleton should provide a sufficient but manageable level of control.
‘There should be enough of a skeleton to provide some desired degree of
control. yet there should not be so much of a skeleton that its manipulation

would seem unwieldy.

3. The object should be attached to the skeleton in a sensible. straightforward

fashion.

e Each point of the object should be attached to one or more nearby segments

of the skeleton.

e The attachment should make the surface of the object appear flexible so
that the surface is seen to bend gradually but in direct agreement with the

bending of the skeletal segments.

Closely associated with the primary goal is the aim of requiring very little user in-
put. Besides the polygonal data, the user can specify seven input parameters. though
generally the algorithm performs fairly well using the default values of the param-
eters. The most influential parameters are the voxel-size parameter. the exposure
threshold. and the closeness-of-fit parameter. The voxel-size parameter is simply the
desired edge length of a voxel, the exposure threshold is the input parameter for the

DMS calculation. and the closeness-of-fit parameter relates loosely to the extent of



skeletal branches. The various parameters will be discussed in more detail as they

arise in the presentation of the algorithm.

5.2 The Algorithm

This section describes the various steps of the algorithm. Section 5.2.1 discusses
the manner in which the given model is discretized, and Sections 32 2 and 523 rell
how the distance map and discrete medial surface are computed for the discretized
model. Section 3.2.4 describes how the medial surface approximation is used to
generate a tree-like structure of voxel paths. which. as detailed in Section 5.2.5. is used
to generate the segments and joints of the control skeleton. Also in that section. the
method of attaching the original polygon model to the control skeleton is presented.

The geometric input to the algorithm is currently restricted to sets of polygonal
data. The polvgons are not required to form a single. closed surface. or really even to
be connected at all. What is required is that after voxelization of the polygonal data
and classification of each voxel as being either interior or exterior to the object. the
interior voxels form a single. connected set. A closed polvhedron works quite well as
input, but a figure consisting of overlapping closed polyhedra works equally well. The
voxelization and classification process is often rather forgiving of aberrant polyvgons

or of polygonal surfaces that are not closed.
5.2.1 Volumetric Discretization

For purposes of uniformity. the first step of the algorithm consists of transforming
the polygonal data model so that its bounding box lies just inside the unit cube. After

the transformation. the user is prompted to enter the edge length of a voxel (this is
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the voxel-size parameter mentioned earlier). and the bounding box is then diced into
a regular grid of small cubes (voxels).

After the voxel grid has been generated. the polvgonal data is examined. and any
voxels that are intersected by a polvgon are marked as containing faces of the object.
A filling routine is then applied to 6-connected regions of unmarked voxels in order
tu label each region as interior or exterior: a region is labeled as exterior if and oniy
if that region includes voxels on the edge of the grid. Note that voxels containing
faces are also considered to be interior voxels. After applying the filling routine. each
voxel is labeled as either interior or exterior. and the grid is essentiallv a volumetric
bitmap of the object.

For simplicity. it is required that the interior voxels form a single 26-connected
group, though additional steps could be implemented to process disconnected groups
and generate a separate control skeleton for each one. Note that the algorithm will
work if the group of interior voxels contains holes: however. the control skeleton that
is generated has the basic structure of a tree. and a tree-structured skeleton may not
work well for animating an object such as a doughnut or any other shape that is not
of genus zero.

The objective is to have a sufficient number of interior voxels. Having more interior
voxels allows for a finer approximation to the shape of the model and thus equates to a
better control skeleton, specifically with respect to the centralization of the segments
and joints as well as to their relationship with the polygonal data. The trade-off. of
course, is that more interior voxels require more memory and more processing time.
Experiments have shown edge lengths of 0.005. 0.01, or 0.02 units to work fairly well.

depending on the manner in which the transformed object fills the unit cube. For
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Figure 5.1: The 2D Euclidean distance map for a discretized. animal-shaped polygon.
Cells intersected by the polvgon or contained therein are the interior cells. shown as
shaded squares: the first surrounding layer of exterior cells is shown using empty
squares. The value in each interior cell is the square of the Euclidean distance to the
nearest exterior cell.

most of the models used, the interior voxels account for about 10% to 40% of the
total, and anywhere between 20,000 and 200.000 interior voxels are usually sufficient

to produce a reasonable control skeleton.
5.2.2 Distance Map Computation

The next step of the algorithm is the generation of a Euclidean distance map
(EDMI) for the interior voxels. For each interior voxel. the square of the Euclidean

distance from its center to that of the closest exterior voxel is computed. Figure 3.1

115



provides a 2D example of the EDM as computed for a discretized, animal-shaped
polvgon. The extension to three dimensions should be clear. Note that for the
purposes of this research. the exact EDM is not necessarv. so in actuality. a very
close approximation is computed instead. For background on the distance map. see
Section 2.1 of Chapter 2: for a detailed discussion of the algorithm used to compute

the distance map. sce Chapter 3.
5.2.3 Medial Surface Extraction

After the distance map has been computed. it is fed into the algorithm described
in Chapter 4 for computing the discrete medial surface (DMS) of the object. The
DMS algorithm flags those interior voxels that belong to the DMS of the object. It
accepts one input parameter. the exposure threshold. which influences roughly how
thick the DMS appears as well as to what degree it extends into each individual
surface protrusion of the discretized object.

Generally. the skeleton generation algorithm works best if the DMS is relatively
clean and simple. that is. if it has relatively few extensions other than those corre-
sponding to major protrusions of the voxelization. For this reason. it is suggested that
the exposure threshold be set somewhere in the range [0.5.1.0]. The DMS algorithm
is also set to ignore voxels whose distance map value is “1” unless they are needed to
keep the DMS connected (see Section 4.4 of the previous chapter for a description of

this special handling of the “1” voxels).
5.2.4 Path Tree Generation

After the DMS voxels have been identified. a path tree is generated that effec-

tively simplifies the DMS to a tree structure of 1D pathways (referred to hereafter
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as chains). The path tree is developed so as to maintain a tree structure regardless
of the genus of the DMS or the object. The formation of the path tree begins by
identifying a centrally located voxel referred to as the heart. A breadth-first search
of the DMS is performed beginning at the heart in order to identifv extreme points

in the DMS - these extreme points are potential end-effectors of the control skeleton.

The process

O

f growing the path tree then begins, and cach new branch of the path
tree is created to extend to a previously unreached extreme point. During this pro-
cess. the corresponding spheres for the path tree voxels are examined to see which
DMS voxels are contained within them - any voxels contained within the spheres
are said to be “covered” by the path tree. This coverage is used to help weed out
insignificant extreme points resulting from spurious extensions of the DMS. When
no more path tree branches can be added that are at least a certain length. path tree
growth stops. Chains of the path tree are then identified. and the chain vertices are
filtered to help smooth the otherwise jagged pathways resulting from stepwise move-
ment between consecutive voxels along the chain. The following subsections describe

these processes in more detail.

Identifying Extreme Points

Before extreme points are identified, the algorithm needs a point from which to
label points as being extreme. For this reason, the concept of the heart was developed.
As applied to the DMS. the heart is a DMS voxel that is centrally located with respect
to the connectivity of the DMS as a whole.

One way to compute the heart is to perform repeated depth labelings of the DMS
voxels, each time using a different DMS voxel as the origin of the depth labeling (all
other DMS voxels are then labeled with their depth, or distance from the origin). After
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each depth labeling. each DMS voxel adds its assigned depth value to an individual
accurnulator. Over the course of multiple depth labelings. DMS voxels that are more
centralized overall will accumulate lower depth sums that those DMS voxels that are
on the periphery of the DMS. After every DMS voxel has been the origin of a depth

labeling, the DMS voxel with the minimum depth sum is the heart. Depending on the

=

iininiin
depth sum): for simplicity. however. the first voxel discovered to have the minimum
depth sum is considered to be the one and only heart voxel for use in identifving
extreme points.

The heart computation just mentioned requires a quadratic number of computa-
tion steps with respect to the number of DMS voxels. To avoid such a computational
cost. a constant number of DMS voxels (say. 100 or so) can be randomly selected to
be origins for depth labelings. Searching for the DMS voxel with the minimum depth
sum then provides a reasonably close approximation to the heart.

After the heart voxel has been found. another depth labeling is performed on
the DMS using the heart as an origin. The length of the path between the heart
voxel and the deepest DMS voxel is saved for future use: this length is called the
heart radius. Any DMIS voxels whose depth values are local maxima are then tested
to see whether they are still local maxima with respect to all DMS voxels within a
slightly larger neighborhood (such as by comparing the depth of a local maximum
against the depths of all DMS voxels within five adjacent voxels of the local maximum
and discarding the local maximum if its depth is less than that of any DMS voxels
within the neighborhood). The remaining local maxima are the extreme points of the

DMS, and these are partitioned into groups according to their proximity within the
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Figure 5.2: The heart and extreme points for a DMS of a horse. The heart voxel is
labeled. and there are thirteen groups of extreme points (shown as black spheres) as
seen from the heart - the hooves (4 groups). the tip of the tail (1). the haunches (2).
the nose (1). the ears (1). and along the mane (4).

voxelization (another application of neighborhood searches). When the path tree is
extended to an extreme point, all other extreme points of the same group are then
ignored for future path tree extensions. Figure 5.2 shows the heart voxel and extreme

points for a DMS of a horse.

Forming Path Tree Extensions

During the formation of the path tree. the algorithm examines connected paths
of DMS voxels. Two measures of voxel paths are used during this process: the

path length and a special weighted measure. The path length is simply the sum of
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the distances between the centers of consecutive voxels along the path: the distance
between the centers of two adjacent voxels is [. [v/2. or [\/3. where [ is the edge length
of a voxel. The weighted measure 11’p of a voxel path P is based on the Euclidean

distance map:
1

We=3 =

neP

where d; is the squared value for voxel v, as stored in the distance map (the use ot 3
as the exponent was arrived at empirically).

The purpose of the weighted measure is to provide a means for favoring centralized
paths through the figure that follow along the deepest portions of the DMS. Using
a modified version of Dijkstra’s shortest paths algorithm (see Cormen. Leiserson.
and Rivest [CLR90] for the standard version). the algorithm can find the voxel path
through the DMS connecting any given pair of voxels and minimizing the weighted
measure of all such connecting paths. Although minimizing the weighted measure
does not guarantee that the path will follow along the deepest region of the DMIS.
experimental results have shown that it appears to do so.

Another concepi crucial to the formation of the path tree is that of “coverage.”
which is related to the inverse distance transform. Each value in the Euclidean
distance map defines a sphere, centered at the corresponding voxel, that just touches
the boundary of the object. The radius of the sphere for a voxel v; is \/d;, where d; is
the (squared) distance map value for v,. Each sphere may contain the center points
of other voxels; if so, a sphere is said to “cover” those voxels. When a new path
is added to the path tree, any DMS voxels that lie within any of the corresponding
spheres of the new path are marked as being covered by the path tree. Figure 5.3

shows a simple example of coverage.
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Figure 5.3: Examples of the coverage of three disks. The disks are centered at three
black voxels and have radii equal to the square root of the respective distance map
values in those voxels. Voxels shaded dark gray are contained in the disks and are
considered to be “covered” by the black voxels (which are also considered to be covered
themselves).

The extreme point with the largest depth value (relative to the heart voxel) is the
starting point for the first branch of the path tree. The path tree is then grown by
creating and appending extensions to it until further extensions to the path tree will
unnecessarily complicate the structure. Each extension to the path tree is formed by

executing the following steps:

1. Mark (or update) the DMS voxels covered by the path tree.
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2. Find the extreme point DMS voxel vy farthest from the covered region (note
that the group of extreme points containing vy must not already have had a
branch of the path tree extended to one of its members. and also note that any

covered extreme points are simply ignored).
3. Find the minimum weight path of DMS voxels connecting vy to the path tree.

4. Append that minimum weight voxel path to the path tree.

In Step 1. note that the coverage of the DMS does not need to be recomputed
each time a new branch is added to the path tree: instead. the coverage can simply be
updated in the area surrounding the new extension. Figure 5.4 shows how coverage
changes during the formation of path tree extensions within the DMS of the horse
from Figure 5.2.

[n step 2. the algorithm searches for the non-covered extreme point voxel v, that
is farthest from the set of covered DMS voxels. If the shortest path length from vy
to a covered DMS voxel is greater than or equal to a certain threshold. then the
algorithm proceeds with steps 3 and 4 to extend the path tree to v; and then repeats
the process beginning with step 1. If the shortest path length from vy is less than the
threshold. then steps 3 and 4 are skipped, and no more branches are added to the
path tree.

The threshold used in this process is the product of the user-supplied closeness-
of-fit parameter (mentioned in Section 5.1) and the heart radius computed at the
beginning of the path tree generation process. Observation has shown that a closeness-
of-fit value between 0.05 and 0.1 works fairly well for producing a good. simple control

skeleton - this means that a new branch will be added if it extends at least % to %
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Figure 5.4: Forming path tree extensions. The extreme point at the tip of the tail
is the first point of the path tree. In (a), the first extension to the path tree reaches
from the tail to the nose. In (b). the second extension reaches to the right hind hoof.
The next three extensions branch out to the other hooves as shown in (c). In (d). the
final branch extends to the ears. The remaining extreme points are not far enough
from the covered region to warrant further extensions of the path tree. The completed
path tree is shown in Figure 5.5 without the other DMS voxels.
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Figure 5.5: The completed path tree for the horse. The path tree voxels are drawn
as small spheres to allow the edges of the path tree to be seen.

of the length of the heart radius beyond the current coverage of the path tree. Using
finer values will usually allow the extension of the path tree into smaller protrusions
of the object, such as the fingers of a hand: however. it can also result in the formation
of other seemingly spurious branches.

Step 3 makes use of the modified version of Dijkstra’s shortest paths algorithm
mentioned previously. Each path tree voxel is assigned a weight of zero and becomes
a source point for the shortest paths. The weighted measure is applied as the shortest
paths search spreads through the DMS. When the search reaches uy. it is a simple
matter to backtrack to find the actual minimum weight path from vy to the path tree.

This minimum weight path is then added to the path tree. Its coverage of the DMS
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voxels is then computed as the process of extending the path tree is repeated from

step 1.
Smoothing the Path Tree

The path tree is basically a collection of vertices (the centers of the path tree
voxels) connected by a set of edges (based on the adjacency of consecutive voxels
of the path tree extensions). The path tree for the horse has been redrawn as a
collection of vertices and edges in Figure 3.3. After the path tree has been formed.
its vertices can be sorted into three classes. Endpoint vertices have only one adjacent
edge - these correspond to the extreme points used during the growth of the path
tree. Junction vertices have three or more adjacent edges - this is where the path
tree forks or branches. The remaining vertices. termed intermediate vertices. have
exactly two adjacent edges and come in connected sequences between endpoint and/or
junction vertices. The endpoint and junction vertices split the path tree into a set of
connected path segments termed chains.

Due to the regularity of the voxelization. the chains of the path tree can be fairly
jagged. The jaggedness may be especially noticeable in parts of the figure where the
main direction of a chain section does not align reasonably well with any of the axes
of the voxelization. To lessen any peculiar effects the orientation of the voxelization
can have on the path tree. and also to diminish the influence of the jaggedness on
the later creation of segments and joints, the path tree is subjected to a smoothing
operation.

As each chain of the path tree is identified, it is smoothed by applving a filtering
process to average positions of consecutive voxels along the chain. A filter radius of
three edges usually works well to smooth out any jaggedness of the original chain.
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Figure 53.6: Smoothing of a path tree chain. A path tree chain is smoothed by applving
a filter around each vertex of the chain. For the chain p0..p11 above (shown in light
gray). the smoothed chain s0..s11 (shown in black) was computed using essentially
a box filter with a two edge radius. As an example. the position of s5 is the average
of all chain vertices within two edges of p5; thus. s5 = B3*RIEBIRORT  The radius is

0+pl+p2

3
limited at the ends of the chain: for instance. s1 = ==B2= and s0 = p0.

The smoothing process is illustrated in Figure 5.6 using a filter radius of two edges.

Figure 5.7 shows the result of smoothing the path tree for the horse.

5.2.5 Control Skeleton Construction

The path tree itself is usually too complicated to use directly as the structure of
the control skeleton: instead. an approximation to the path tree is formed in what
is called the skeletal graph (which is really a tree, since it approximates the path
tree). The skeletal graph is the precursor to the final control skeleton structure. It
is created so as to approximate the path tree using appropriately sized edges. each

of which will become a segment of the control skeleton. The discussion that follows
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Figure 5.7: The smoothed path tree for the horse. This is the result of applving the
smoothing operation to the chains of the path tree from Figure 3.5.

explains how the skeletal graph is constructed and how it is then used in the creation
of the segments and joints of the control skeleton. The final part of the discussion
reveals how the coverage of the path tree can be used in determining how vertices of

the polygonal model are to be attached to the skeleton structure.

Creating the Skeletal Graph

The initialization of the skeletal graph results from a simple conversion of path
tree chains. The endpoint and junction voxels of the path tree are used to create the
initial vertices of the skeletal graph. Each chain of the path tree is used to create an

initial edge of the skeletal graph.



After the initial edges and vertices of the skeletal graph are formed. tests are
performed to determine which edges should be split. Splitting of a skeletal edge
is accomplished by inserting an intermediate vertex into the skeletal graph (at the
location of a specially selected chain vertex from the corresponding path tree chain)
and replacing the edge with two new edges. Each new edge then corresponds to a
subscction of the original chain.
repeatedly in order to form closer approximations to the chain or in order to have
more appropriate lengths.

Two input parameters are used to specify a range of desired edge lengths (the
specified range is actuallv applied not to the skeletal edges but to their corresponding
section of a path tree chain). The parameters. called min-fraction and max-fraction.
are entered as values between zero and one (default values are 0.1 and 0.3. respec-
tively). The lower limit of the range is the product of min-fraction and the heart
radius: the upper limit of the range is the product of max-fraction and the heart
radius. Any skeletal edges whose chains are already shorter that the lower limit will
not be split. Any skeletal edges whose chains are longer than the upper limit will
definitely be split. Edges whose chain lengths are within the range may be split based
upon how closely they approximate the corresponding chain section.

Skeletal edges are assigned error values according to how closely they approximate
the corresponding chain section of the smoothed path tree. This error is simply the
maximum distance between the skeletal edge and one of the vertices of its related
chain section. Figure 5.8 provides an illustration of the error computation and the

splitting of a skeletal edge.
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Figure 5.8: Error and splitting of a skeletal graph edge. The error for a skeletal
graph edge is the maximum distance between the edge and any of the vertices of its
corresponding smoothed chain. The error for the skeletal edge sO-s11 is the length
of the perpendicular segment to s4. which is 2.79 units. The best split for the skeletal
edge is obtained by inserting a skeletal vertex at s3. as this results in the smallest
maximum error (0.30) for the two replacement edges. The replacement edges for this
example are s0-s3 (error = 0.4l units) and s3—-s11 (error = 0.30 units).

The splitting of skeletal edges is performed incrementally: at each step, the entire
skeletal graph is compared to the entire path tree to determine which edge should
be split next. In this way. the skeletal graph gradually becomes more complex while
providing an acceptable approximation to the path tree at any stage of the splitting
process. The reason for this global approach is to provide the best approximation
given the constraint imposed by the number-of-segments parameter (each skeletal
edge corresponds to one segment of the control skeleton). The processing is accom-
plished using a heap whose node weights are the error values of the skeletal edges.
Any edges whose chains are longer than the lower limit are placed into the heap.

The edge with the largest error is removed from the heap and processed. If it can
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Figure 5.9: The skeletal graph for the horse. Each edge of the skeletal graph is used
to create a segment for the control skeleton. Joints of the control skeleton are created
at interior vertices of the skeletal graph. but note that more than one joint may be
created at a vertex depending on how many edges are incident to that vertex.

be split and if its error is larger than what is acceptable (that is, if its error is larger
than the approximation-error parameter). then errors for the two replacement edges
are computed, and those edges are inserted into the heap. If the number-of-segments
parameter has been set, then the splitting process is repeated until the skeletal graph
contains an equivalent number of edges (or until the heap is empty and there are no
more edges to be split). If the number-of-segments parameter is left unspecified by
the user, then splitting stops when the heap is empty. Figure 5.9 shows the skeletal
graph computed by allowing the heap to empty as the smoothed path tree for the

horse is processed.
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Creating Segments and Joints

After the skeletal graph has been formed. creating the segments of the control
skeleton is rather simple. Each edge of the skeletal graph essentiallv becomes a
segment of the control skeleton. A deep segment is then selected to host the root
joint for the control skeleton. or rather. to be the only segment connected to the root
joint. The root joint itself is positioned at the midpoint of the skeletal edge for that
segment (note that it does not divide the segment).

The location of the root joint imposes proximity relationships on the skeletal graph
edges and thus on the control segments. Each pair of adjacent segments has either a
proximal-distal relationship or a sibling relationship with respect to their proximity
to the root joint. For each proximal-distal pair. a joint is created at the shared joint-
voxel (note that this results in coincident joints at the branching points of the tree
structure, with the coincident joints numbering one less than the number of segments
meeting at the branching point). Each joint other than the root joint thus has one
proximal and one distal segment: the root joint has only a distal segment. Vertices
of the skeletal graph that are not used for joint creation become end-effector points
of the control skeleton.

Each joint has three rotational degrees of freedom. Joint axes are determined auto-
matically to align with the proximal and distal segments. They form an orthonormal
set of vectors defined as follows: the z-axis points outward along the distal segment,
the x-axis is formed to be perpendicular to the plane defined by the proximal and
distal segments. and the y-axis is then formed to complete a right-handed coordinate
system. In the event that the plane used to create the x-axis is not uniquely defined,

the algorithm searches proximally to find the closest ancestral segment that can be
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used to help uniquely define a plane (a distal search is performed if the proximal
search fails). The first rotational degree of freedom is about the joint’s x-axis. the

second is about the joint's v-axis. and the third is about the joint’s z-axis.
Anchoring Skin Vertices to the Control Skeleton

Once the control segments and joints have been assembled. the algorithm turns to
the process of anchoring the vertices of the polyvgonal data to the control segments.
To do this. the algorithm returns to examine the spheres of the path tree voxels. Each
control segment corresponds to a section of a chain of the path tree. and each voxel
along that section of the path tree has a sphere which covers voxels of the figure (see
Section 5.2.4 for an explanation of coverage). The collected coverage for a particular
section of the path tree essentially defines a volume within which the corresponding
control segment exerts influence. In the actual implementation. each voxel gathers
and maintains a set of pointers to those control segments that cover (or influence) it.

Not all voxels interior to the figure are necessarily covered by spheres of path tree
voxels. A voxel that is not covered by some path tree voxel will not at first have an
influencing set of control segments: instead, such a set must be created. The sets for
such voxels are constructed by propagating sets from covered voxels into non-covered
regions of the voxelization. This propagation is performed in a breadth-first manner
moving away from the covered region.

When each voxel has a list of those control segments exerting influence over it, it
becomes a simple matter to anchor the vertices. The voxel that contains a specific
vertex provides the list of control segments that influence that vertex. The coordi-
nates of that vertex can then be expressed using the local coordinate frame for each

influencing segment. When the control skeleton is moved. the (fixed) local definitions
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of that vertex are converted into global positions and used in a weighted sum for-
mula that computes a new global position for the vertex. The following paragraph
describes this process in detail.

Let S be the set of control segments that influence a specific vertex v. and let s,
be the ith control segment influencing that vertex. Let origin, be the origin of the

vy s e

. . £ . 11 Dinalllnwld s D} b T T
local frame of 3. ana LU e Weorld, bec a 3 X J rotation matris t

ielp transforim
a point from the local basis of s, to the global basis of the figure. If the local position
of v in the frame of s, is denoted by p;. then the global coordinates of v. according to
si, is given by the expression origin, + p; x RtoWorld;. If only one segment influences

v. then that expression suffices: however. if S contains multiple segments. then the

expressions are combined using a weighted sum:
p. = Y w, x (origin; + p; X RtoWorld,)

Here. p, is the global position of v resulting from the combination. and w, is the
weight (or amount of influence) that segment s; exerts on v. Note that the symbol
“x" used above denotes either simple multiplication or matrix multiplication and not
the vector cross product. If only one segment influences v, then the weight w, in the
formula above is set to one. When multiple segments influence v. then the weights
w; used in the formula must sum to one. In this case, the weights are computed as

follows:

totaldist — dist;
(n — 1) x totaldist

w, =

where n is the number of segments in S. dist; is the shortest distance between v
and segment s,. and totaldist = 3, .5 dist;. Closer segments have larger weights.

Note that w;, p;. dist;, and totaldist as mentioned above are constants - these values
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are computed once using the original positions of the polygonal data and the con-
trol skeleton structure. Values that are updated each time the control skeleton is

repositioned include origin,. RtoWorld,. and. of course. p,.

5.3 Results

In general. the algorithm is quire effective in producing a nseful conrrol <keleton
in a short period of time. The quality of individual results is highly dependent on the
object and the input parameters. In some cases. the algorithm performs extremely
well. but in some other cases. the algorithm does only a mediocre job. For most
objects that an animator might wish to animate by using a control skeleton. the
skeleton produced by the algorithm is at least a reasonable start worthwhile for finer
hand-editing.

Table 5.1 shows the results of several executions of the algorithm on various polyg-
onal models (the models themselves can be seen in Figures 5.10. 53.12. and 3.13). Note
that each model has been scaled to fit inside the unit cube: thus. a grid size of 0.01
will allow approximately 100 voxels along the edge of the unit cube. The graph in
Figure 5.11 illustrates the unproven but apparently superlinear time complexity of
the algorithm (superlinear with respect to the number of interior voxels). The data
in the figure can be approximated fairly well by the function

2
.L'l"

~ 51.000

f(x)

where r is the number of interior voxels and f(r) is the number of seconds required
to create the control skeleton.

With respect to the goals described at the beginning of Section 5.1. the algorithm
performs reasonably well. As can be seen in the figures, the control skeletons are
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Figure 5.10: The horse and a few random poses. In (a). the horse is shown in its
default pose (as input for the algorithm). The other three images are selected random
poses of the horse using the skeleton from Figure 5.9.



Voxel | Number of Grid Total Interior Time
Size Segments Dimensions Voxels Voxels | (min:sec)
HORSE (681 vertices. 1.354 polvgons)
0.02 32 51 x 42 x 15 32,130 7,324 0:02
n.01 36 101 ~ R4 v 29 246,036 AR.626 n:11
0.005 31 201 x 168 x 38 1.958.544 | 352.971 1:29
HUMAN (349 vertices. 694 polvgons)
0.01 29 37 x 101 x 17 63.529 14.044 0:04
0.005 27 73 x 201 x 33 484,209 92,934 0:24
0.0025 | 31 145 x 401 x 63 3.779.425 | 675.120 2:38
OcTorus (2.347 vertices. 1.690 polygons)
0.01 52 101 x 39 x 78 164.802 42,772 0:11
0.008 57 126 x 74 x 97 904,428 79,926 0:21
0.00675 51 149 x 88 x 115 1.507.880 | 129.474 0:34
JELLYFISH (2.526 vertices. 5.048 polvgons)
0.008 102 119 x 126 x 110 | 1,649,340 | 157,150 ] 1:04
0.007 | 103 136 x 143 x 125 2.431.000 | 227.784 | 1:36

Table 5.1: Execution results for the skeletonization algorithm on a horse. a human. an
octopus, and a jellyfish. Each row corresponds to a single execution of the algorithm
for which the voxel-size parameter was specified as in the first column. The number of
control segments was determined automatically by the program. and all other input
parameters used default values (see Table 5.2). The boldface rows correspond to the
set-ups used for Figures 5.9. 5.12. and 5.13 (with a minor change in the case of the
skeletonization of the human in Figure 5.12, where an exposure threshold of 1.0 was
used instead of the default value of 0.5 used in the table). The column at the far right
contains the amount of time required (minutes and seconds) to execute all stages of
the algorithm (from figure voxelization through anchoring the vertices) on a Silicon
Graphics® O2® (R5000 Processor Chip). Many of the test runs were also performed
on a PC with a 133 MHz Intel® Pentium® processor running under Linux®. and those

execution times were quite similar. typically 100% to 105% of the execution time on
the O2.
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Input
Parameter

Valid
Range

Default
Value

Description

vavel_gize
voxel-s1ze

=
1
-

o

oo

to

The edge length of a voxel. gener-

E - Q ' ativen +1 i
ally specified relative to the unit-

cube.

exposure threshold

(0..1]

The parameter for the DMS calcu-

lation that relates somewhat to the
thickness of the DMIS.

closeness-of-fit

0.1

When multiplied by the heart ra-
dius. this provides a minimum ac-
ceptable length for new extensions
to the path tree.

approximation-error

0.4

The error tolerance for approxima-
tion of path tree chains by skeletal
graph edges.

min-fraction

0.1

When multiplied by the heart ra-
dius. this provides the minimum
desired length of a path tree chain
for a corresponding skeletal edge.

max-fraction

0.3

When multiplied by the heart ra-
dius. this provides the maximum
desired length of a path tree chain
for a corresponding skeletal edge.

number-of-segments

unspectfied

The maximum number of control
segments the skeleton may have. If
left unspecified, the program deter-
mines the number of segments au-
tomatically.

Table 5.2: Input parameters for the skeletonization algorithm.
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Figure 3.11: An analysis of execution times for the algorithm. Execution time (in
seconds) is graphed against the number of interior voxels for several executions of
the algorithm on the horse (each dot corresponds to one execution). Except for the
voxel-size, all input parameters used default values. The time complexity appears
to be superlinear with respect to the number of interior voxels (see page 134 for an
approximating function). Graphs created for other objects were very similar.

centralized, and they have branches that reach to the ends of the major protrusions
of the objects. The segments and joints relate fairly well to the surface features.
although there is some room for improvement here. notably in the control features
produced for some of the limbs posed in a straight fashion (observe the apparently
arbitrary segmentation in the arms and legs of the human in Figure 5.12, for instance).
With respect to the attachment problem. the scheme used is relatively simple and vet
still quite effective under moderate repositioning of the control skeleton.

As for the idea of having “just enough but not too much” of a control skeleton,

results are rather highly dependent on the objects given as input. For the most part.
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Figure 5.12: The control skeleton for a human figure and one pose. The skeleton in
(a) was generated using a voxel-size parameter of 0.005 and an exposure threshold
of 1.0. All other parameters used default values. The figure in (b) is the result of a
selected random pose of the skeleton.
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(c) (d)

Figure 5.13: Control skeletons and poses for an octopus and a jellyfish. The skele-
tons in (a) and (c) were generated using a voxel-size parameter of 0.008. All other
parameters used default values. The figures in (b) and (d) are the results of selected
random poses of the skeletons.
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skeletons produced by specifving the voxel-size and using default values for the other
input parameters are reasonably succinct. (A list of the various input parameters and
their default values is given in Table 5.2. With a closeness-of-fit value below 0.1. the
algorithm can extend the skeleton into shorter surface protrusions such as the fingers
of a hand: when doing so. however. it also usually produces at least a few spurious
hranches in other parts of the figure

One area where the algorithm can have noticeable difficulty is with multi-junction
points. such as where two “arm” sections of the path tree might joint a “spine” section
of the path tree (often the arm sections join the spine section at different points). It
can sometimes be useful to increase the exposure threshold to 0.9 or 1.0 so that the
DMS used for path tree generation is rather lean. This usually collapses the area
involved in the multi-junction point and sometimes results in better joining of path
tree extensions in the area of the junction.

As can be expected, the quality of the skeleton is dependent on the quality of the
voxelization of the object. The use of finer grids allows better approximations of the
surface details of the object, but not without a cost - simply halving the voxel-size
parameter will produce eight times the number of interior voxels and result in a related
increase in the running time. As long as the topology of the grid is not compromised.
a coarse grid can still produce reasonable results: the main benefits of a finer grid
are better centralization of the control skeleton and better determination of surface
protrusions (the latter allows better application of the closeness-of-fit parameter).

Several shortcomings of the algorithm have been identified:

e Because the algorithm produces a tree-structured control skeleton, it does not

work very well for objects with holes; for example. when given an object such
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as a doughnut. it will create a C-shaped skeleton. With some additional pro-
gramming, the algorithm might be extended to produce a kinematic constraint

that effectively closes the “C” during animation.

The step-wise greedy approach to splitting the control segments in order to pro-
duce a desired number of them is probably not the optimal method. especially

since it only considers bifurcations of the segments.

Long, straight sections of the path tree are sometimes segmented in a seemingly
arbitrary fashion. This can be the case when a ftigure's arm is posed without
a bend at the elbow - sometimes no elbow joint is generated. at other times.
numerous joints are generated along the straight-away. In contrast. when the
input figure has bent limbs. the algorithm does very well at producing joints at

the expected locations.

For many objects. a tree being one example. it is probably not desirable to have
the root joint centrally located with respect to the articulation points of the
control skeleton. An input flag could be provided to request that the root joint
be placed at the lowest end-voxel of the path tree. or better vet. a user could

simply select the root once the control segments have been generated.

The surface attachment scheme is rather simplistic. which is an advantage in
terms of easy understanding and implementation. The repositioned surface,
however, can sometimes suffer from interpenetration problems. especially if the
joints are bent beyond a small amount (say 20 or 30 degrees). In the vicinity of
the joints. sufficient numbers of vertices are necessary to minimize the penetra-
tions, and the algorithm could be extended to produce extra vertices near the
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joints; regardless, a better and probably more complicated attachment scheme

is necessary to avoid the penetration problem.

e Often the algorithm produces a control skeleton that overall is quite good but
that could use some tweaking. Since the focus of this research has been the
automation of the control skeleton construction. there is currently no interface
for tweaking it: nevertheless. such an interface would definitely be useful and
indeed would be required for widespread use of the algorithm. A better idea
would be to convert the implementation into a plug-in for a software package
designed for modeling and animation and to allow tweaking of an automatically

generated skeleton via the skeleton-control interface of that package.

5.4 Conclusion

This chapter has detailed an approach to automating the process of generating
control skeletons. The method described achieves a higher degree of automation
than previous approaches: furthermore. the algorithm is very fast. quite general. and
fairly robust. With very little user input, the algorithm produces control skeletons of
relatively good quality, sometimes good enough for immediate use in animation. At
the very least. the algorithm is generally useful for providing an initial skeleton that
an animator could hand-tune. It is especially useful for producing skeletons for more
complex objects like trees or jellvfish, where creating a skeleton by hand would be a
tedious and time-consuming process.

The algorithm is intended as a general solution to the problem of automatic gen-
eration of control skeletons. It must be emphasized that the algorithm constructs a

control skeleton based solely upon a geometric analysis of the object. The algorithm
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has no knowledge of what kind of an object it is dealing with. nor of any semantic
relationships between the parts of a: object. Of course. this does not prevent a user
from having definite ideas about what kind of skeleton should be produced based on
what type of object was provided as input. Nonetheless. even in the face of possi-

bly unrealistic assumptions on the part of the user. the algorithm can often produce

The remainder of this dissertation is an investigation of how knowledge of certain
tvpes of objects can facilitate the creation of control skeletons that might be deemed
as more appropriate for those particular objects. Specifically. the research examines
skeletonization of animal-like and human-like models. easily the most common classes
of objects whose members are tvpically animated in an articulated fashion using a
control skeleton.

The research to come suggests various assumptions that might assist the algorithm
from this chapter in producing a more desirable skeleton for objects from these classes.
In nature. for example. it is often the case that a large. interior region of an animal is
populated by several short bones (witness the vertebrae) and a long, narrow region is
populated by a few long bones (arm and leg bones, for instance). [t is also the case
that the vast majority of creatures have an anatomical skeleton exhibiting some tvpe
of symmetry. Observations such as these can be reformulated as heuristics that can
be incorporated into automatic control skeleton generation. Such ideas are the topics

of discussion in the chapters that follow.
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CHAPTER 6

COMPARATIVE ANATOMY OF VERTEBRATES

This chapter describes the anatomical knowledge upon which the remainder of
this dissertation is based. Because the majority of articulated figures are human-like
or animal-like. and because it is the anatomy of the human or animal that determines
its movement capabilities. any attempt at the automatic generation of anatomically
appropriate control skeletons would seem remiss without such an investigation into
human and animal anatomy.

The discussion in this chapter draws from sources specific to human anatomy
[Mad94] and animal anatomy [EBD36]. as well as from the slightly more general
areas of artistic anatomy [AS79, Par90| and comparative anatomy [Ken87, Hil95,
Har99. Par88. Joh94, Ale94]. The wealth of information from Kent [Ken87] has been
especially enlightening; indeed, many of the details of the following discussion come
directly from his book.

Artistic anatomy can be loosely summarized as an examination of anatomy where
the focus is on those features which influence surface form. In computer graphics,
artistic anatomy texts are often sought when attempting to “flesh out” a figure;
that is. when an animator employs individual models of bones. muscles, and other

anatomical components to create a layered model for a figure. Typically the goal
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is to arrive at a final model which. when posed or animated. will have a surface
that will deform in accordance with the repositioning of the underlyving (deformable)
component models.

Comparative anatomy is the study of the anatomical similarity of different species
of the animal kingdom. with a popular focus being the comparison of human and

O &
aiiifitar ahaloniiy. 11

s generatly involves an expioration of the entire subphyium
Vertebrata or its encompassing phylum. Chordata.

The similarities in vertebrate anatomy provide the foundation for the research that
follows: the motivation consists of two basic goals. The first objective is to improve
the automated generation of control skeletons so as to produce a more anatomically
appropriate skeleton. meaning that the control skeleton created for a figure should
exhibit the expected anatomical flexibility of the figure. The realization of this objec-
tive is the topic of Chapters 7 and 8. The second objective is to develop generalized
component models for use in the automated generation of a layered model to flesh
out a figure. Steps toward this goal are the subject of Chapter 9.

The presentation that follo;vs looks at vertebrate anatomy with an eve toward the
two goals just mentioned. Section 6.1 begins by laving out some simple principles
concerning the general structure of vertebrates. Sections 6.2 and 6.3 then focus on
two specific anatomical systems within vertebrates: the skeleton and the muscula-
ture. Note that Appendix A provides a glossary of the anatomical terms used in this

dissertation.
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6.1 Vertebrate Structure in General

Vertebrates are animals that have a spine or backbone. This includes amphibians.
birds. fishes. mammals. and reptiles. Due in part to their common evolutionary
ancestry. vertebrates exhibit a remarkable level of similarity. Comparisons between
anyv two species of vertebrates will reveal similarities in their overall structure as
well as similarities in the structure and function of their various anatomical systems.
Although there will be noticeable differences between the species. especially as the
age of the nearest common evolutionary ancestor becomes further and further distant.
large numbers of anatomical similarities will still exist. What follow are some general

principles of or relating to vertebrate structure.
6.1.1 Bilateral Symmetry

When discussing vertebrate structure. anatomists often refer to three principal
axes. The longitudinal axis runs from the anterior end of the body to the posterior.
or from the head to the tail. and the dorsoventral axis runs from the dorsal (back)
side of the body to the ventral (belly) side.!* The left-right axis simply runs from the
left side of the body to the right side.

Structurally. the left and right sides of a vertebrate are mirror images of each
other; hence, vertebrates exhibit bilateral symmetry. The most obvious example of

this is the pairing of the limbs. but bilateral symmetry also manifests itself in countless

M1t should be noted that for human anatomy, the terms anterior and posterior are typically used
to refer to the front and the back of the human body which is usually presented in standing position.
In such a stance. anterior becomes synonomous with ventral, and posterior becomes synonomous
with dorsal. In the discussions within this dissertation, however, the terms anterior and posterior
are used in a more general sense - anterior to mean toward the head, and posterior to mean toward
the hind quarters or tail.



ways with respect to the anatomical systems within an individual and seems to be a

persistent feature in the skeleton and musculature.
6.1.2 Two Sets of Paired Limbs

Vertebrates can be roughly divided into two groups: fishes and tetrapods. Am-
phibians. birds. mammals. and reptiles are all tetrapods. which literally means “four-
footed.” Tetrapods have two sets of paired limbs. though in some tetrapods (dolphins.
whales. and snakes. for instance) one or both pairs may be vestigial. Some fishes can
also be seen as having two pairs of appendages. though. so some anatomists prefer to
define tetrapods as “vertebrates that dwell on land (or that had land-dwelling ances-

tors).” [Hil95] The research here leans primarily toward the structure of tetrapods.
6.1.3 Cylindrical Shape

An intriguing characteristic of the form of vertebrates. and one that permeates
the natural world. is the generally cvlindrical shape of so many things. Fingers.
toes. limbs, tails, trunks. and necks all have a nearly cylindrical shape. So do blood
vessels and several other condnits within the body. And countless items of anatomy
(numerous bones, muscles. and parts of the digestive tract. for instance) that could
not really be said to be cylindrical often have a nearly circular cross section. The
reasons for this are bevond the scope of this dissertation'® (see [Wai88]), but the idea

is worth noting when contemplating an abstraction of the skeleton or musculature.

15In the simplest of summaries. it relates to the economy exhibited by rounded shapes with respect
to the ratio of perimeter to enclosed area or the ratio of surface area to enclosed volume.
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6.1.4 Metamerism

Another principle. at least with regard to the vertebrates. is usuallv not as obvious
as the ones previously described. It usually becomes apparent only on an examination
of certain internal anatomical structures. That principle is metamerism. With respect
to primitive species (worms. for example). metamerism refers to a segmentation of the
body into nearly identical, or homologous. segments. Metamerism is easily visible in
embryonic vertebrates. but the specialization processes that occur during development
distort and obscure the once metameric structures. Tvpically only tiny remnants of
metamerism or its results remain in adult vertebrates: examples in the skeleton include
the vertebrae and ribs. and examples in the musculature consist primarily of some

oblique and longitudinal muscle groups running along the spinal column. [Ken87]
6.1.5 Form Follows Function

A final point to note is the resounding message so often expressed in biology
classes: form follows function. If an anatomical entity exhibits a particular shape.
then it does so because that is the shape it needs to have in order to function ef-
fectively. Stated another way, if a particular function is necessary for evolutionary
survival, then better forms will evolve to serve that function. Although this principle
is probably too general to be of any specific use with respect to creating a generalized
control skeleton or fleshing one out. it is nevertheless such an important tenet that
such a task should probably not be undertaken without at least being aware of the

principle.
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6.2 Skeletal Anatomy of Vertebrates

The skeletal system of most vertebrates follows a fairly typical pattern. [t can be
divided into two main parts: the axial skeleton and the appendicular skeleton. The
axial skeleton includes the skull. rib cage. spine. and tail bones (which are basically an
extension of the spine): the appendicular skeleton consists of the bones of the girdles

and limbs. Table 6.1 provides a simple breakdown of these parts.

The Axial Skeleton

Numerous bones make up the skull. For purposes of this research. in which articu-
lation is the primary focus. the skull can be seen as consisting of just two bones. The
first of these is the cranium. whose primary features include the brain case. the eve
sockets. any nasal openings. and the upper teeth. The other bone is the mandible. or
jawbone. which houses the lower teeth.

The spine and tail are composed of vertebrae. The vertebrae are divided into
groups based upon regional specialization. From anterior to posterior. there are
cervical. thoracic. lumbar. sacral. and caudal vertebrae. Cervical vertebrae function
to give an animal a flexible neck so that it can turn or nod its head. Thoracic vertebrae
provide anchor points for ribs, with one pair of ribs for each thoracic vertebra. Lumbar
vertebrae allow for a flexible lower back. Sacral vertebrae generally fuse with each
other and with the pelvic bones to help brace the body against the movement of the
hind limbs. Caudal vertebrae run along part or all of a flexible tail (in humans. the
caudal vertebrae fuse together into the coccyx).

As mentioned. the ribs are joined to the thoracic vertebrae in the back. In the

front. the ribs either join to the sternum or terminate without a joint. in which case
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AXIAL SKELETON

Spine and tail (vertebrae)
Rib cage (ribs and sternum)
Skull (cranium and mandible)

APPENDICULAR SKELETON

Anterior Posterior

Pectoral girdle (scapula. clavicle) Pelvic girdle (pelvis)
Forelimb Hind limb

Upper arm (humerus) Thigh (femur)

Forearm (radius and ulna) Shank (tibia and fibula)

Wrist (carpals) Ankle (tarsals)

Palm (metacarpals) [nstep (metatarsals)

Digits (phalanges) Digits (phalanges)

Table 6.1: A simplified view of the skeletal components of vertebrates (based on tables
from Kent [Ken87]).

they are referred to as floating ribs. As a whole. the rib cage protects the vital organs

of the thoracic cavity (the heart. lungs. liver. and kidneys).
The Appendicular Skeleton

Discussion of the appendicular skeleton typically follows the parallelism of its
anterior and posterior components, comparing the forelimbs and the hind limbs and
contrasting the girdles connecting the limbs to the axial skeleton. The pectoral girdle
consists of the clavicles (if present) and the scapulae; it connects the forelimbs to the
trunk via the rib cage. The pelvic girdle, which is essentially the pelvis. connects
the hind limbs to the spine. Whereas the bones of the pectoral girdle can operate

independently for the left and right halves, the bones of the pelvic girdle are generally
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not independent. being immobilized through symphysis with each other and fusing
with the sacral vertebrae.

The basic limb structure for vertebrates can be viewed as consisting of five seg-
ments [Ken87]. For the forelimb. those segments (and their associated bones) are the

upper arm (humerus). forearm (radius and ulna). wrist (carpals). palm (metacarpals).

mur), shank (tibia and fibula). ankle (tarsals). instep (metatarsals). and digits/toes
(phalanges). The hind limb commonly has one other bone at the knee: the patella.

In comparative anatomy. the term manus is often used as a generalization of
the term hand. Specifically. it refers to the wrist. palm. and digits of the forelimb.
Likewise, the term pes is used as a generalization of foot to refer to the ankle. instep.
and digits of the hind limb. For quadrupeds. the structures of the manus and pes
are often very similar (such as with the horse or dog): for bipeds, however. there is
usually a greater difference due to the differing functions of the forelimb and hind
limb.

Like the bones. the joints for forelimbs and hind limbs have a similar pattern. The
shoulder and hip joints are ball-and-socket joints. having three degrees of freedom
(DOF). The elbow and the knee are both hinge joints, having a single degree of
freedom, though the elbow generally points toward the rear of the animal while the
knee generally points toward the head of the animal. As with the tibia and fibula
with respect to the foot. the radius and ulna allow for the pronation (rolling inward)
or supination (rolling outward) of the hand. Note that for many species. the ulna
is either non-existent or is fused to the radius. so no such rotation of the hand is

possible. The same holds in the hind limb. where the fibula disappears or fuses with
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the tibia. The wrist joint and the ankle joint both allow two rotational DOFs. and the
Jjoints proximal to the metacarpals and metatarsals allow two rather heavily limited
DOFs. Joints of the phalanges can be considered as hinge joints with one DOF whose

axis is perpendicular to the digit.
6.2.1 Differences

With a few exceptions. the bones of one species are often fairly similar to the
homologous bones of another species of vertebrates (in this context. the word homol-
ogous actually refers to the correspondence of bones between species). Nevertheless.
there are some noticeable differences. Although the basic form of homologous bones
is usually the same between species. the bones may differ (perhaps vastly) in length.
girth. and the sizes and shapes of distinct features.

The number of bones within functional groupings may also differ from species to
species: common examples are the number of ribs. vertebrae. carpals. tarsals. and
digits. Many birds have seven pairs of ribs. mammals commonly have twelve pairs
(though some have as few as nine or as many as twenty-four pairs), and snakes
(notably an exceptional vertebrate) can have hundreds of pairs [Ken87]. Note that
difference in quantity is sometimes obscured as a result of bones ankylosing, or fusing
together; for instance, the human sacrum consists of five fused vertebrae. As another
example, the synsacrum of birds is a massive fusing of thoracic, lumbar, sacral. and
caudal vertebrae and a couple of ribs. which itself then fuses with the pelvic girdle
[Ken87].

The orientation of adjacent bone groups can also vary. In many animals, the

spinal column meets the back of the skull. This usually means that the back-to-front
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line of the skull is nearly colinear with the spine. [n many other animals (humans
being one example). the spinal column meets the base of the skull. so the alignment
of the head and trunk might be viewed as perpendicular.

Perhaps the most important difference across vertebrate skeletons is that homol-
ogous bone groups do not necessarily have the same function. On a local scale. for
example, the opposable thumb of liunians serves a different function than the nou-
opposable first digit of some other primates. On a more global scale. the forelegs of a
quadruped have a vastly different function than the arms of a biped or the wings of

a bird. Finally. as alluded to earlier. some bones or groups of bones may be vestigial

in some species.

6.3 Mouscular Anatomy of Vertebrates

6.3.1 Muscle Basics

The musculature of vertebrates can be discussed from several vantage points. One
view divides the muscles into two groups: somatic muscles and visceral muscles. So-
matic muscles are primarily responsible for interacting with the external environment
and are mostly voluntary muscles, meaning they can be flexed at will. These include
the muscles of the body wall, the appendages, and the tail. Visceral muscles, which
are mostly involuntary, are responsible for internal body functions. These are usually
muscle sheets around hollow organs, tubes, and ducts. such as those muscles respon-
sible for peristalsis along the digestive tract. For the purposes of this research, the
only concern is with somatic muscles.

A single muscle consists of a belly (the contractile portion) and possibly one or

two tendons connecting the belly to different bones. The points where the muscle or

154



tendon attaches to the bones are known as the origin and the insertion. In general.
the origin is on the bone that remains fixed when the muscle is contracted. and the
insertion is on the bone that is moved when the muscle is contracted.

Muscles come in a variety of shapes depending on the sizes and locations of their
origin and insertion points. The simplest tvpe of muscle is the fusiform muscle. It has
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other limb muscles are spindle shaped. More complicated muscle forms arise if a
muscle has several points of origin and/or insertion. Fan-shaped muscles are common
in the chest and shoulders. and sheet-like muscles are common in the abdominal wall.
[Hil95]

Since the active function of a muscle is to shorten. muscles are arranged in antag-
onistic pairs throughout the body. With regard to the bone to which they attach. the

muscles of an antagonistic pair usually act to flex or extend it. to adduct or abduct

it. to protract or retract it, to lift or depress it. or to rotate it one way or the other.
6.3.2 The Musculature

Like the skeletal system. the musculature for vertebrates can also be divided into
axial and appendicular components [Ken87]. The muscles of the trunk and tail are
the primary axial muscles. The appendicular muscles are themselves usually divided
into two groups: extrinsic appendicular muscles, which connect the limb or girdle to
the trunk. and intrinsic appendicular muscles, which connect one section of a limb or
girdle to another section of the limb.

The musculature typically change more quickly over an evolutionary time line than

does the skeleton. Therefore. it is generally more difficult to determine homologous



muscle groups amongst different species than it is to determine homologous bone
groups. Fortunately. the homologies between major muscle groups are fairly clear.
An exhaustive discussion of the numerous muscles comprising the musculature of
vertebrates and detailing the differences between the musculatures of the various
classes is bevond the scope of this dissertation: however. some generalizations are
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The axial muscles consist primarily of two groups: epaxial muscles and hyvpaxial
muscles. The epaxial muscles originate on one vertebra and insert on one or more
vertebra or possibly on the base of the cranium. These are the oblique and longitu-
dinal muscles along the spine that function to bend or to stabilize the spine. The
hypaxial muscles are the sheet-like muscles of the body wall. Thev serve less to move
the skeleton than they do to contain the innards of the trunk. Other axial muscles of
significance are the muscles of the jaw.

For the extrinsic appendicular muscles. a pattern emerges: the dorsal or posterior
muscles are responsible for extending the appendages. while the ventral or anterior
muscles are responsible for flexing the appendages. or bringing them closer to the
body [Ken87]. The latissimus dorsi and the trapezius are examples of the dorsal
muscles; the pectoralis muscles are examples of the ventral muscle. Note that these
examples are muscles affecting the forelimbs. Since the pelvic girdle is fused to the
spine, it cannot move independently, so their are essentially no extrinsic appendicular
muscles that affect the hind limbs.

For the intrinsic appendicular muscles, other patterns emerge. depending in part

on whether the limb is a forelimb or a hind limb. There are also parallels between

the fore and hind limbs. The deltoideus and other shoulder muscles stretch from the
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scapula to the humerus over the shoulder joint. These muscles function to adduct
and to rotate the humerus. In a similar fashion. a group of muscles stretching from
the pelvis to the femur across the hip joint (the gluteus being one of them) functions
to abduct and to rotate the femur. The triceps. two heads of which originate on the
humerus and one of which originates on the scapula. inserts on the ulna and functions
to extend the forearm. In
pelvis or an upper portion of the femur and inserts more or less on the patella. Three
of its four muscles function is to extend the lower leg, while the other functions to
adduct the thigh. The primary antagonists for the triceps are the biceps brachii and
the brachialis. while the primary antagonists for the quadriceps femoris are the biceps
femoris (commonly referred to as the hamstring in humans). These muscles function
to flex the forearm and the lower leg. respectively. Various muscles of the forearm
act to pronate or supinate the manus or act either directly or through long tendons
to flex or extend the manus or its digits. Various muscles of the lower leg affect the
pes and its digits in a similar manner (the gastrocnemius is a one of these). [Ken87]

As one final note on the musculature of vertebrates in general. the footprints of the
major muscles upon their bones of origin and insertion have marked similarities. Ho-
mologous bones typically have similar features (protrusions, processes, and so forth).
and each of those features typically serve to provide places of origin or insertion for
one or more homologous muscles. This usually holds true even if the functions of

those homologous muscles differ somewhat between various species.



CHAPTER 7

AUTOMATED IDENTIFICATION
OF ANATOMICAL FEATURES

This chapter and the one that follows discuss how knowledge of human and an-
imal anatomy as presented in the previous chapter can be incorporated into the
skeletonization algorithm described in Chapter 5. The use of this knowledge is in-
tended to assist the algorithm in producing more appropriate control skeletons for
human-like and animal-like figures. This chapter will describe various assumptions
and heuristics for automatically identifving gross anatomical features of the figures.
The next chapter will then show how those classifications can be employed to generate
a control skeleton that might mimic the expected anatomical flexibility of the figure.

Section 7.1 lists a number of basic constraints imposed on the input object in
order to simplify the task of identifying its parts. Based upon those constraints.
Section 7.2 sketches some simple heuristics for identifving gross anatomical regions.
Section 7.3 describes the implementation of these heuristics within the skeletonization
system. and Section 7.4 briefly discusses some typical results of applying the method
to various objects.

The research described in this chapter takes a fairly simple approach to the prob-

lem of automated identification of anatomical features. This basic method for the
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anatomical breakdown of an object works reasonably well within the larger scope
of this dissertation research. Nevertheless. a reader interested in a more thorough
treatment of such automation might enjov delving into the broad area of artificial

intelligence, and more specifically. the topic of pattern recognition.

7.1 Constraints

The fundamental goal of this chapter is to divide the object into regions corre-
sponding to basic anatomical features found in humans and animals. In short. this
consists of sectioning the figure into a trunk and various appendages. and labeling
those appendages as arms. legs. wings. and so forth. To achieve a reasonable degree
of success in this task. the algorithm relies on various assumptions about what tvpe
of figure it is dealing with and how that figure is posed. These assumptions are es-
sentially constraints that a user must ensure are satisfied before the algorithm may

be expected to perform its share of the automation process.
7.1.1 Structural Constraints

The primary assumption is that the object provided as input is some human-like
or animal-like figure. What that means and what sorts of constraints that assumption
imposes on the basic skeletal structure the figure is expected to possess are discussed

below.

Vertebrate

The figure is assumed to be of a vertebrate creature: that is, it is expected that
the creature would have a backbone or spinal column in real life. Living vertebrates

consist of amphibians, birds, fishes mammals. and reptiles: however. the figure need
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not be that of a living creature. It is simplyv expected to have a vertebrate-like
anatomical structure so that it is well-suited for animation via a control skeleton
composed essentially of spinal segments and appendicular segments. This expected
structure is most easilv evident in the tetrapods. or the non-fish vertebrates. Note.

however. that there is no constraint that the figure must have four limbs. though it

Tree-like Structure

The overall skeletal structure for vertebrates in general is tree-like. Some might
argue that the rib cage imparts cvclical structural elements on the skeleton or that
the human shoulder complex. since it exhibits inherent dependencies of the combined
human skeletal and muscular structure, is more accurately modeled in a cyclical
fashion. Nevertheless. for the purposes of this research. the gross description of all
vertebrate skeletons as tree-like is acceptable: thus. it is also assumed that the control

skeleton for the figure should possess such a hierarchical structure.

Bilateral Symmetry

As discussed in the previous chapter. another overwhelming characteristic of ver-
tebrate skeletons is their bilateral symmetry. This is most obvious with regard to
their limbs. which form in pairs. In this research. limb-like appendages of the figure
will be expected in pairs so that the expected control skeleton will exhibit bilateral

svmmetry.
Proportions

The final structural constraint assumes that the figure is proportioned in a reason-
able manner. This means that any limb of the figure is expected to have approximately
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the same dimensions as its pair. It also means that there is a credible relationship
between the sizes of different elements of the figure: for instance. if one element is too

large. other elements may be overlooked by the algorithm as being insignificant.
7.1.2 Postural Constraints

The second set of constraints require that the input object be presented in a way

that does not obfuscate the identification process.

Orientation

When given as input. the figure is assumed to be oriented such that the y-axis
points in the approximate “up” direction with respect to the figure. The user must
then specify an approximate “forward™ direction for the figure. For human-like fig-
ures. the forward direction should be the ventral direction: for animal-like figures. it
should be some combination of the ventral and anterior directions depending on the
resting pose of the figure. For a quadruped. the forward direction is almost exclu-
sively the anterior direction. but for a bird in a standing position. it might be a more

equal combination.

Pose

Although there is a structural constraint that the skeleton generated should be
symmetric, it is not necessary that the figure itself be posed in a symmetric fashion.
The figure is assumed to be in a stable, self-supporting pose. This requirement allows
for easier identification of the figure's legs. A further expectation of the pose is
that there is sufficient space between the limbs of the figure as well as between the

limbs and the trunk. This allows for a voxelization of the figure to have a separate
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protrusion for each limb and helps form a more clear delineation of where the trunk

might be seen to end and a limb might be seen to begin.

7.2 Heuristics for Identification

Based on the constraints just discussed. the figure is to be divided into sections
corresponding to its major bodv parts. The constraints also provide the basis for
various expectations regarding each type of body part. The following list shows the

assumptions made with regard to each basic type of body part:

e Trunk - The trunk is expected to be central to the figure. to contain the heart
(that is. the geometric concept of the heart defined in Chapter 3). and to be
bounded by major junctions of limbs or other protrusions (any region of the
figure that is adjacent to only one major junction is assumed to be a protrusion:

arm. leg, wing. head. or tail).

e Leg - Legs are expected to support the figure and run from the ground to the
trunk. In other words. the legs are expected to define the extreme part of the
figure in the downward direction. Legs are also likely to have a vertical or mostly
vertical orientation between the ground and the trunk, and they are expected

to be found in pairs.

e Arm - Arms are expected to join the anterior part of the trunk and to come in
pairs. They are not necessarily expected to reach the extreme of any direction.
though it would not be surprising to find them defining the lateral extremes of

the figure.



e Wing - Whereas arms and legs are expected to have circular. elliptic, or at least
somewhat regular cross sections. the wings are expected to have fairly linear

cross sections. Like arms and legs. wings are expected in pairs.

e Head - The head is expected to define the forward extreme. the upward extreme.
or both the forward and upward extremes for the figure. It is expected to join

the most anterior part of the trunk.

e Tail - If present, a tail is expected to extend in the rearward direction and to

join the trunk at roughly the same point as the most posterior pair of limbs.

7.3 Implementation Issues

The heuristics above are realized in three phases. In the first phase. a special graph
is created that effectively simplifies the DMS. The second phase involves marking
vertices of the graph according to certain characteristics: whether they are major
junctions for the figure. whether thev are near the extreme top or bottom of the
figure. what the general shape of the cross section is for that part of the figure. and
so forth. In the final phase. the sections of the graph corresponding to various body

parts are identified and labeled.
7.3.1 Creating the Level Graph

For the purpose of simplifying the DMS. the algorithm relies on the heart com-
putation from Section 3.2.4 in the Chapter 5. Recall that the heart is a voxel that is
well centered with respect to the DMS voxels. During the computation of the heart,
each DMS voxel accumulates a series of the shortest distances between itself and

other (source) voxels. After a sufficient number of voxels have acted as sources for
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spreading distances, accumulation stops. The minimum and maximum accumulator

values are found, and each DMIS voxel is then assigned a normalized heart value by

determining where its accumulator value lies between the minimum and maximum.
In a manner not unlike that of forming level set diagrams (see the last paragraph

of Section 2.3.2 for a brief review of the work of Lazarus and Verroust [LV99]). a graph

divide the interior of the figure into interconnected strata. First. the DMS voxels are
partitioned into sets according to the percentile in which their heart values reside.
Experimentally it has been shown that using about twenty sets works fine for most
figures. In this case. the first set would consists of all DMS voxels whose heart values
were within 3% of the minimum. the second set would include voxels with heart
values within 5% to 10% of the minimum. and so forth. Next. each set is divided into
connected components based on the adjacency of its DMS voxels. For each connected
component. a corresponding vertex is created in the level graph. The position of
the level graph vertex is the centroid of its connected component. Edges are added
between level graph vertices if the corresponding sets of DMS voxels represented by
the vertices are adjacent to each other in the DMS.

In the actual implementation. the level graph is formed in a bottom up fashion
by analyzing sets of DMS points in decreasing order of heart value. Throughout
the formation, the program maintains a record of the disconnected portions of the
level graph. Each connected portion has a unique group number. and it is the group
numbers that are compared when testing for adjacency during edge creation. In this
way. the level graph formed will always be a tree. and the root of that tree will be

the group of DMS points containing the heart voxel.
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Figure 7.1: The DMS and the level graph of the horse shaded according to heart
values. For the DMS of the horse, the voxels are shaded from white to black as the
normalized heart values run from zero to one. The level graph for the horse is shaded
to correspond with the DMS. from which the level graph was created.
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The top of Figure 7.1 shows the DMS voxels of the horse shaded according to
their heart values. and the bottom of the figure shows the level graph created. As
should be apparent from the figures, the level graph is a simplification of the DMIS.
Whereas the DMS might have a “surface™ of voxels that extends down the center of
some protrusion of the figure. the level graph typically will have only a single chain
of edges aud verlices curresponding o that same portion of the protrusion. Due to
the nature of how heart values will lie within a volume. the level graph effectively
provides an approximately longitudinal view of each protrusion of the object. In
addition. it offers a good indication of where each protrusion joins the trunk of the

figure in relationship to other protrusions.
7.3.2 Marking the Level Graph Vertices

Because the level graph is a tree. and because cach of its vertices is associated
with a group of DMS points. it is a fairly simple matter to assign weights to the
vertices according to how many DMS points are dependent on a particular vertex
for connecting to the heart. The weight assigned to a vertex is a fraction ranging
from zero to one. The numerator of the fraction is the sum of the number of DMS
points that are contained in the group corresponding to the vertex and the number of
DMS points contained in groups corresponding to other level graph vertices that are
distal to the vertex in question. The denominator of the fraction is the total number
of DMS points. The assignments of these fractions to the vertices can be computed
fairly easily during the bottom up creation of the level graph. It is done by keeping
track of the number of DMS points represented by each connected component of the

level graph as it is formed.
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There are two main reasons for keeping track of these fractions. First. observe
that a veryv small fraction indicates that a level graph vertex and its distal group can
probably be ignored when identifving gross pieces of the anatomy via the level graph.
For this reason, vertices with a very small fraction are marked as being insignificant.
Second. when a vertex is created that merges two or more sufficiently large regions of
the DMS (correspouding o previousiy disconnected components ol the level grapij.
the new vertex is marked as being a major junction for the figure. It is these major
junctions that serve to carve the DMS into regions corresponding to the body parts
of the figure.

Once the level graph has been created. each of its vertices is tested for a few
simple criteria. or rather. the corresponding DMS points are tested and the result
of the test is assigned to the vertex. Four of the tests deal with directions. If any
DMS point for a vertex is within the top 10% of the voxelization (with respect to
the v-coordinate), then that vertex is marked as an extreme vertex in the upward
direction. Similarly, if any DMS point for a vertex is within the bottom 10% of the
voxelization, the vertex is marked as extreme with respect to the downward direction.
Other tests are used to mark vertices that are seen as extreme with respect to the
forward or backward direction (recall that the user must specify which direction is
considered to be forward). Note that the forward and backward tests are slightly more
complex since the forward direction may not align with an axis of the voxelization. In
preparation for the test, the most forward and the most backward interior voxels are
found and then projected onto a line that is parallel to the forward direction vector.

Each DMS point can then be projected onto the same line and tested to see where it

falls between those two extreme projections.
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The final test for a vertex is an attempt to determine the approximate shape
of the cross section of the figure at that vertex. specificallv. whether is should be
considered rounded or linear. For a given vertex. the corresponding DMS point
group is examined to find the point farthest from the group’s centroid (which is the
location of the levelgraph vertex). Another pass through the group points finds the
ices from these farthest points
to the centroid is compared to the radius of the distance map sphere whose center is
closest to the group's centroid. If either distance is greater than a certain multiple of
the radius (a multiple of 1.5 seems to work fairly well). then the level graph vertex is
marked as having a linear cross section; otherwise. the vertex is marked as having a

rounded cross section.

7.3.3 Labeling the Level Graph

The level graph is considered to be divided into a number of sections by the
locations of the major junction vertices. If the major junction vertices were to be
removed from the graph. then the connected components that would remain would
correspond to the sections.

The first part of the level graph that is labeled is the trunk. The trunk consists
of the major junction vertices and any edges connecting them to each other. The
slope of the trunk is examined to determine whether the trunk is mostly horizontal
(such as that of an animal), mostly vertical (such as a human figure). or somewhere
in between. After the trunk is labeled. a simple examination helps to weed out
unimportant branches of the level graph: if any non-trunk section consists of only

insignificant vertices, then the section itself is also labeled as insignificant.
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Any unlabeled section that has an extreme vertex with respect to the downward
direction is labeled as a leg. As legs are expected to be paired. there should be an
even number of leg sections identified. In the event that an odd number is identified.
then a tail section may have been mislabeled as a leg. This is sometimes remedied
during the pairing procedure. Legs are paired based upon where they join the trunk.
and cach leg is paired with the closest unpaired leg. Truuk vertices or edges tliat
aid in the pairing (via forming connections between paired legs) are marked as being
pelvic pieces of the trunk.

The next body parts identified are wings. If at least 40% of the significant vertices
in an unlabeled section have linear cross sections. then that section is marked as a
wing. Anyv wings discovered undergo a pairing operation similar to that of the leg
sections: portions of the trunk that aid in the pairing are marked as being girdle
pieces for wings.

After the wings comes the tail. The section that extends farthest to the rear of the
figure is examined. If it is unlabeled or if it is an unpaired leg. then it is (re)labeled
as being a tail.

Head identification begins with unlabeled sections at the anterior portion of the
trunk. If the trunk of the figure is found to be mostly in a vertical pose. then the
assumption is that the figure is human-like, so whichever of those sections extends
farthest upwards is labeled as the head. If the trunk is mostly horizontal. then the
focus is on the section that extends farthest forward. If the trunk is slanted or if there
is no clear direction for the trunk, then the topmost and/or forward most sections
are compared — whichever is found either to align best with any trunk direction or

most likely not to be paired with another unlabeled section is marked as the head
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section. Note that the head section may or may not include a part that should really
be considered as a neck.

The remaining unlabeled sections are analyzed to see if there are any pairs that
join the trunk at approximatelv the same vertex. I[f there are. and if each of the
sections has at least a moderate length. then those sections are labeled as arms. Once
agaiii. a pairing operation is used tu mark the connecting truuk picces as eletuents of
a pectoral girdle.

Any insignificant sections and any unlabeled sections that are less than a sufficient
length are now (re)labeled as portions of the trunk. Anyv unlabeled sections of at least
a sufficient length are at this point brought to the attention of the user. who may
then assign labels to them. Also at this point. the user may modify the labeling of
any section.

After the user has made any corrections. each arm or leg section of the level
graph is processed to determine if it might have separated digits (fingers or toes.
respectively) as evidenced by notable branches toward the end of that section of the
level graph. If a limb is discovered to have separated digits. then the limb is marked
for specialized processing so that an appropriate hand or foot section of a control
skeleton can be generated: otherwise. the limb is marked as needing either a manus
with a single digit or a one-segment manus. This is discussed further in the next

chapter.

7.4 Results

The identification algorithm works reasonably well, though it can have problems

with certain objects. It seems to work quite well for quadruped figures (a horse or a
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dog, for instance) where the various types of protrusions (head. legs. and tail) do not
compete with each other for prominence in a common direction. For such figures. it
rarely makes an incorrect classification.

It is less robust for human-like figures. sometimes confusing a human arm for a
tail if the arm is posed in a slightly rearward direction. The confusion is the result
of using a rather simpiistic identification schieme that labels the tail section before
identifving any arm sections. On a model of a dragon. which has two arms. two wings.
and two legs. the algorithm performs fairly well. though it occasionally mislabels a
wing as an arm in coarser voxelizations of the figure. A more common occurrence is
the mislabeling of spurious branches of the level graph as arm sections (the reason for
these actions is discussed below). All in all. the algorithm does fairly well. and when
it does make an incorrect classification. it does not take long for a user to make the
necessary corrections.

One problem with the algorithm is its dependence on the accuracy of the heart
computation. Since the sources for the heart computation are chosen randomly. the
position of the heart can vary from one execution to the next. On occasion. a slight
variation in the heart position and the distribution of heart values can alter the level
graph just enough to impede proper classification of its branches.

The main problem with the algorithm is that the level graph is computed on the
set of DMS voxels. The DMIS often has some spurious branches that have an adverse
effect on the computations for the heart and level graph. Such spurious branches
would likely not appear if the heart and level graph were computed on the set of

all interior voxels. Unfortunately. that computation over the whole of the interior

is prohibitively expensive. typically increasing the execution time by at least one

171



order of magnitude. Considering the trade-off between requiring more execution time
versus requiring more user interaction to assist the algorithm. in this particular case.

requesting a little help from the user seems well worth while.
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CHAPTER 8

AUTOMATED GENERATION OF ANATOMICALLY
APPROPRIATE CONTROL SKELETONS

This chapter describes how anatomical knowledge can be used with the feature
classification algorithm from the previous chapter in order to generate a control skele-
ton that seems anatomically appropriate for a given figure. Section 8.1 discusses
the application of the knowledge in the creation of the axial portions of the control
skeleton. and Section 8.2 describes the application with respect to the appendicular
sections of the control skeleton. Section 8.3 then discusses how the surface data is
attached to the control skeleton. Section 8.4 concludes with some preliminary results

of an implementation of the process.

8.1 The Axial Skeleton

The axial parts of the control skeleton are comprised of the segments and joints
relating to the head, trunk, and tail. With respect to the axial portion of the figure,
the rib cage has been ignored to some degree - greater consideration of the rib cage
comes into play later during the formation of segments and joints of the pectoral

girdle. The articulation of the rib cage is rather limited. and it is considered to add
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redundancy to the control skeleton - that is, it adds cycles of dependency when mod-
eled more realistically. For simplicity, the rib cage has been conceptually trivialized
to have individual ribs positioned statically with respect to the coordinate frames of
the vertebral segments to which they attach, and the rotational motion between these
vertebral segments is assumed to be quite limited.

Recall from the previous chapter that the level graph has been partitioncc
that its edges and vertices correspond to the various parts of the figure (head. tail.
trunk. arms. legs. and wings). The level graph vertices are also associated with a
partitioning of the DMS voxels: thus. the DMS voxels are assigned body part labels
in accordance with their respective level graph vertices. The limbs of the figure have
been paired. and the figure as a whole has been identified as being either human-like
or animal-like depending on the orientation of the trunk portion of the level graph (a
nearly vertical trunk implies a human-like figure: a horizontal. slanted. or essentially
non-vertical trunk implies an animal-like figure).

The first step in realizing the axial control skeleton is finding a centralized path
from the tip of the head to the tip of the tail. The tip of the head is found by examining
the DMS voxels labeled as being part of the head and selecting the voxel that is
farthest in the anterior direction. For animal-like figures. this typically corresponds
to the figure's nose; for human-like figures, it is the top of the head. The tip of the tail
is the tail DMS voxel with the highest heart value. If the figure does not have a tail.
then another point is substituted as the posterior goal for the path. This replacement
point is the midpoint of the centralized path connecting the extreme points of the

hindmost pair of limbs.
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Each centralized path (head-to-tail or limb-to-limb) is computed in the same man-
ner as the first extension of the path tree in Chapter 5 (see Section 3.2.4 for more
details). This is based on a modified version of Dijkstra’'s shortest paths algorithm
where the weights are based on the reciprocals of the cubes of the distance map

values. After each centralized path is computed. weights for the entire DMS are

by any previously computed paths.

After the head-to-tail path has been computed. the next step involves dividing
the path into sections. with one section for the head. one for the neck. one for the
trunk, and one for the tail. To help accomplish this sectioning, a path is computed
for each pair of limbs connecting the most extreme DMS point of each limb with that
of its pair. Each limb-to-limb path is then processed to find the middlemost voxel
of the path - this is the voxel that most evenly divides the path into two roughly
equivalent sections: for convenience. it will be referred to as the midpoint of the path.
The head-to-tail path is then searched to determine which of its voxels are closest
to each of the midpoint voxels of the limb-to-limb paths. With respect to the limbs.
this serves two purposes: to determine the front-to-back ordering for the limb pairs
and to find an approximate location for creating the girdle for each limb pair. The
closest head-to-tail voxel to the hindmost limb pair’s midpoint effectively marks the
end of the trunk section of the head-to-tail path and the beginning of the tail section
(provided, of course. that the figure has a tail). The closest head-to-tail voxel to
the foremost limb pair’s midpoint is considered the forward-most voxel of the trunk
section. The rest of the head-to-tail chain (the forward-most part) is divided in half.

with the anterior half representing the section for the head and the posterior half
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representing the section for the neck. Although somewhat arbitrary. the head/neck
division seems to work reasonably well for many figures.

In a more flexible system. a user would be provided with interface options to
override arbitrary implementation decisions such as the placement of the head/neck
division just mentioned. Nevertheless. providing too many such controls could over-
whelm a user and
this research has focused mainly on automation of the processes involved. it has ne-
glected the issue of user control to some degree. In Chapter 10. a workable interface
is proposed that offers a compromise between user interaction and automation.

With the head-to-tail chain divided into sections. adjustments can now be made
to the chain so as to make it more anatomically appropriate. Since the spinal column
for most vertebrates runs along the center of the dorsal side of an animal’s trunk.
the trunk portion of the head-to-tail chain is adjusted dorsally. This is accomplished
by examining the distance map spheres for sample trunk voxels of the chain and
creating a replacement trunk section that is offset dorsally by 70% of the radius of
each respective distance map sphere.

The cervical vertebrae for many vertebrates (especially those whose heads typically
overhang the front portion of their bodies) form a mild S shape. For these animals.
the joint between the first cervical vertebra and the cranium (at the top end of the
S) is fairly high in the neck region. In order to imitate this characteristic in animal-
like figures, a replacement section for the portion of the head-to-tail path near the

junction of the head and neck sections is computed. The replacement section is also

offset in the dorsal direction. Instead of using distance map spheres, however, rays
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Figure 8.1: Head-to-tail chains and the adjusted head-to-tail chains of a horse and a
human. The location of the adjusted chain is a better approximation to where the
spine of the creature would be. The original head-to-tail chain is shown in black. and
the adjusted chain is shown in dark gray. Silhouettes of the girdle spheres for each
figure are also shown.

are cast dorsally from the corresponding voxels of the head-to-tail path. and points
along these rays are used to create the offset path.

The head-to-tail path, having been modified with appropriate replacement sec-
tions. is then smoothed in an operation similar to that described in Section 5.2.4.
Figure 8.1 show the results of making these adjustments to the head-to-tail paths for
a horse and a human figure.

The head section of the path is fixed as a rigid segment of the axial control
skeleton. and the rest of the modified head-to-tail chain is then divided into a series

of vertebral segments, each having the same length. Experimentally it has been
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determined that having segments that are approximately one third the length of the
head segment provides a reasonable number. This seems to allow good flexibility of
the spinal column while not overwhelming a user with the otherwise large number
of joints that a real spinal column would possess. A joint is created between each

consecutive pair of vertebral segments as well as between the head segment and the

the vertebral segment that best corresponds to the location of the midpoint of the
hindmost pair of limbs: this joint serves as the root joint for the control skeleton. The
root joint and the vertebral joints each have have three rotational degrees of freedom
(DOF's) by default. The axes for these DOF's form an orthonormal basis. The z-axis
points tangentiallv along the smoothed head-to-tail path in the direction away from
the root joint. the y-axis points in a distal direction. normal to the head-to-tail path.
The x-axis points laterally to complete a right-handed coordinate system. Movement
about the three axes can be constrained by setting fairly restrictive joint limits. The
segments and joints created for the horse are visible in Figure 8.2 in the next section.

Within the head of the figure, a jaw segment is created if the head portion of the
level graph reveals the presence of a jaw. In animal-like figures. this means that the
head section of the level graph has a branch that extends downward and outward
from the main line running to the nose region; for human-like figures. any jaw branch
is expected to extend forward from the main line running to the tip of the head. The
jaw segment is attached to the head segment by a single joint. the parameters of
which are set so as to permit hinge-like motion about one axis. This completes the

formation of the axial portion of the control skeleton.
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8.2 The Appendicular Skeleton

The appendicular portions of the control skeleton are formed in a template-based
manner depending on a few characteristics: whether the figure is human-like or
animal-like: whether a particular pair of limbs has been classified as arms. legs. or
wings: and whether a particular pair of limbs has separated digits. The basic ap-
proach is to create a partial control skeleton in independent fashion for each pair of
limbs and then to attach it to the axial control skeleton.

The first step in the processing of a pair of limbs is to determine the type of girdle it
needs for attachment to the axial skeleton. Based on the discussion in Chapter 6. two
tvpes of girdles are possible: a pectoral girdle and a pelvic girdle. The pectoral girdle
is modeled as two independent segments corresponding to the two independently
mobile scapulae. The pelvic girdle is modeled as a rigid extension to the vertebral
segment to which it is attached. Arms. wings. and the foremost pair of legs (provided
there are at least two pairs of legs) are provided with pectoral-style girdles. single
pairs of legs or all leg pairs but the first are modeled with pelvic girdles.

The method for creating the girdle segments differs for human-like and animal-
like figures. Both methods involve examining the sphere for the voxel on the original
(centralized) head-to-tail path closest to the midpoint of the limb-to-limb path. The
limb-to-limb path is assumed to intersect this ‘girdle sphere’, and for most figures
with fairly circular cross-sections, the assumption holds. For figures with more ob-
long cross-sections. the limb-to-limb path may not intersect the girdle sphere. For
simplicity in this particular implementation. however. the single girdle sphere is as-

sumed to suffice, and the limb-to-limb path is assumed to intersect that sphere.
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For human-like figures. the shoulder joints and the hip joints are modeled as being
at the voxels of the limb-to-limb paths just outside the reach of the girdle sphere. Any
limb segments created are thus exterior to the girdle sphere.

For animal-like figures. the process is more involved. Instead of becoming places
for shoulder or hip joints, limb-to-limb path voxels just outside the girdle sphere are
used as positions for the knee joir ! v joints of the limb pair 16 The shoulder
joint locations or the hip joint locations are then computed to lie inside the girdle
sphere. These interior joints are positioned such that they roughly preserve the width
between the outside joints (that is. the elbow or knee joints), so that theyv allow for the
scapular/coxal segment and the humerus/femur segment to be of roughly the same
length, and so that they are offset in the anterior direction for pectoral girdles or in
the posterior direction for pelvic girdles (see Figure 8.2). This method of positioning
the shoulder and hip joints was determined experimentally. and it appears to work
reasonably well in most cases.

The portions of the limb-to-limb paths outside the girdle sphere are then smoothed
and divided into segments. The segmentation depends on whether the figure has been
identified as human-like or animal-like and also on whether the limbs stem from a
pectoral-style girdle or a pelvic-style girdle. Each separate limb path exterior to the
girdle sphere is divided according to the ratios presented in Table 8.1. The ratios
are meant to correspond to the relative lengths of the various bones from a limb

of that type. Note that in the segmentation of the limb paths for animals. the

humerus/femur measurement is not used. since that segment is aiready accounted for

$The motivation for this comes from a heuristic in artistic anatomy: the elbow and knee joints of
quadruped animals are located approximately at the same height as the line of the creature’s belly.
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Figure 8.2: The girdle spheres and the control skeleton for the horse. The pec-
toral girdle sphere gives rise to the segments corresponding to the scapulae and the
humerus for each forelimb; the pelvic girdle sphere is used to generate the segments
corresponding to the pelvis and the femur of each hind limb. The remainder of each
limb is segmented based on the data in Table 8.1.
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Bones within Animal Animal Human | Human

the Segment Forelimb | Hind Limb | Arm Leg
humerus/femur 149 175 190 180
radius-ulna/tibia-fibula 154 174 150 160
carpals/tarsals 22 35 20 30
metacarpals/metatarsals 8 89 36 30
proximal phalanx 29 29 25 12
middle phalanx 19 19 15 35
distal phalanx 16 17 10 3

Table 8.1: The ratios used in the segmentation of the limbs. Each column shows the
relative lengths of the segments for that type of limb. Note that the data are relative
only within a column and not between columns. The data were derived from analvses
of images in various references on anatomy [EBD36. Par88. Mad94].

from the processing of the girdle sphere. Figure 8.2 shows the results obtained for a
figure of a horse.

Recall that an analysis of appropriate regions of the level graph (described near
the end of the previous chapter) is used to determine whether a limb has a single
digit or multiple digits. If a limb is identified as having multiple digits. then further
examination of the branching structure of the region is performed to label one of the
level graph vertices as a wrist or ankle vertex.

For a limb with only a single digit, the segmentation is fairly straightforward. as
the whole limb path can be partitioned according to the ratios in Table 8.1. For limbs
with multiple digits. however, the segmentation occurs in phases - one phase for the
the portion of the limb proximal to the wrist or ankle. and an additional phase for
each digit the limb has. In the phase for the proximal portion of the limb. that part
of the path is divided into two sections for animal-like figures (the carpus/tarsus and

the lower arm/leg) or into three sections for human-like figures (the carpus/tarsus.
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the lower arm/leg. and the upper arm/leg). The relative sizes or these sections are
again based on the data in Table 8.1. Before the segmentation can occur for the
digits. corresponding voxel paths must be generated. For each limb. the DMS voxel
set corresponding to the wrist/ankle vertex is examined to determine the deepest
DAIS voxel (the one with the greatest distance map value). Similarly. the DMS voxel
sel corresponding o tie level graph vertex at tite end of each digit is examined. and
the DMS voxel with the greatest heart value is chosen as the end-effector point for the
digit. For each digit. a centralized path is computed between its end-effector point
and the wrist/ankle voxel. The digit closest to the centerline of the body is assumed
to be the first digit (corresponding to the thumb or the big toe). Each digit path
other than that of the first digit is divided into four segments whose relative lengths.
ordered distally to proximally. conform to the ratio 10 : 15 : 25 : 36 (see Table 8.1).
The first digit is divided into only three segments according to the ratio 15: 25 : 36.
Examples of the skeletonization for multiple digits is seen in Figure 8.9 on page 193.

In vertebrates with wings. the bones of the wing generally lie along the anterior
edge of the wing. In the implementation. when a limb has been identified as a wing.
a post-processing step is performed to shift the joint locations for the wing to the
anterior edge of the wing. Results of this forward shifting are apparent in Figures 8.7
and 8.10.

As alluded to in Chapter 6. the joints for the limbs can be constrained to rotate
according to typical patterns. Shoulder and hip joints are given three DOF's with axes
aligned appropriate to the adjacent segments, and elbow and knee joints are effectively
made into hinge joints by allowing no range of motion about two of the three axes

of the three DOF joints. Wrist/ankle joints are given three DOFs. a simplification
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that combines the roll of the radius and ulna (or tibia and fibula) with the vaw
and pitch of the wrist/ankle joint of humans and animals. Joints between digital
segments are constrained as hinge joints. and joints between the digital segments and
the carpus/tarsus are constrained as hinge joints except for the joint for the first digit.

which is constrained to have two rotational DOFs (no roll).

8.3 Attachment

After the segments and joints of the control skeleton have been constructed. the
polygonal data for the given model must be anchored to that structure. The basic
process is similar to that for the more general algorithm (described in Section 5.2.5):
the first step consists of determining which parts of the voxelization will be influ-
enced by each control segment. and the second step involves setting up a weighted
summation of a set of locally defined anchor points to be used to recompute the global
position of each vertex of the model.

Each segment has a corresponding list of voxels forming the core of its region of
influence within the voxelization. Applyving the inverse distance transform to these
voxels generates a set of spheres. and any voxels interior to any of those spheres
are marked as being under the influence of the segment. In the general algorithm
described in Chapter 3, the core voxels for a particular segment’s region of influence
come directly from the chain of the path tree from which the segment had been
derived. Since the path tree is constructed from the DMS, the core voxels are DMS
voxels.

For the algorithm described in this chapter, the core voxels are selected in a dif-

ferent fashion. Recall that a head-to-tail chain of DMS voxels is computed during
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the construction of the axial portion of the control skeleton. After the vertebral seg-
ments and the cranium segment are constructed. the voxels of the head-to-tail chain
are partitioned into sets corresponding to which of those segments is closest to each
voxel. These sets are used as the core voxels for each segment’s region of influence.
For the jaw segment (if it exists) and for each segment of the appendicular portion

of the colitiol skeletott, the cute voxels ae found LY lntersecling each segiuent with

u
the voxel grid. Using the jaw as an example. the line segment from the mandibular
Joint to the tip of the jaw passes through the set of voxels that form the core of the
region of influence for the jaw. As in the general algorithm. the core voxels are then
expanded into spheres according to their distance values to help form the region of
influence for a segment.

The formulation of the weighted sum is similar to the formulation from Sec-
tion 5.2.5. Each vertex of the model lies within a voxel. and that voxel is contained in
one or more regions of influence. The containing voxel thus dictates which segments
will affect a particular vertex when the control skeleton is animated. Each influencing
segment lends a term to the weighted sum for the position of the vertex. and that
term is the product of an anchor point fixed within the local frame of the segment
and a weight. The weight is derived from the relative proximity of the vertex to that

particular segment.

8.4 Results

Overall, the results of the anatomically based method of generating control skele-

tons are promising. For many human and animal figures, the assumptions built into



the implementation work quite well. The control skeletons have a noticeable anatomi-
cal quality to them, and this closer adherence to anatomy serves to allow more natural
looking motion of the figures.

The algorithm depends on a generalized model of the anatomy of humans and
animals. Because of this. the control skeletons produced by the algorithm for a specific
mnodel may not be as anatomically accurate as a user mignt desire. Nevertheless. the
control skeletons produced are generally of sufficient quality to function as an initial
skeleton worthy of manual tweaking.

Because the algorithm uses heuristics based on human and animal anatomy. a
comparison of the results with the actual anatomy of such creatures seems in order
where possible. A few comparisons pertain to many of the figures. Anatomically
speaking. each of the figures would have a jaw. If the jaw is not discernable as a
separate protrusion of the voxelization, however. then no jaw segment is generated
by the algorithm. The same comment holds true for the digits of creatures. and this
explains why some of the hands. feet. and paws seen in the diagrams have onlv one
digital extension of the control skeleton when the true anatomy would reflect several.
As mentioned previously. a compromise has been made with respect to the number
of spinal segments in the control skeleton. The anatomy would argue for many more
spinal segments (and that they be of varying length according to body region). but
any benefit of having as many as the anatomy would dictate would probably be
overshadowed by the extra time consumed by an animator to control them all. Each
of the following paragraphs will make specific comparisons with regard to one of the
anatomically based control skeletons generated by the algorithm (Figures 8.3, 8.5,

and 8.7 through 8.10).
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Figure 8.3: Anatomically based control skeleton for a horse. For comparison with
actual horse anatomy. examine Figure 9.2 on page 202.

The control skeleton structure generated for the horse is shown in Figure 8.3.
Figure 8.4 presents a few poses of the horse using this control skeleton. To agree more
with the real anatomy of a horse (see Figure 9.2), a few changes would be necessary.
The joint proximal to the head segment should be farther forward. slightly behind the
ears. Also. the vertebral segments in the thorax should extend farther forward before
the § shape of the cervical vertebral segments is realized. The scapular segments
should be farther forward as well so that the shoulder joint is at the front of the
figure. Finally. the segments in the legs should extend farther into the hoof regions
of the feet. and the segments in the tail extend too far to be anatomically accurate.
since the bulk of a horse’s tail is hair. For control purposes. however. an animator
would probably want the tail segments to extend as far as theyv do in Figure 8.3.
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Figure 8.4: The horse in various poses. Each pose is the result of manually assigning
values to the joint angle parameters of the control skeleton in Figure 8.3.
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Figure 8.3: Anatomically based control skeleton for a human figure.

Figure 8.5 shows the skeletal structure generated for a human figure. and a few
related poses of the figure are seen in Figure 8.6. In comparison to human anatomy.
the shoulder joints in the figure should be farther away from the spine and higher up
in the body as well. Note that the control structure has been built using segments
corresponding to the scapulae instead of segments corresponding to the clavicles. Us-
ing clavicular segments is probably the more common method when a control skeleton
is manually designed. The decision to use scapular segments in the implementation
was based on the generalization that all tetrapods have scapulae, whereas not all

tetrapods have clavicles.
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Figure 8.6: A human figure in various poses. Each pose is the result of manually
assigning values to the joint angle parameters of the control skeleton in Figure 8.5.
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Figure 8.7: Anatomically based control skeleton for a bird.

The anatomically based control skeleton for a bird can be seen in Figure 8.7. Even
though the model is not an anatomically accurate model of a bird. a few things are
worth noting. The real anatomy of a bird has much less flexibility than the control
skeleton shown. This is because the thoracic. lumbar, and sacral vertebrae of a bird.
as well as its sternum. ribs, and pelvis, are typically fused into two large. rigid bony
masses. Discussion of the control skeleton in the tail region of the bird parallels that
of the horse’s tail. The hindmost portion of a bird’s tail is populated by feathers. not
by bones and tissue. Lastly, the knee joints in the figure should be farther forward,
and the ankle joints should be higher up in the legs and farther toward the rear of
the legs as well.

Figure 8.8 shows the skeleton generated for an asymmetrically posed dog. The

joint proximal to the head segment is obviously incorrect - it should be at the rear
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Figure 3.8: Anatomically based control skeleton for a dog. Note that the asymmetric
pose was present in the given model before it was processed by the algorithm.

of the head and not quite as high as it is. To better agree with a real dog’s anatomy.
the segments corresponding to the femur. tibia and fibula. humerus. and radius and
ulna should be longer, and the metatarsals should be shorter. These changes would
result in the ankles being lower and thus more accurately placed. A dog also has
multiple digits, so the earlier comment about having a single group of digital segments
also pertains here. The scapular segments should be farther forward, and the pelvis
(represented as the two segments joining together just above the spine) should be
farther back — this includes the point at which it joins the spine as well as the hip
joints. The knee joints should be lower. Note that the caudal vertebrae of a dog do

tvpically reach to the tip of its tail.



Figure 8.9: Anatomically based control skeleton for a cartoon-style human figure.
Note that the model is segmented: the darker regions show how the different parts of
the segmented model overlap.

The control skeleton generated for a cartoon-style human figure is shown in Fig-
ure 8.9. With the model having cartoon proportions (and non-anatomical extras such
as the hat). the anatomical heuristics are likely not to work as well. Given the skeletal
structure shown. an animator would likely desire a few changes. The shoulder joints.
the hip joints. and the knee joints should be raised, and the elbow joints should be
pushed farther back toward the elbow’s typically bony protrusion. The ankle joints
should be moved into better position at the bottom of the shanks. thus lengthening
the foot segments as well. The head segment should be longer. and this would perhaps

be best accomplished by folding the top two vertebral segments into that of the head.
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Figure 8.10: Anatomically based control skeleton for a dragon.

Of final note, the joints proximal to the metacarpal segments are coincident (the same
holds for the hands in Figure 8.5). Whereas this is probably seen as acceptable for
animation purposes, it is not anatomically accurate, since anatomical joints are never
coincident.

The final control skeleton shown is that of a dragon (Figure 8.10).}7 Since it is a
mythical creature (and modeled in a cartoon style as well), its anatomy is unknown.
From an animation stance, the vertebral segments in the neck region of the figure
should probably be farther toward its dorsal side. and the shoulder joints should

probably be closer to the wings. Finally, the number of segments in the arms and

"The dragon model is available with the Teddy package [IMT99, Iga99].
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legs could probably be decreased. as the digital segments are perhaps unnecessary for
the model.

The processing time required for the models ranges from about five seconds (in
the case of the horse) to about two and a half minutes (in the case of the human

figure). The computation was performed on a Silicon Graphics O2 (R3000 Processor

bones. which is discussed in the next chapter. As with the algorithm in Chapter 3.
the computation time is primarily dependent on the number of interior voxels used
to approximate the models.

A few more general points should also be noted:

e If the limb sections of a model (in the eves of a user) have strange proportions
(perhaps incredibly long forearms). then the segmentation resulting from the
application of the ratios in Table 8.1 may not be appropriate. An example
of this is seen in the legs of the cartoon character in Figure 8.9. Also. for a
model of some mythical creature whose hypothetical anatomy does not closely
resemble that of most vertebrates. the control skeleton generated may or may
not be similar to what the user had expected. In general. the more closely a
model conforms to the constraints listed in Chapter 7. the better the results of

the algorithm are.

e With respect to assigning both joint frames and joint limits. the algorithm
produces mixed results. Correct or appropriate assignments of joint frames and
limits requires having the given figure in a default pose. The constraints listed
in Chapter 7 are not stringent enough in this regard: however, making them
more strict would limit the applicability of the algorithm.
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For animal-like figures. the implementation has assumed a default pose similar
to that of the horse in Figure 8.3: for human-like figures. the default pose is
similar to that of the model in Figure 8.5. When the pose of a given model
deviates from the default. the joint frames for the generated skeleton may not

align in a convenient fashion (for instance. the hinge axis for a knee or elbow

Of course. if the joint frames are not set up properly. assigning joint limits

makes little sense.

Note that if the default poses were required of input models. then the algorithm
could be redesigned to take advantage of the svmmetric nature of the default
poses. Instead of computing the axial skeleton as described in Section 8.1. for
instance. the algorithm could examine the cross section of the model in its plane
of symmetry. Thus. 2D techniques could be used to generate the axial skeleton.
leading to easier computation with more desirable and predictable results. The

process of pairing limbs would also be made easier.

As mentioned previously, some assumptions have been hard-coded into the im-
plementation. An example of where this has a negative effect is seen in Fig-
ure 8.8: the neck region for the dog is fairly short in comparison to its head,
so arbitrarily marking the head/neck division as described in Section 8.1 pro-
duces poor results for that region of the control skeleton. Again. a more flexible
system could offer the user choices that could alleviate such problems. but the
intent here has been to gather experience on how much can be done without

requiring such assistance from the user.
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e One could obviously argue the need to expand the girdle sphere into a shape
that more closely matches the cross-section of the trunk at the location of the
girdle. This might allow for a more robust treatment of the girdle sections
of the control skeleton. [t would probably not be too difficult to extend the
implementation in such a manner. perhaps modeling the cross-section region as

a eollection of spheres centered on the medial avis of the cross-section

- Sgwy PRep s [

Clearly anatomically based techniques are not always appropriate. When more
realism is called for. the algorithm provides a useful starting point. When less realism
is desired. such as with a cartoon-style figure. anatomically based techniques may be of
only limited usefulness. The next chapter delves more deeply into anatomically based
modeling. describing how component models of bones can be produced in automated

fashion to enhance the anatomically based control skeleton.



CHAPTER 9

CREATING ANATOMICAL COMPONENT MODELS

This chapter discusses how component models of anatomical systems such as the
skeleton and musculature can be used to help flesh out a control skeleton into a layvered
deformable model for a figure. Section 9.1 presents a generalized skeleton model and
describes how it can be grafted onto an anatomicallv appropriate control skeleton as
compited in the previous chapter. Results and possible improvements are discussed.
Section 9.2 proposes how a similar idea might be applied in generating a musculature
for an arbitrary human-like or animal-like figure. Finally. Section 9.3 briefly describes

the role of modeling other supporting tissue and a skin surface.

9.1 A General Skeleton Model

The general model that has been implemented is fairly simple. It consists of a
set of normalized bone models derived from data models of human skeletons. Models
of human skeletons are more readily available than models of animal skeletons, and
except for a few special cases, most animal bones can be approximated fairly well by
using modified versions of human bones.

The model contains both axial and appendicular sections. The components of the

axial skeleton include a cranium and mandible for the head. a generic vertebra, and a
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rib cage. The components of the appendicular skeleton consist of two parallel groups
of bones. a pectoral group and a pelvic group.

The cranium and mandible are created and scaled based on the length of corre-
sponding segments of the control skeleton: their widths and heights are computed
using distance map values in an attempt to occupy as much interior space in the
head as possible.
is instanced once for each vertebral segment of the control skeleton and scaled in an
appropriate manner. The length of the instanced model is determined by the length
of the vertebral segment. For neck and trunk vertebrae. the width of a vertebra in-
stance is one twelfth of the diameter of the largest sphere within the trunk of the
figure (computed by examining distance map values). For tail vertebrae. the width
begins with the same measure as the trunk vertebrae but tapers off in a geometric
progression with a decrease of 10% between each successive pair of vertebrae. The
specific implementation does not necessarily correspond in any anatomical or biologi-
cal sense. but it provides visually reasonable results; the intention is merelyv to mimic
the tapering evident in the tail bones of real skeletons.

For the rib cage. instantiation is more involved. The girdles of limb pairs that are
arms. wings. or forelegs are assumed to be pectoral girdles (all other leg girdles are
treated as pelvic girdles). The girdle spheres for the limb pairs with pectoral girdle
are examined to determine how many there are and whether anyv of them overlap.
The spheres are partitioned into groups according to which ones overlap. and a rib
cage is created for each group. Each rib cage is set up to be in agreement with the
vertebrae to which the ribs would be attached; the sizing of the rib cage is determined

by the by the size of the girdle sphere or group of spheres.
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For limbs with a pectoral girdle, instantiation of numerous bone models is per-
formed. Each pectoral limb is provided with a scapula, a humerus. a radius and an
ulna, a group of carpals. and. for each digit. a metacarpal and a set of phalangeal
bones. These bones are scaled to lengths to correspond to their respective segments of
the control skeleton. and for all but the scapula. to widths according to distance map
. and its arientarion
is computed so that the scapula has an approximately tangential relationship to the
rib cage filling out its corresponding girdle sphere.

Limbs with pelvic girdles are instantiated in a similar manner as the pectoral
limbs. They are provided with scaled versions of the femur for the thigh segment
and the tibia and fibula as well as the patella for the shank segment. and a group
of tarsals for the ankle segment. Each digit is provided with a metatarsal and two
or three phalangeal hones. The pelvis is instantiated as a single bone fixed within
the coordinate space of the nearest vertebral segment, positioned and scaled so as to
place the sockets of the pelvis roughly at the locations of the hip joints of the control

skeleton.
9.1.1 Results and Discussion

Figures 9.1 and 9.3 through 9.5 show the results of instantiating bone models for
various control skeletons from the previous chapter. Scaling the components of a
human skeleton and placing them within the segmented hierarchy of an anatomically
based control skeleton produces acceptable results, but there is room for improvement.
Earlier results confirmed that simply scaling a human skull to appear as the skull of an

animal, for instance. produced little more than a strangely scaled version of a human



Figure 9.1: Bone models generated for the skeleton of a horse. See Figure 8.3 for
the corresponding control skeleton. Compare the image above with the anatomical
illustration in Figure 9.2.

201



/I PR

Figure 9.2: Anatomical illustration of the skeleton of a horse (based on a figure in
[EBD36]).



Figure 9.3: Bone models generated for the skeleton of a human figure. The corre-
sponding control skeleton can be seen in Figure 8.3.



Figure 9.4: Bone models generated for the skeleton of a cartoon-style human figure.
Figure 8.9 shows the underlying control skeleton.
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Figure 9.5: Bone models generated for the skeleton of a dragon. The control skeleton
itself is shown in Figure 8.10.
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skull with very little resemblance to the expected animal skull. For that reason. a
generalized animal skull has been modeled and used for the animal-like figures shown
here. Creating additional bones for the hands and feet of the human in Figure 9.3
and for the feet in Figure 9.4 could generate pleasing results. but such extras might
not animate well when fixed to the single digit control skeleton for that portion of
the hiand or fuot.

Typically. any particular bone of a creature (a skull or a femur. for example) is
recognizable as an instance of that particular type of bone even though it mayv come
in a variety of distorted forms specific to the kind of animals from which it came. This
recognition is due primarily to the features that the bone possesses (the eve sockets
and nasal cavity of the cranium. or the rounded head of the femur that helps form
the ball-and-socket joint of the hip). Standard scaling of bone models along three
independent axes often causes too much distortion of these features (in the case of
the femur. for instance. the rounded head might take on too much of an ellipsoidal
shape).

For more realistic skeletal models. several things could be changed. First. indi-
vidual bones of the system might best be described in a procedural fashion. Local
parameters could then be specified that would determine not only the length and
girth of the bone’s basic shape but also the positions and sizes of the defining fea-
tures of the bone. Such feature-based rescaling would allow better reproduction of a
bone group like the cranium or of single bones like the femur.

The entire skeleton could be set up in a modular way with procedurally defined
groups of bones. The axial skeleton could be instantiated through the use of various

global parameters to have more or fewer cervical, thoracic, lumbar. sacral. and caudal
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vertebrae, as well as to have more or fewer ribs. Other global parameters could specify
the sizes of the chest cavity (to determine the overall size of the rib cage and each
rib in it) and the head (to determine the overall and relative sizes of the cranium
and mandible). and still others could specify which individual bones might be fused
together. Such global parameters would provide for recommended sizes of bone groups
and the bones within thein. local paraineters could then Le spedified for individiial
bones if it were necessary to override or adjust the global defaults.

Such parameterization could also be used for the appendicular skeleton. the im-
plementation of which would be capable of generating individual limbs. For each limb
generated. a half-girdle and an attached five-segment limb could be formed. Parame-
ters might allow the specification of the relative sizes of the girdle bones and of each
segment, as well as their default girths. Other parameters could dictate how many
digits would be present on each limb to enable the production of anything from a
horse’s limb skeleton (one digit) to a human’s pentadactyl limb skeleton. Boolean
parameters could be set as to whether a limb was to take a forelimb or hind limb
orientation (note that the elbow of vertebrates generally points caudally and the knee
cephalically) and as to whether a limb was on the left or right side of the body. Gen-
eral functionality of the limb might also be specified as a parameter. For planted
“hands” or feet, this could enable separate instantiation of plantigrade (flat-foot. like
a human), digitigrade (walking on curved digits, like a cat), and unguligrade (walking
on fingertips, like a horse) feet. Such a parameter could alternatively specify that that
iimb was to be a wing or non-supporting arm.

There are a few problems with such an approach, however. If the goal is to

have an automated algorithm. then the large number of parameters that would need
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to be incorporated would likely make an implementation infeasible. Automatically
assigning values to such parameters might be possible for a veryv constrained set of
figures (a horse. for example). but that would limit the usefulness of the svstem for
fleshing out other figures.

Another problem concerns the amount of realness necessary for a given figure.

internal tissues for a cartoon-style person or animal?

9.2 A General Musculature Model

Though no modeling of the musculature has been implemented in the course of this
research, it is not hard to imagine how a generalized musculature could automatically
be generated. The following discussion draws from the analysis in Chapter 6 and some
of the research described in Section 2.4.

A full set of muscles for an arbitrary vertebrate would probably be too difficult
and time-consuming to model. not to mention too much of a computational burden:
simplifications and generalizations seem called for. The musculature model would
depend upon the underlying model of the skeletal system. so it might work best
to have muscle groups defined in a procedural fashion relative to the locations of
the individual bones of that system. Each generic bone model could have default
locations for the origins or insertions of the muscle models that would attach to that
bone. These default locations would relate to the patterns of muscle footprints on

the bones as identified in the comparative anatomy literature.



As for the actual modeling of any individual muscles. an approach such as that of
Scheepers [Sch96. SPC\97] would likely be sufficient. This would allow for instanti-
ation of relatively simple fusiform muscles or for the more complex arrangements of
muscle groups in the chest and back.

For the axial muscles. a standard pattern of both oblique and longitudinal muscles
could be created along the spinc {the cpaxial muscles) that would respond to arching
or to lateral bending of the vertebral column. Each muscle would originate on one
vertebra and insert on one or more other vertebrae or possibly on the base of the skull.
Simplified jaw muscles could also be modeled. A pattern of body wall muscles (the
hypaxial muscles) could also be generated. though it should be noted that since these
muscles function mainly to contain the innards of the trunk. it may be necessary to
have a simple model of the innards as well.

As for the appendicular muscles, there could be two standard templates of limb
muscles. one for the pectoral girdle and anterior limbs and another for the pelvic
girdle and posterior limbs. For a forelimb. the extrinsic appendicular muscles could
be simplified to consist of the trapezius and the latissimus dorsi on the dorsal side
of the figure and the pectoralis on the ventral side. Models of the intrinsic muscles
might include the deltoid, the biceps and triceps. the brachioradialis. and perhaps one
or two forearm muscles that flex or extend the “hand”. For a hind limb, the models
could include the gluteus maximus, the quadriceps. biceps femoris. gastrocnemius.

and a flexor for the foot.



9.3 Fatty Tissue and Skin

The main reason for creating component models of bones and muscles is to have
the skin surface of the animated figure deform in a manner one would expect for a
human or animal. Muscles and bones alone. however. are not enough to support a
believable skin model for a complete figure. For this reason. additional models for
shape-holding tissue (such as the cartilage in a figure's ears) or for fatty deposits
on a figure would be useful. A simple model such as that of Wilhelms™ “stuffing”
[Wil94. Wil97] would probably work well.

As for the modeling of the skin surface itself. one of two approaches could be
used. The first possibility would be to generate a completely new skin as a surface
offset from the underlying bone. muscle. and stuffing models. as is done by Wilhelms
[Wil94. Wil97]. The original polygonal data defining the figure would simply be
discarded. An alternative approach would be to keep the exterior polvgons from the
original data and to anchor their vertices to the underlving anatomical components.
This is the method of Schneider and Wilhelms [SW98]. Both approaches to skin

modeling have been set up in an automated fashion.



CHAPTER 10

CONCLUSION

10.1 Summary

This research began from a conversation with an artist who was describing the
time-consuming task of building control skeletons for figures he wanted to animate.
The author made a suggestion postulating the automation of the process. and the
idea was met with such excitement and enthusiasm from the artist that the author
became driven to pursue its realization. After several early attempts that produced
somewhat mixed results, the author embarked on the approach that is described in
this document. Although the main thrust of the research has always been the auto-
mated generation of control skeletons for arbitrary figures. the research has expanded
to include the development of supportive algorithms as well as various extensions to
the original concept.

Two basic solutions to the problem of automatically generating control skeletons
have been designed and implemented. The first solution maintains the generality
of the original idea for the research by allowing the skeletonization of almost any
polygonal model. It is based on a purely geometric analysis of the given model. The

other solution is more restrictive about the models with which it can work, assuming
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them to be human-like or animal-like figures. It relies not only on a geometric analysis
of the model but also on an anatomical assessment of the model and on anatomically
based heuristics. For most human-like or animal-like figures. it is capable of producing
a more anatomically accurate control skeleton than the general solution.

The algorithms for each solution begin by constructing a voxelization of the polveg-

proximation to a Euclidean distance map (EDM). This map represents the depth of
each voxel from the surface of the figure. The distance map is then processed by an
algorithm that extracts the discrete medial surface (DMS) for the object by tracking
the ridges implied within the map. Information from the EDM and the DMIS is used
at various points within both control skeleton generation algorithms.

For the more general algorithm. the DMS is used as the domain for the generation
of a tree-like structure of voxel paths. The set of paths is then smoothed and divided
into a series of interconnected segments. These segments and the intervening joints
form the base structure for the control skeleton. Each segment corresponds to a
chain of DMS voxels. and applying the inverse distance transform to each voxel of a
chain helps reveal the region of the model’s interior over which a particular segment
should exert influence. These regions of influence are used to determine the set of
control segments to which a vertex of the original model should be anchored. After
the polygonal data has been attached, it will be deformed appropriately whenever
the pose of the control skeleton is changed.

The anatomically based algorithm uses some additional tools. The voxels of the

DMS are partitioned into sets according to an analyvsis of the shortest paths between
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its voxels. and a graph called the level graph is constructed based upon the connec-
tivity of these sets. The level graph is processed using a few simple heuristics in
order to determine the anatomical features present in the model. Parts of the level
graph and DMS are classified as particular body parts of the figure. and voxel paths

within the DMS are generated for each of those body parts. These paths are modified

of what might be expected of an anatomical skeleton for the figure. Other heuristics
are invoked to produce a segmentation of the paths that is meant to correspond to
expected joint locations for that anatomical skeleton. As with the general algorithm.
the inverse distance transform is used to help anchor the model’s vertices to the seg-
ments of the control skeleton. The articulation capabilities of the control skeletons
produced by the anatomically based algorithm are believed to be reasonable accurate
with regard to the anatomy that the model might be expected to possess.

As an extension to the anatomically based algorithm. the svstem can automati-
cally produce individual models of bones. Thus, polygonal models of the bone struc-
ture of a human-like or animal-like figure can be generated. Since the individual bone
models are constructed within the coordinate spaces of the appropriate segments of
the control skeleton. the bones will move in accordance with the control skeleton.

These models provide a foundation for further anatomically based modeling.

10.2 Contributions

The following list presents the main contributions of the research:

o A fast algorithm for fully automatic generation of control skeletons for 3D mod-

els. With the aim of alleviating tedium and shortening the time required for
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a user to create a control skeleton for a given model. an algorithm has been
designed and implemented that automates the entire process. In relatively lit-
tle time and with very little user input. the algorithm produces a reasonable

control skeleton for a wide variety of polvgonal models.

Use of anatomical knowledge to improve automatic skeleton generation for
human-like and animal-like figures. Drawing from sources on comparative
anatomy. an algorithm has been developed and implemented to generate more
anatomically appropriate control skeletons for certain common classes of fig-
ures. The articulation abilities of these control skeletons are designed to mimic
the expected flexibility of the figure. For the most part. the algorithm operates
quickly and produces control skeletons that are quite reasonable for animating

the given figures in a realistic fashion.

A variant of a contour propagation algorithm for approzimating the Euclidean
distance map in 2D or 3D. The details of the algorithm are explained clearly. and
the algorithm operates in an intuitive manner. Its implementation is straight-
forward. and it offers a very close approximation of the EDM. The algorithm
may be extended in a straightforward fashion to compute close approximations
to the EDM in any dimension. Furthermore, regardless of the dimension. the

algorithm maintains a linear time complexity.

An approach for computation of the discrete medial azis for a 2D object and
the discrete medial surface for a 3D object. Using a contour-based approach.
the algorithm offers incremental computation of the DMA or DMS that. at any

stage of the execution. is accurate for the set of voxels that have already been
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processed. [t operates under nearly linear time complexity and can be readily

extended to higher dimensional spaces.

Use of the inverse distance transform in automatically anchoring surface points
of a rmodel to control skeleton segments. The Euclidean distance map. through
the application of the inverse distance transform. offers a convenient means to
help determine the skeletal segments that should exert influence over rhe various
regions of a figure. Combining this process with a simple weighted average of
anchor points fixed in the frames of those influencing segments provides an
effective technique for attaching the surface points of the model to the skeletal

segments in a flexible manner.

Automatic generation of bone and joint anatomy for a 3D model. Having con-
structed an anatomically appropriate control skeleton. the system can generate
individual component models for the bones of a skeletal system. These bone

models could be used as a base layver for further anatomically based modeling.

10.3 Future Research

This research offers useful approaches to the problem of automatically generating

a control skeleton for use in animating a given figure. There are several avenues for

improving or extending the research.

One way of improving this research would be to allow for an adaptive voxelization

of the figure. This could involve the adaptive subdivision of an initially coarse vox-

elization, possibly through the use an octree. Various regions of the figure could thus

be partitioned with differently sized voxels so that there would always be an appro-

priate number of voxels representing those regions. [t may be possible to automate
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the adaptive subdivision based on a distance map computation to ensure that the
centralized portions of the DNIS are computed at a sufficient discrete depth from the
surface. This would allow the DMS to approximate the continuous medial surface at
an appropriate level for any region of the figure. This could help to centralize the
control skeleton better in various parts of the figure as well as to ensure that the
ectively represents both the main
and legs. for instance) as well as its finer protrusions (such as the fingers).

Related to the idea of adaptively computing the DMS is the hierarchical DMA
concept of Ogniewicz and Kiibler [OK95. Ogn93]. discussed on page 2.2.1 of this dis-
sertation. [t may be that similar ideas could be developed for computing a hierarchical
DMS and for automatically pruning that DMS to a representative level appropriate
for an object. Fruits from such research could benefit automatic generation of control
skeletons. not just in regard to having a control skeleton whose complexity is appro-
priate with respect to a given model. but also with respect to modifving that control
skeleton to have more or less detail in appropriate regions.

Perhaps a sort of hierarchical control skeleton could be generated automatically for
a given object. Such a structure might offer various levels of detail (LOD) with respect
to the articulation of a particular model by allowing the instantiation of a specific
control skeleton at any of a number of levels of complexity for that model. These levels
of articulation could be defined either with respect to the one original surface of the
model or with respect to several different LOD representations of that original surface.
In the latter case. as an animation switched between different LOD representations,
so would it switch between different level of articulation representations of the control

skeleton.



[t might even be possible to generate appropriate LOD representations by devel-
oping a specialized mesh compression algorithm. The compression algorithm. when
given a polygonal data model and its hierarchical control skeleton. would produce
specific LOD representations of the model (for specific instances of the control skele-

ton) with the goal of preserving surface details in correspondence with the flexibility

Another area for extending the research involves the anatomical models. Proce-
durally defined models of bones could significantly improve the results of automated
generation of a skeletal system for a given figure. Automated generation of a figure’s

musculature is another possibility for future work.

10.4 Final Thoughts

This research has focused on the idea of automation. Although automation is
a very powerful tool. it does have limits. With this research. the automation ap-
proaches a breaking point when applied to anatomically appropriate control skeleton
generation. A type of “software bloat” starts to creep in as the implementation grows
ever larger. becoming more and more like an expert svstem whose goal is to handle
all the special cases that the diversity of the natural world can bring.

Instead of trying to automate everything, it might be useful to have a healthy
combination of automation and user interaction. The more mathematically or geo-
metrically tedious affairs lend themselves well to programmatical solutions. but the
elements that require a higher level of intelligence are probably best left in the hands

of a user.
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The best platform for constructing control skeletons would probably be a combi-
nation of three main elements. First. it would have a group of relatively standard
but well-designed user interface tools for manually constructing or modifving control
skeletons. The second element would be a set of templates for commonly animated

figures. The templates would be designed to produce prefabricated control skeletons

spect to the user's model. Templates would be provided not just for generic bipeds
and quadrupeds. but also for more specific creatures: different types of birds. rep-
tiles. mammals. and so forth. There would be realistic as well as cartoon versions
of the skeletons. Furthermore. the templates would have parameters for dictating
such characteristics as the number of fingers on a hand or the number of segments to
use in the trunk of the figure. Given the continual push towards more anatomically
based modeling. the templates might include complete bone and muscle models for
the creatures. The final element would be a few well-conceived. robustly implemented
routines for automatically generating control skeletons. The control skeletons gener-
ated by these routines would already be positioned inside a given model. so perhaps
only minor tweaking of the results would be necessary. One routine might automat-
ically take one of the prefabricated template-based skeletons as selected by the user
and fit it into a given model. Another routine might create a customized skeleton for
more general figures. It would be designed to handle models that do not correspond
to the standard templates. especially those with numerous appendages or with more
complex branching structures. As was described in Section 2.3. commercially avail-

able animation software already contains the first two elements (though the variety
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of templates is still somewhat limited). [t will probably not be long before the fully

automated methods of control skeleton generation are included as well.



APPENDIX A

GLOSSARY OF ANATOMICAL TERMS

The following is a list of the anatomical terms used in the text. Many of the
definitions are taken directly (either word for word or with minor adaptations) from

one of the following sources: [Ken87. Web84. Mad94. Sch96. Mad83].

abdomen the part of the body between the thorax and the pelvis.
abduct to move a part away from the main axis: the opposite of adduct.
adduct to draw or pull a part toward the main axis: the opposite of abduct.

amphibian any of various cold-blooded. smoothed-skinned vertebrate organisms of
the class Amphibia. such as a frog. that typically hatch as aquatic larvae that
breathe by means of gills. and metamorphose to an adult form with air-breathing
lungs.

ankle the joint that connects the foot with the leg; the proximal segment of the pes.
ankylose to fuse in an immovable articulation.
anterior toward the front; the opposite of posterior.

appendicular skeleton the portion of the skeleton pertaining to the girdles and
limbs.

articulation method or manner of jointing.

axial skeleton the portion of the skeleton pertaining to the trunk, head, and tail.
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ball-and-socket joint a joint allowing three rotational degrees of freedom. such as
the shoulder or hip joint.

biceps brachii the large muscle at the front of the upper arm that flexes and
supinates the forearm.

biceps femoris the large muscle at the back of the thigh that flexes the lower leg.
biped a two-footed animal.
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brachialis a muscle of the upper arm that flexes the forearm.
brachioradialis a forearm muscle that flexes the forearm at the elbow.
brain case the part of the skull containing the brain.

carpals the bones of the carpus.

carpus the wrist: the proximal segment of the manus.

cartilage a tough white fibrous connective tissue attached to the articular surfaces
of bones.

caudal of, at. or near the tail or hind parts: posterior.

caudal vertebrae the vertebrae in the portion of the spine pertaining to the tail.
cephalic located on. in. or near the head.

cervical vertebrae the vertebrae in the portion of the spine pertaining to the neck.

chordate any of the numerous animals of the phylum Chordata. including all verte-
brates and certain marine animals having a notochord.

clavicle a bone linking the sternum and the scapula: the collarbone.

coccyx asmall bone at the base of the spinal column in humans, composed of several
fused vertebrae.

cranium the skull.

deltoideus a thick, triangular muscle covering the shoulder joint, used to raise the
arm from the side.

depress to lower; the opposite of lift.
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digestive tract the system of organs and tissues responsible for digestion.
digit a finger or toe.

digitigrade walking on curved digits with wrist and ankle elevated. as cats and dogs
do.

distal located far from the origin or line of attachment: the opposite of proximal.
dorsal of. toward. or near the back: the opposite of ventral.

dorsoventral axis the line of the body running from the belly to the back.
elbow the joint between the upper arm and the forearm.

embryonic of or relating to an organism in its early developmental stages.

epaxial muscles the dorsal muscles of the trunk and tail: the oblique and longi-
tudinal muscles along the spine. collectively functioning in straightening the
vertebral column and in lateral flexion of the body.

evolution the historical development of a related group of organisms: the theory
that groups of organisms, as species. may change over time so that descendants
differ morphologically and physiologically from their ancestors.

extend to straighten: the opposite of flex.

extrinsic appendicular muscles the appendicular muscles arising on the axial
skeleton or fascia of the trunk and inserting on a girdle or limb.

femur the thighbone; the proximal bone in the hind limb.
fibula the outer and smaller of the two bones in the shank.
flex to bend: the opposite of extend.

forearm the portion of the forelimb between the elbow and the wrist. containing the
radius and ulna.

fusiform tapering at each end; spindle shaped.
gastrocnemius a muscle in the back of the shank that extends the foot.

girdle the pelvis or pectoral arch; the portion of the skeleton between a pair of limbs
and the axial skeleton.

gluteus the large muscles of the buttocks.
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hinge joint a joint allowing a single rotational degree of freedom. such as the knee
or elbow.

hip the joint between the femur and the pelvis: alternatively. the lateral projecting
prominence of the pelvis.

homologous corresponding in structure and evolutionary origin. such as the flippers
of a seal and the arms of a human.

humerus the long bone of the upper arm.

hypaxial muscles the ventral muscles of the trunk: the sheet-like muscles of the
body wall. functioning to flex the spine and to contain the innards of the trunk.

innards the internal bodily organs.
insertion the distal site of attachment for a muscle. as opposed to the origin.

instep the arched middle part of the human foot or the analogous part in animals:
the middle segment of the pes. containing the metatarsals.

intrinsic appendicular muscles the appendicular muscles that arise on a girdle or
limb and insert more distally on the limb.

kingdom the largest taxonomic category into which organisms are placed: Monera.
Protista. Fungi. Plants. and Animals.

knee the joint distal to the femur that provides the articulation for the tibia. fibula.
and patella.

latissimus dorsi a wide muscle of the back that originates on the spine and inserts
on the humerus. functioning to extend and adduct the arm or forelimb.

lift to raise: the opposite of depress.

limb an animal’s jointed appendage, used for locomotion or grasping. as an arm. leg,
wing. or flipper.

longitudinal axis the line of the body running from the head to the tail.

lumbar vertebrae the vertebrae in the portion of the spine between the ribs and
the pelvis.

mammal a member of the vertebrate class Mammalia. such as a human or a dog,
distinguished by self-regulating body temperature. hair. and. in the females.
mamimae.
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mandible the lower jaw: the jawbone.
manus the end of the vertebrate forelimb, consisting of the wrist. palm. and digits.
metacarpals the bones of the palm.

metamerism the condition of having the body divided into a series of homologous
segments.

metatarsals the bones of the instep.

muscle a tissue made up of fibers that can contract and relax to effect bodily move-
ment.

muscle belly the bulging part of a muscle.

musculature the svstem of muscles of an animal or body part.

notochord a cordlike skeleton of the back: the primitive backbone.

origin the proximal site of attachment for a muscle. as opposed to the insertion.
palm the middle segment of the manus. containing the metacarpals.

patella a flat. triangular bone at the front of the knee.

pectoral girdle the skeletal structure attached to and supporting the forelimbs and
consisting of the scapulae and. if present. the clavicles.

pectoralis a muscle mass on the ventral side of the thorax that functions to adduct
the humerus.

pelvic girdle the skeletal structure of bone or cartilage by which the hind limbs or
analogous parts are supported and joined to the vertebral column.

pelvis a basin-shaped skeletal structure that connects the lower limbs to the spine.
pentadactyl Having five digits.

peristalsis Wavelike muscular contraction that push contained matter along tubular
organs.

pes the end of the vertebrate hind limb, consisting of the ankle, instep. and digits.
phalanx a bone of a finger or toe.

phylum a taxonomic category applied to animals that follows kingdom and lies above
class.
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plantigrade walking with the entire lower surface of the foot on the ground. as
humans and bears do.

posterior toward the rear: the opposite of anterior.
process a part extending or projecting from an organ or organism.

pronation rotation of the forearm to turn the palm of the hand to face downward
or backward: the opposite of supination.

protract tu exiend ot pruitude. thie vppusite of retract.

proximal near the central part of the body or a point of attachment or origin: the
opposite of distal.

quadriceps femoris the muscles on the front and sides of the thigh that act to to
extend the shank or adduct the thigh.

quadruped a four-footed animal.
radius the shorter and thicker of the two forearm bones.

reptile a cold-blooded. usually egg-laving vertebrate of the class Reptilia. such as a
snake. lizard. crocodile. turtle. or dinosaur. having an outer covering of scales
or horny plates and breathing with lungs.

retract to draw back: the opposite of protract.
rib one of a series of long, curved bones extending from the spine to the sternum.

rib cage the enclosing structure formed by the ribs and the bones to which they are
attached.

sacral vertebrae the vertebrae to which the pelvic girdle is attached.

sacrum a bony complex consisting of a number of sacral vertebrae that have fused
together, located at the dorsal side of the pelvis.

scapula either of a pair of large, flat, triangular bones that form the back part of
the shoulder.

shank the portion of the hind limb between the knee and the ankle, containing the
tibia and the fibula.

shoulder the joint proximal to the humerus: alternatively, the region of the body
between the upper arm and the neck.
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skeleton the internal vertebrate structure composed of bone and cartilage that pro-
tects and supports the soft organs. tissues. and parts.

skull the framework of the head of vertebrates. made up of the bones of the brain
case and face.

socket the hollow part of a joint that receives the end of a bone.

somatic muscles the muscles primarily responsible for interacting with the external
environment.

species a fundamental taxonomic classification category consisting of organisms ca-
pable of interbreeding.

spinal column the assemblage of articulated vertebrae extending from the cranium
to the coccyx or the end of the tail. encasing the spinal cord and forming the
supporting axis of the body.

spine the spinal column: backbone.

sternum a long flat bone forming the midventral support of most of the ribs and. if
present. the clavicles.

subphylum a taxonomic category ranking between a phyvlum and a class.

supination rotation of the forearm to turn the palm of the hand to face forward or
upv.ard: the opposite of pronation.

symphysis a growing together.

synsacrum a bony complex in birds resulting from the ankyvlosing of the last thoracic
vertebra. all the lumbar and sacral vertebrae. the first few caudal vertebrae. and
associated ribs.

tarsals the bones of the tarsus.
tarsus the ankle; the proximal segment of the pes.

tendon a band of tough inelastic fibrous tissue connecting a muscle with its bony
attachment.

tetrapod a vertebrate having two sets of paired limbs; a vertebrate that dwells on
land or had land-dwelling ancestors.

thigh the proximal segment of the hind limb. containing the femur.

thorax the part of the body between the neck and the abdomen, partially encased
by the ribs.

226



thoracic vertebrae the vertebrae to which the ribs are attached.
tibia the inner and larger of the two bones in the shank.

trapezius a superficial muscle of the shoulder region which acts to raise the shoul-
ders.

triceps a large three-headed muscle running along the back of the arm and function-
ing to extend the forearm.

ulna the larger of the two {orearin bones.

unguligrade walking on the fingertips. such as the hoofed mammals: horses. cattle.
deer. and so forth.

upper arm the proximal segment of the forelimb. containing the humerus.
ventral relating to or located on or near the belly: the opposite of dorsal.
vertebra any of the bones or cartilaginous segments making up the spinal column.

vertebrate having a backbone or spinal column: a member of the subphylum Ver-
tebrata that includes the fishes. amphibians. reptiles. birds, and mammals. all
of which have a segmented bony or cartilaginous spinal column.

vestigial existing or persisting as a rudimentary or degenerate structure.
visceral muscles the muscles primarily responsible for internal body functions.

wrist the junction between the hand and the forearm: the svstem of bones forming
this junction.
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