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1 INTRODUCTION

A graph G = (V,E) (or (V (G), E(G)) is here a finite, simple graph which has
neither multiple edges nor loops. A subgraph F of G is called a factor of G
if V (F ) = V and E(F ) ⊆ E. In other words F is a spanning subgraph of G.
Given an integer k, a k-factor of a graph G is a regular spanning subgraph of
degree k. More generally, if f is a function from V (G) into the nonnegative
integers, then F is called an f -factor if degF (v) = f(v) for all v in V (G).
For vertex functions g, f from V (G) into the non-negative integers satisfying
g(v) ≤ f(v) for all v in V (G) we call a factor F of G a (g, f)-factor if g(v) ≤
degF (v) ≤ f(v) for all v in V (G). Tradition has evolved such that square
brackets are used for constants bounding the degrees of the factor and round
parentheses for functions. A family of edge disjoint factors (respectively

edge disjoint (g, f)-factors) F1, F2, . . . , Fk with
k

⋃

i=1

E(Fi) = E(G) is called a

factorization of G (respectively a (g, f)-factorization).

As an introduction to our subject of connected factors we give a brief his-
torical survey on factors. Plummer [120] (2004) has written an up to date
survey on factors and factorizations with many references. An earlier survey
is from 1985 by Akiyama and Kano [1], which appeared in an issue of Journal
of Graph Theory devoted entirely to factors. Results on factors go back at
least a century. In 1891 Petersen [119] proved that a graph is 2-factorable
if and only if it is 2p-regular, p ≥ 1, and that a connected cubic graph with
at most two bridges has a 1-factor, later generalized by Bäbler [8] in 1938
and many others. In 1947 Tutte published his famous theorem [139] which
states that a graph G has a 1-factor if and only if deletion of any vertex set
S leaves G − S with at most |S| components of odd order. Independently,
between 1931 and 1935, Hall [66] and König [84] gave some basic results
on 1-factors in bipartite graphs. Rado [121] (1949) considered 1-factors in
locally finite bipartite graphs and through the 1950’s Belck [14] considered
k-factors in regular graphs, Gallai [58] considered k-factors in graphs, and
Tutte [138, 137] considered f -factors. In 1970 Lovász [106] extended this
work to (g, f)-factors. Later Tutte [132] (1981) proved that the (g, f)-factor
theorem could be derived from his f -factor theorem, which in turn could be
derived from his 1-factor theorem. Let us remark that M. Cai [27] (1991)
and Holton and Sheehan [68] (1993) have illustrated uses of the (g, f)-factor
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theorem by giving applications. Anstee gives an algorithmic proof of Tutte’s
f -factor theorem [5] (1985) and variants of the (g, f)-factor theorem [4, 3]
(1990, 1998). If, in particular, g and f are constant, i.e., for two integers
0 ≤ a ≤ b we have g(v) = a, f(v) = b for all v in V (G), then the factor is
said to be an [a, b]-factor, a special case of a (g, f)-factor. This was already
considered by Tutte [133] and Thomassen [127] for b = a+1; Kano and Saito
[79] considered non-consecutive a and b. There is a vast literature on factors.
The books by Bollobás [18] (1978), Lovász [105] (1979) and, more recently,
the book by Volkmann [146] (1996) all have a chapter on factors.

Guiying [64], M. Cai [26], Kano [78], G.Y. Yan, J.F. Pan, C.K. Wong and
Tokuda [152] have considered (g, f)-factorizations of graphs. Gutin [65] gave
a condition for digraphs to have a connected (g, f)-factor.

As we have already seen above, factors may be selected by degree proper-
ties. One variant is that the parity of the degrees may be prescribed, see
e.g. [131], [38], [2] for odd factors, [89] for even factors and [35] for both.
Factors may also be selected by some structural property, and we shall, in
this survey, do exactly that by putting our emphasis on connected factors.
Some of the earliest results of graph theory on Hamiltonian cycles, spanning
trees and walks fall naturally in that category. In the last decade the no-
tion of connected factors has gained wider prominence, particularly after an
international conference held in Beijing in 1993, see e.g. Kano [81].

1.1 Notation

Our preferred notation for the order of a graph G is n, i.e., |G| = n. We
denote the minimum degree of G by δ(G) and its maximum degree by ∆(G).
A set of vertices is said to be stable or independent if no two of them are
joined by an edge. The stability number α(G) is the cardinality of a largest
stable set of vertices in G. For a positive integer p we define the parameter
σp(G) = min{deg(x1) + ... + deg(xp)}, where the minimum is taken over
all stable sets x1, ..., xp of p vertices in G.

The graph G is called k-connected if at least k vertices must be removed to
disconnect G or if G is a complete graph Kn, n ≥ k + 1.
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By ω(G) we indicate the number of components in G. A connected, non-
complete graph G is said to be t-tough if t ·ω(G − S) ≤ |S| for every cutset
S . The toughness of a connected, non-complete graph G is

tough(G) = min{
|S|

ω(G− S)
| S ⊂ V and ω(G− S) ≥ 2}.

A complete graph Kn may be defined to have toughness ∞.

The composition of two graphs G and H is the graph G[H] with vertex set
V (G)× V (H) and edge set {(u1v1, u2v2)|u1u2 ∈ E(G) or u1 = u2 and v1v2 ∈
E(H)}.

A walk in the graph G is a sequence v1e1v2e2v3 . . . vieivi+1 . . . vp−1ep−1vp of
vertices and edges such that each edge ei has ends vi and vi+1; repetition is
allowed for edges as well as for vertices. The walk is closed if v1 = vp and
open if v1 6= vp. A trail is a walk where repetition is permitted for vertices but
not for edges. Let kG denote the multigraph obtained from G by replacing
each edge by k parallel edges. A k-walk, respectively a k-trail, of a graph G
is a connected spanning subgraph W of (2k)G, respectively of G, such that
the degree of each vertex is even and at most 2k. (This definition implies
closedness, but some authors permit a k-walk/k-trail to be open or closed).
So W projected down to G is a closed spanning walk passing each vertex at
least once and at most k times. Note that throughout this paper k-walks and
k-trails by definition are understood to be spanning subgraphs. A k-walk of
G is in particular [1, 2k]-factor of G, and a k-trail is a [2, 2k]-factor.

2 CONNECTED [1,k]-FACTORS

Every connected graph has a spanning tree. The number of spanning trees
in the complete graph Kn is nn−2 (Cayley [33]). A collection of proofs of
tree counting formulas for Kn are given by Moon [112], J. Matoušek and J.
Nesětřil [107].

For any connected graph G, the matrix-tree theorem (implied by Kirchhoff
[83]) gives a formula for the number of spanning trees, using the n × n
adjacency matrix A of G, as follows. Let D = {dij}1≤i,j≤n be the diagonal
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matrix with dii = degG(vi) and dij = 0 for i 6= j. For any integers s and
t, 1 ≤ s, t ≤ n, the number of spanning trees in G equals (−1)s+t times the
determinant of the matrix obtained by deleting the s’th row and the t’th
column from D − A. As a consequence, for a d-regular graph on n vertices

this number is
1

n

n−1
∏

j=1

(d− λj) where λ0 = d, λ1, ..., λn−1 are the eigenvalues

of the adjacency matrix A of the graph G. See for example Cvetković, Doob
and Sachs [41, p. 39]. Y. Jin and C. Liu [76] have counted spanning trees in
Km,n. Factorizations of Kn and Km,n into spanning trees have been given in
[67, 69, 140, 51].

Many authors have been interested in the existence of edge disjoint spanning
trees, mainly in relation to the existence of Eulerian subgraphs. Tutte [135]
and independently Nash-Williams [114] gave a condition for a graph to have
a factorization into connected factors.

Theorem 1 ([135]) Let k be a positive integer. A connected graph G can
be decomposed into k edge disjoint connected factors if and only if

k(ω(G− L )− 1) ≤ |L| for every L ⊆ E(G).

It follows that if G is m-edge connected then G is decomposable into ⌊m/2⌋
connected factors and consequently G has ⌊m/2⌋ edge disjoint spanning trees.
In fact, we can see that an m-edge connected graph has a factorization with
⌊m/2⌋ factors by proving that all subsets L ⊆ E(G) satisfy ⌊m/2⌋(ω(G −
L )−1) ≤ |L|: if G−L is connected we have ⌊m/2⌋(ω(G−L)−1) = 0 ≤ |L|,
and if G − L is not connected then for each component C of G − L there
are at least m edges of G connecting C to other components of G − L, and
therefore we have mω(G− L) ≤ 2|L| implying ⌊m/2⌋(ω(G− L)− 1) ≤ |L|.

In 1965 J. Edmonds proved the existence, in any 3-edge connected graph, of
three spanning trees with no edge common to all three trees (referred to in
[71]). This result implies the existence of three even subgraphs whose union
covers all edges of G.

Theorem 1 implies that each 4-edge connected graph has two disjoint span-
ning trees. This was used by Itai, Lipton, Papadimitrou and Rodeh [71] to
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obtain Jaeger’s result [73, 74] on the existence of a cycle double cover of the
edges of a 4-edge connected graph G as follows: for each spanning tree Ti,
they construct an even subgraph Hi containing E(G) − E(Ti); so with two
disjoint trees T1 and T2 they get a cover of all the edges by H1 ∪H2, as an
edge of G not covered should be in both E(T1) and E(T2). It follows that
{H1, H2, H1△H2}, where H1△H2 denotes the symmetric difference of H1

and H2, gives a cycle double cover of E(G).

Consideration of network reliability has lead several authors to investigate
graphs with many edge disjoint spanning trees, see for example Lonc [104],
Rescigno [122].

For a fixed integer k we shall in the following consider k-trees, i.e. spanning
trees with maximum degree at most k. A k-tree of a graph G is in particular a
connected [1, k]-factor of G. Note, that the existence of a k-tree is equivalent
to the existence of a connected [1, k]-factor.

Caro, Krasikov and Roditty [28] prove that the square of a connected graph
contains a 3-tree. They also show how close a graph comes to having a k-tree,
they prove that a connected graph either has a k-tree or it contains a tree of
maximum degree at most k and order at least kδ(G) + 1.

Ellingham, Nam and Voss consider graphs of high connectivity. They show
that

Theorem 2 ([49]) Let m ≥ 1 be an integer. Then every m-edge connected
graph G has a spanning tree T such that

degT (v) ≤ 2 + ⌈degG(v)/m⌉

for every vertex v of G.

This result implies that every m-edge connected m-regular graph has a 3-tree.

2.1 k-trees and degrees

Dirac’s condition δ(G) ≥ n/2 ensures the existence of a Hamiltonian cycle in
G. Later, the same conclusion was drawn from a weaker hypothesis, namely
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in Ore’s Theorem, which states that if σ2(G) ≥ n holds for a graph with at
least three vertices, then G has a Hamiltonian cycle. We observe that a graph
G of order n has a Hamiltonian path if and only if the graph G′ = G + K1,
obtained from G by adding one new vertex joined to every vertex of G, has
a Hamiltonian cycle. Consequently the condition σ2(G) ≥ n − 1 implies
σ2(G

′) ≥ n+1 and hence, by Ore’s theorem applied to G′, we see that G has
a Hamiltonian path, i.e. a 2-tree.

Extending this result, Win proved

Theorem 3 ([144]) Let G be any graph of order n. If σk(G) ≥ n− 1 then
G has a k-tree.

The result is sharp : it is sufficient to consider the complete bipartite graph
Kr+1,rk+1 where k is any integer at least 2.

Recently, Czygrinov, G. Fan, Hurlbert, Kierstead and Trotter [43] studied
the family of graphs satisfying the hypothesis of Theorem 3 and having only
k-trees which actually have their maximum valency equal to k. Such a graph
G either has a k-tree which is a caterpillar, i.e. a tree containing a path such
that all other vertices have degree one, or G is constructed by joining one
vertex to every vertex in the disjoint union of k complete graphs.

Theorem 3 has been generalized by Aung and Kyaw [6] and by Kyaw [91].
To shorten the statement of Theorem 4 below we define: a (k + 1)-frame
in G is a set S of k + 1 independent vertices such that G − S is connected.

By degG(S) we understand the number degG(S) =
∑

x∈S

degG(x). Finally, let

Ni(S) = {x ∈ V (G)||N(x)∩S| = i} denote the set of vertices having exactly
i neighbours in S.

Theorem 4 ([91]) Let G be a connected graph of order n. Let k ≥ 2 be an
integer. If

degG(S) +
k+1
∑

i=2

(k − i)|Ni(S)| ≥ n− 1

for every (k+1)-frame S in G, then G has a k-tree.
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R. Xu generalized an earlier result by H. Wang [141]:

Theorem 5 ([147]) Let k and n be integers such that 0 ≤ k ≤ n − 2 and
let G be a connected bipartite graph with partition classes V1, V2 of the same
size |V1| = |V2| = n. If for every u ∈ V1, v ∈ V2 we have

degG(u) + degG(v) ≥ n− k,

then G has a connected [1, k + 2]-factor.

2.2 k-walks and k-trees

There are relations between k-walks and k-trees. Jackson and Wormald
proved

Lemma 1 ([72]) Let k be a positive integer.

(i) If G has a k-tree then G has a k-walk.
(ii) If G has a k-walk then G has a (k+1)-tree.
(iii) If G has a k-walk then G is 1/k-tough.
(iv) G has a k-walk if and only if G[Kk] has a Hamiltonian cycle.

To see (i) double each edge in the k-tree to obtain an Eulerian multigraph
with degrees at most 2k producing a k-walk of G.

To see (ii), given a k-walk, we traverse an Euler tour starting from a vertex
x and we delete each edge entering in a vertex previously visited, unless the
edge has been used earlier. Each vertex will have one edge entering and at
most k edges going out. In this way we get a spanning tree with maximum
degree at most k + 1.

(iii) is seen by observing that a k-walk of G meets a vertex of a cutset S
on passing between two components of G− S, thus ω(G − S) ≤ k|S| which

implies that
1

k
≤

|S|

ω(G− S)
for any cutset S and hence tough(G) ≤ 1/k.

Inspired by this last lemma and by Theorem 2 , Ellingham, Nam and Voss
pose the following conjecture:
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Conjecture Let m ≥ 1 be an integer. If G is an m-edge connected m-regular
graph then G has a 2-walk.

They remark that the conjecture is true for m ≤ 4.

In topological graph theory there are several interesting results on k-trees
and k-walks. Combined results by Barnette [9, 11], Z. Gao and Richter [60],
Brunet, Ellingham, Gao, Metzlar and Richter [21] give the next theorem.

Theorem 6 Every 3-connected graph which embeds in the plane, the projec-
tive plane, the torus or the Klein bottle has a 2-walk and consequently also a
3-tree.

The Euler characteristic χ of a polyhedron is n − e + f , where n, e, f are
respectively the number of vertices, edges and faces. For a connected, planar
graph G we define χ(G) = n− e+ f , a number which always turns out to be
2.

A surface homeomorphic to a polyhedron has the same Euler characteristic
as the polyhedron. The Euler characteristic of a surface is closely related
to its genus g, the number of handles/crosscaps put on a sphere to obtain
the orientable/nonorientable surface. A surface has Euler characteristic χ =
2 − 2g if it is orientable and χ = 2 − g if it is nonorientable. The Euler
characteristic is 2 for the plane, 1 for the sphere and the projective plane and
0 for the Möbius band and the Klein bottle. Sanders and Zhao [125] proved
that a 3-connected graph embeddable on a surface of Euler characteristic χ

≤ −46 has a ⌈
8− 2χ

3
⌉-tree and a ⌈

6− 2χ

3
⌉-walk.

2.3 Toughness and k-trees

The notion of toughness is due to Chvátal. He conjectured [39] that there
exists t > 0 such that every t-tough graph has a 1-walk, i.e., a Hamiltonian
cycle. Necessarily t > 9/4, because Bauer, Broersma and Veldman [13]
constructed, for every ǫ > 0, an example of a (9/4− ǫ)-tough graph which is
non Hamiltonian. This improves earlier results by Chvátal [39], Thomassen
(see [17]), Enomoto, Jackson, Katerinis and Saito [52]. Chvátal’s conjecture
is still open.
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For each k ≥ 2 there exists a positive real number t such that every t-tough
graph has a k-walk. From Win’s Theorem 7 below it follows that for k ≥ 3
a 1/(k − 2)-tough graph has a k-walk. More precisely, Win established the
following.

Theorem 7 ([145]) Let k ≥ 2 be an integer. If G is a connected graph such
that ω(G − S) ≤ (k − 2) | S | +2 holds for each subset S of V (G), then G
has a k-tree.

Theorem 7 is sharp, as mentionned by Win, it is sufficient to consider k + 1
copies of a complete graph and an extra vertex x0 joined to all the other
vertices. In that graph ω(G− S) ≤ (k − 2) | S | +3 holds for each subset S
and G has no k-tree.

Ellingham and Zha [48] gave a new proof for this result. In G let H be an
induced subgraph having a k-tree of maximal order.

To obtain a contradiction, assume H 6= G. Through a number of steps they
construct a subset S of V (H) and a k-tree T of H, such that
(i) degT (v) = k for every vertex of S, and
(ii) every edge between H and G−H has an end in S,
(iii) each component of T − S has the same vertex set as the corresponding
component of H − S, i.e. there is no H-edge between distinct components
of T − S; in particular, ω(H − S) = ω(T − S).

Consequently ω(G − S) > ω(H − S) because G is connected and H 6= G
implies existence of an edge uv, u ∈ V (G−H), v ∈ V (H); by (ii) the vertex
v is necessarily in S. Let S = {x1, x2, . . . , xs} and Si = {x1, x2, . . . , xi},
1 ≤ i ≤ s. Deleting first x1 from T creates k components. Next, deleting in
succession xi from T creates k−1−|N(xi)∩Si| additional components. The

total number of components in T − S is k +
s

∑

i=2

((k − 1)− |N(xi) ∩ Si−1|).

At worst S spans a tree in which all |S| − 1 edges are counted. Therefore
ω(T − S) ≥ k + (|S| − 1)(k− 1)− (|S| − 1) =(k− 2)|S|+ 2. As ω(G− S) >
ω(H − S) =ω(T − S) ≥ (k − 2)|S| + 2, this contradicts the inequality of
Theorem 7. Therefore G = H and G has a k-tree.

Every graph that has a k-tree must be 1/k-tough. Jackson and Wormald
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[72] conjectured that for k ≥ 2 every 1/(k − 1)-tough graph has a k-walk.

For k = 2 Ellingham and Zha [48] pointed out that there are graphs which
are 2/3-tough and have no 2-walk. For k ≥ 3, from examples of Jackson and
Wormald [72], Ellingham and Zha [48] it follows that there are graphs with

asymptotic toughness
8k + 1

4k(2k − 1)
, i.e. toughness about 1/(k−5/8) and with

no k-walk. This brings the gap to the constant of Jackson and Wormald’s
conjecture down to the order of 1/k2.

For k = 2, the condition of Win’s Theorem 7 demands more than necessary
for G to have a Hamiltonian path. His condition is equivalent to α(G) ≤ 2,
and certainly it would suffice to demand σ2(G) ≥ n − 1. Ellingham, Nam
and Voss generalize Win’s result as follows:

Theorem 8 ([49]) Let G be a connected graph and let h be a positive integer-
valued function on V (G). Suppose that each S ⊂ V (G) satisfies ω(G − S)

≤
∑

v∈S

h(v) − 2|S|+ 2. Then G has a spanning tree T with degT (v) ≤ h(v)

for every vertex v of G.

Finally, using other generalisations of Win’s theorem and results on 2-factors,
Ellingham and X. Zha [48] also proved that every 4-tough graph has a 2-walk.
Nevertheless, no result is known on toughness and 2-trees. This problem is
closely related to the conjecture of Chvátal.

2.4 K1,h-free graphs

There are several results for classes of graphs with forbidden subgraphs. From
a result by Tokuda [129], we know that every connected K1,h-free graph has
a [1, h]-factor, not necessarily connected, for every h ≥ 3; and by Caro,
Krasikov and Roditty [29], that such a graph has in fact a h-tree. Jackson
and Wormald generalized these results as follows

Theorem 9 ([72]) Let h ≥ 3 be an integer. Every connected, K1,h-free
graph has a (h− 1)-walk and hence a h-tree.
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By Lemma 1(ii) it suffices to prove that G has a (h− 1)-walk. The authors
in [72] note that G has a ∆(G)-walk, because 2G is Eulerian. Let W be a
∆(G)-walk for which |E(W )| is minimum. The walk W is, in fact, a (h− 1)-
walk, for assume there exists v such that degG(v) = 2r ≥ 2h. Then W
contains edges vu1, vu2, . . . , vur, where u1, . . . , ur can be chosen to belong
to distinct subcycles of W , so that W \ {vu1, vu2, . . . , vur} is connected. If
ui = uj for some i 6= j, we form W ′ = W \ {vui, vuj}, otherwise α(N(v)) ≤
h − 1 < r implies existence of i, j such that uiuj ∈ E(G) and we form
W ′ = (W \{vui, vuj})∪uiuj. In both cases we have obtained a contradiction
to the minimality of |E(W )|.

Let 〈N(v)〉G denote the graph spanned in G by the neighbours of v and let
us say that G is locally connected if 〈N(v)〉G is connected for each vertex v
of G. A strengthening of the hypothesis in Theorem 9 now gives:

Theorem 10 ([72]) Let h ≥ 3 be an integer. If a graph is connected, K1,h-
free and also is locally connected, then it has a (h − 2)-walk and hence also
an (h− 1)-tree.

Theorem 11 ([72]) Let j ≥ 1 and h ≥ 3 be integers such that j divides

h − 1. Then every j-connected and K1,h-free graph has a (2 +
h− 1

j
)-walk

and hence also a (3 +
h− 1

j
)-tree.

A. Kyaw presented in [92] a counterexample to the following conjecture of
B. Jackson and N.C. Wormald [72, Conjecture 4.3], “Let j ≥ 1 and h ≥ 3
be integers such that j + 1 divides h − 2. If G is K1,h-free, connected and

locally j-connected then G has a (
h− 2

j + 1
+ 1)-tree”. It remains to find the

sharp value of k such that the precedent hypotheses imply the existence of a
k-tree.

We conclude this section with an open problem.
Question of B. Jackson: Given integers s, κ, determine a sharp value of
k such that any graph which is K1,s-free, connected and locally κ-connected
has a k-walk.
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2.5 Stability and k-trees

Win [143] states that

Every κ-connected graph with stability number at most κ+c contains a span-
ning tree with no more than c+1 terminal vertices.

In this way he obtains the existence of an α(G) − κ + 1-tree in every κ-
connected graph and resolved a conjecture of Las Vergnas.

A classical result is the Chvátal-Erdös theorem,

Theorem 12 ([40]) If the stability number α of a κ-connected graph is at
most κ, then the graph has a Hamiltonian cycle.

The theorem below follows from Lemma 1, stating that G has an h-walk if
and only if G[Kh] has a Hamiltonian cycle, and the Chvátal-Erdös theorem,
applied to the graph G[Kh] with h = ⌈α(G)/κ⌉.

Theorem 13 ([72]) If G is κ-connected then G has an ⌈α(G)/κ⌉-walk.

This, in turn, by Lemma 1(ii) implies that G has a (⌈α(G)/κ⌉+ 1)-tree.

A related result of Neumann-Lara and Rivera-Campo is slightly better for
existence of k-trees since the maximum degree may be smaller for the tree in
Theorem 14 than in Theorem 13,

Theorem 14 ([115]) Let κ ≥ 1 and r ≥ 2 be two integers. If G is a κ-
connected graph such that α(G) ≤ 1 + (r − 1)κ then G has an r-tree.

We note that the complete graph Kk,1+k(s−1) satisfies the hypothesis of The-
orem 14 but has no s− 1 tree.

2.6 Matching and k-trees

Rivera-Campo considers extension of matchings into k-trees in graphs of low
stability.
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Theorem 15 ([123]) Let κ be a positive integer and let G be a κ-connected

graph having a perfect matching M . If α(G) ≤ 1+
3κ

2
then M can be extended

to a 3-tree.

He claims that, with the same proof, this last result can be extended as
follows:

If G is κ-connected and has a perfect matching M such that α(G) ≤ 1 +
(2r − 3)κ

2
for some integer r ≥ 3, then M can be extended to an r-tree.

Recently Ellingham, Nam and Voss obtained extensions of matchings in
tough graphs.

Theorem 16 ([49]) Let G be a t-tough graph having a perfect matching M .

Then there exists a (2 +
⌈1

t

⌉

)-tree containing M .

3 CONNECTED [2, k]-FACTORS

An even factor is a factor in which all degrees are even, positive integers and
an odd factor has all degrees odd.

3.1 Even factors

By Fleischner [57], we know that

Theorem 17 ([57]) If G is a 2-edge connected graph, without vertices of
degree 2, then G has an even factor.

Neither of the hypotheses in Theorem 17 can be weakened. Consider first,
e.g., the graph composed by 3 copies of a complete graph and an extra vertex
joined to exactly one vertex in each copy. A second example is the Petersen
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graph where each edge ab is replaced by three paths of length two joining a
and b. None of these two graphs have an even factor.

Eulerian subgraphs are connected, even, spanning subgraphs, i.e., connected
even [2, n − 1]-factors, and Hamiltonian cycles are connected [2, 2]-factors.
On Hamiltonian cycles there have been several surveys, to mention but two,
Bermond [17] (1978) and an up to date survey by Gould [63] (2003). Catlin
[31] surveyed supereulerian graphs, i.e., graphs containing a connected even
factor. Zelinka [153] showed that for every integer r there exists a 2-edge
connected graph G, of order n, with no Eulerian subgraph covering more
than n/r vertices of G. One important result about supereulerian graphs is
the following.

Theorem 18 ([74]) Every 4-edge connected graph is supereulerian.

We have in Section 2 mentioned relations from spanning Eulerian subgraphs
to spanning trees, and to the cycle double cover conjecture. The precedent
Theorem 18 of Jaeger has been generalised by Catlin, Z.-Y. Han, H.-J. Lai
[30]. They studied graphs which by addition of at most two edges would
have two edge disjoint spanning trees and they gave a characterization for
such graphs to be supereulerian. Then they proved that

Any 3-edge connected graph with at most 9 edge cuts of size 3 is supereulerian

by using suitable contractions and thus reducing the graph to one which is
at most 2 edges short of having two edge disjoint spanning trees.

A wheel is obtained from a cycle v1, ..., vn and an extra vertex v joined to
each of v1, ..., vn. A rim-subdivision of a wheel is obtained by replacing each
edge vivi+1 of the cycle of the wheel by a path viv

′
ivi+1. We call a graph H a

minor of G if H is isomorphic to the contraction image of a subgraph of G,
and H is called an induced minor if it is isomorphic to the contraction image
of an induced subgraph of G.

For graphs of lower edge connectivity, H.-J. Lai gives a sufficient condition
for G to be supereulerian:

Theorem 19 ([94]) Let G be a 2-edge connected graph. The following are
equivalent:
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(i) Every 2-edge connected induced subgraph of G is supereulerian.

(ii) G has no induced minor isomorphic to a rim-subdivision of a wheel.

There are many other sufficient conditions for a graph to be supereulerian.
Some conditions are in terms of forbidden subgraphs or require that each
edge is in a short cycle or they are degree conditions. For example H.-J. Lai
[93] established that if the minimum degree of 2-edge-connected triangle free
graph is at least n/10 and n ≥ 30 then the graph is supereulerian. Many
authors have been interested in supereulerian graphs because the line graph
of a supereulerian graph is Hamiltonian.

Spanning eulerian subgraphs with no upper bound on the number of times
a vertex is used have been considered by several authors including Lesniak-
Foster and Williamson [96], Benhocine, Clark, Köhler, and Veldman [15],
Catlin [32], Z.H. Chen [37], Ellingham, X. Zha and Y. Zhang [50].

Theorem 20 ([15]) Let G be a 2-edge connected graph of order n ≥ 3. If
σ2(G) ≥ (2n + 3)/3 then G has a closed spanning trail.

For Eulerian graphs see the work of Jaeger [73, 74], the book of Fleischner
[55, 56], the book of C.Q. Zhang [154], the survey of Lesniak and Oellermann
[95] or that of Catlin [31].

3.2 Even [a,b]-factors

Kouider and Vestergaard obtained various sufficient conditions for a graph
to have an even [a, b]-factor. One of them is

Theorem 21 ([90, 89]) Let a and b be even integers such that 2 ≤ a ≤ b
and let G be a 2-edge connected graph of order n.

1) If a ≥ 4 and n ≥
(a + b)2

b
, and δ(G) ≥

an

a + b
+

a

2
, then G has an even

[a, b]-factor.
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2) If a = 2 and n ≥ 3, δ(G) ≥ max{3,
2n

b + 2
}, then G has an even [2, b]-

factor.

Notice, that for a = 2 and b = n−2, or, n−1 we get as a corollary Fleishner’s
Theorem 17 cited above.

Several authors have considered k-trails. Broersma, Kriesell and Ryjácek
proved [20] that every 4-connected claw-free graph has a 2-trail or in other
words an even [2, 4]-factor. A triangulated annulus is a planar graph contain-
ing two circuits which each bound a face, while all other faces are triangles.
Gao and Wormald [61] proved that a triangulated annulus has a 4-trail, i.e.,
it has a [2, 8]-factor. They derive from this that all triangulations in the
projective plane, the torus and the Klein bottle have (closed) 4-trails. A
graph with a (closed) k-trail contains an even factor and is thus by definition
supereulerian.

X. Zha and Y. Zhang show the following.

Theorem 22 ([50]) Let G be a connected graph of order n. If σ3(G) ≥ n,
then G has either a closed 2-trail or a Hamiltonian path.

We note that a closed 2-trail is a connected even [2, 4]-factor.

Theorem 22 is near to being sharp. Consider 3 copies of the same complete
graph with exactly one vertex in common, then σ3(G) = n − 4, and G has
no closed 2-trail and no Hamiltonian path.

3.3 Degrees

It seems that Kano posed the following conjecture.
Conjecture : Let k be an integer and G a 2-edge connected graph of order n

with δ(G) ≥ 2 and n ≥ k+3. If σ2(G) ≥
4n

k + 2
then G has a 2-edge-connected

[2, k]-factor.

As support he proved that such a graph has a connected [2, k]-factor. How-
ever, several authors (Y. Li, M. Cai [100] and R. Xu [148]) have given coun-
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terexamples to this conjecture but suggested that Kano’s conjecture might
hold if G is required to be 2-connected. Kouider and Maheo proved

Theorem 23 ([86]) If G is a 2-edge connected graph of order n; k ≥ 2;
n ≥ k + 3; σ2(G) ≥ 4n/(k + 2), then if k is even, G has a 2-edge connected
[2, k]-factor; if k is odd, G has a 2-edge connected [2, k + 1]-factor.

Furthermore, if G is 2-connected, under the same hypothesis on the degrees
they prove the existence of a 2-connected [2, k]-factor.

Theorem 23 is sharp. For k = 2h− 1, consider h copies of a complete graph
and an extra vertex x joined to all the other vertices. In a 2-edge connected
factor, the vertex x must have degree at least 2h = k+1. This graph satisfies
the conditions of the theorem, but it has no 2-edge connected [2, k]-factor.

A related result is R. Xu’s theorem [148]: If G has connectivity κ ≥ 2, order
n ≥ 10κ and σ2(G) ≥ 4n/5, then G has a 2-connected [2, 3]-factor.

3.4 Stability

Kouider [85] has shown that any κ-connected graph G has a covering of its
vertices by at most ⌈α(G)/κ⌉ elementary cycles. Brandt has deduced

Theorem 24 ([19]) Let b ≥ 2 be an even integer, and κ ≥ 2. If G is κ-
connected and α(G) ≤ κb/2, then G has a 2-connected [2, b]-factor.

This proves, in other words, the existence of a 2-connected [2, 2⌈α(G)/κ⌉]-
factor, while Theorem 13 only gives a connected [1, 2⌈α(G)/κ⌉]-factor. Brandt’s
result is sharp, it cannot be improved for the complete bipartite graphs.

3.5 Toughness

Chvátal conjectured that every k-tough graph on n vertices, with n ≥ k + 1
and kn even, has a k-factor. This was established in 1985 by Enomoto,
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Jackson, Katerinis and Saito [52]. They furthermore showed that the con-
jecture is best possible, because for any k ≥ 1 and for any ǫ > 0 there exists
a (k-ǫ)-tough graph with n vertices, n ≥ k + 1 and kn even but with no
k-factor.

There is a sufficient condition due to C. Chen, for existence of factors, which
may not necessarily be connected,

Theorem 25 ([34]) Let b ≥ 3 be an integer, and let G be a graph of order
n ≥ 3.

If tough(G) ≥ (1 +
1

b
) then G has a [2, b]-factor.

The author shows that the hypothesis on toughness may not be weakened.
Ellingham, Voss and Nam extended this last result for connected factors as
follows:

Theorem 26 ([49]) If b ≥ 4, n ≥ 3 and tough(G) ≥ 1 +
1

b− 2
then G has

a connected [2, b]-factor that contains a [2, b− 2]-factor.

Using results from Enomoto, Jackson, Katerinis and Saito [52] on toughness
and k-factors, they also proved that if tough(G) ≥ 4 then G has a connected
[2, 3]-factor. Generalizations from [2, b]-factors to [a, b]-factors are given in
Theorems 48, 49 later.

3.6 Special classes of Graphs

Thomassen conjectured [126] that every 4-connected line graph is Hamilto-
nian. That is equivalent to a seemingly stronger conjecture by Matthews
and Sumner [111] that every 4-connected claw-free graph is Hamiltonian.
Broersma, Kriesell and Ryjácek proved [20] that every 7-connected claw-free
graph is Hamiltonian and that every 4-connected claw-free graph is Hamilto-
nian if it contains no induced hourglass, i.e., two triangles with exactly one
common vertex. Furthermore, they proved that every 4-connected claw-free
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graph has a connected [2, 4]-factor in which each vertex has even degree, i.e.,
a 2-trail.

G. Li and Z. Liu [98] proved that if G is 2-connected and claw-free then G
has a connected [2, 3]-factor.

Now, we recall some results on topological graphs and [2, b]-factors. Tutte
proved [136, 134] that every 4-connected planar graph is Hamiltonian, i.e.,
it has a 2-factor. Not all 3-connected planar graphs are Hamiltonian, so
relaxations on Hamiltonicity have been considered. Barnette [12] proved
that every 3-connected planar graph has a 3-tree. Enomoto, Iida and Ota
proved [53] that every 3-connected, planar graph G with δ(G) ≥ 4 has a
connected [2, 3]-factor. Barnette proved [10] that every 3-connected, planar
graph has a 2-connected [2, 15]-factor. Later this was strengthened by Z. Gao
who proved [59] that every 3-connected graph embeddable in the plane, the
projective plane, the torus or the Klein bottle has a 2-connected [2, 6]-factor.
Also, we know by Sanders and Y. Zhao [124] that a 3-connected graph of
Euler characteristic χ has a 2-connected [2, 10− 2χ]-factor.

4 (g, f)-FACTORS

Let us state three factor theorems which are fundamental. We shall con-
sider ordered pairs of disjoint subsets X,Y of V (G). We write degG(X)

=
∑

{degG(x)|x ∈ X} and for a vertex function f we write f(X) =
∑

{f(x)|x ∈ X}. By e(X,Y ) we denote the number of edges having one

end in X and one end in Y . For a graph G and S ⊆ V (G) we let o(G− S)
denote the number of components in G− S with an odd number of vertices.

Theorem 27 (Tutte’s 1-factor theorem [139]) A graph G has a 1-factor
if and only if o(G− S) ≤ |S| for all subsets S of V (G).

Theorem 28 (Tutte’s f-factor theorem [138, 137]) Let G be a graph
and f be a nonnegative integer valued function defined on V (G). Let X,Y
be disjoint subsets of V (G). A component C of G− (X ∪ Y ) is called odd if
f(C) + e(C, Y ) ≡ 1 (mod 2). Let h(X,Y ) be the number of odd components
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in G − (X ∪ Y ). Then G has an f-factor if and only if h(X,Y ) ≤ f(X) −
f(Y ) + degG−X(Y ) for all ordered pairs X,Y of disjoint subsets of V (G).

Theorem 29 (Lovász’s (g, f)-factor theorem [106]) Let G be a graph
and g, f nonnegative integer valued functions defined on V (G) satisfying
g(v) ≤ f(v) for all v in V (G). Let X,Y be disjoint subsets of V (G). A
component C of G − (X ∪ Y ) is called odd if g(v) = f(v) for all v in
V (C) and e(C, Y ) + f(C) ≡ 1( mod 2). Let h(X,Y ) be the number of
odd components in G − (X ∪ Y ). Then G has a (g, f)-factor if and only if
h(X,Y ) ≤ f(X)− g(Y ) + degG−X(Y ) for all ordered pairs X,Y .

As a corollary, we have

Theorem 30 For integers 1 ≤ a < b the graph G has an [a, b]-factor if and
only if

b|X| − a|Y |+
∑

v∈Y

degG\X(v) ≥ 0,

for all pairs of disjoint subsets X,Y of V (G).

By slightly changing the hypotheses, Lovász obtained

Theorem 31 (Lovász’s parity factor theorem) Let G be a graph and
g, f nonnegative integer valued functions defined on V (G) satisfying g(v) ≤
f(v) and g(v) ≡ f(v)( mod 2) for all v in V (G). Let X,Y be disjoint subsets
of V (G). A component C of G− (X ∪Y ) is called odd if e(C, Y )+f(C) ≡ 1(
mod 2). Let h(X,Y ) be the number of odd components in G−(X∪Y ). Then
G has a (g, f)-factor F with degF (v) ≡ g(v) for all v in V (G) if and only if
h(X,Y ) ≤ f(X)− g(Y ) + degG−X(Y ) for all ordered pairs X,Y .

Many authors have given sufficient conditions for a graph to have a (g, f)-
factor and in several proofs Theorems 27-29 are used. Egawa and Kano

[45] proved that g(x) < f(x),
g(x)

deg(x)
≤

g(y)

deg(y)
for all adjacent vertices x, y

in V (G), is sufficient. Kano, Saito [79] proved that the existence of a real
number θ, 0 < θ ≤ 1, such that each vertex x of G satisfies g(x) < f(x) and
g(x) ≤ θ degG(x) ≤ f(x), is sufficient.
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Niessen [116] gave a sufficient condition for G to have an h-factor for any
function h satisfying g ≤ h ≤ f .

The concept of connected (g, f)-factors is attributed to Kano [81]. This topic
is closely related to the Hamiltonian cycle problem, as a connected 2-factor
is obviously a Hamiltonian cycle. Existence of a connected [a, b]-factor, or
of a connected (g, f)-factor, is an NP-complete problem, see for example the
classic book of Garey and Johnson [62] and [7, 42] for an updated reference.
Kano [81] proposed many conjectures and problems on the topic of connected
factors.

4.1 Ore-type conditions

Kouider and Maheo proved

Theorem 32 ([87]) Let G be a connected graph of orden n and minimum
degree δ. Let a and b be integers such that 2a ≤ b. Suppose that n ≥
(a + b)(a + b− 1)

b
and δ ≥

n

1 + ⌊ b
a
⌋
. Then G has a connected [a, b]-factor.

Note that the condition δ ≥
n

1 + b
a

is necessary, because if the complete

bipartite graph Kδ,n−δ has an [a, b] factor then a(n− δ) ≤ bδ.

For 2-edge connected graphs having large order Matsuda has strengthened
Theorems 23 and 32 as follows

Theorem 33 ([110]) Let a ≥ 2 and t ≥ 2 be integers and G a 2-edge
connected graph of order |G| ≥ 2(t + 1) ((a− 2) t + a) + t− 1. Suppose that
δ(G) ≥ a and σ2(G) ≥ 2|G|/(1 + t). Then G has an [a, at]-factor with the
property that it contains a 2-edge connected [2, 2t]-factor.

Matsuda’s condition cannot be weakened to σ2(G) ≥ 2|G|/(1 + t) − 1 as is
seen from the following example.

Let G be a complete bipartite graph with partite sets A and B such that
|A| = m and |B| = tm + 1, where m is any positive integer. Then it follows
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that |G| = |A| + |B| = (1 + t)m + 1, which for sufficiently large m satisfies
the order condition, and

2|G|

1 + t
> degG(x) + degG(y) = 2m >

2|G|

1 + t
− 1

for two nonadjacent vertices x and y in B. However, G has no [a, at]-factor,
since at|A| < a|B|.

Nishimura proved

Theorem 34 ([118]) Let k ≥ 2 be an integer and let G be a connected
graph of order n such that n ≥ 4k − 3, kn is even and δ(G) ≥ k. If
max{deg(u), deg(v)} ≥ n/2 holds for every pair of independent vertices, then
G has a k-factor.

The theorem is sharp, the hypothesis on the degree cannot be weakened as
can be seen by considering an unbalanced bipartite graph. The hypothesis
on the order n cannot be weakened either, Nishimura considers the join of
a complete graph K2k−4 with the disjoint union of a vertex and the cycle
C2k−1. This graph satisfies the hypothesis on the degrees but it is of order
4k − 4 and has no k-factor.

This factor is not necessarily connected, but Kano [81] observed that Ore’s
condition holds, hence G has a Hamiltonian cycle. Combined with the k-
factor that gives a connected [k, k + 2]-factor in G.

Kano has raised the following problem.
Problem: Find sufficient conditions for a graph to have a connected [k, k+1]-
factor.

Answers to Kano’s problem have been given in Theorems 35, 38, 36 and 50.

B. Wei and Y. Zhu proved

Theorem 35 ([142]) Let k ≥ 2 be an integer and let G be a graph of order
n such that n ≥ 8k − 4 and kn is even. If δ(G) ≥ n/2, then G has a
2-connected k-factor containing a Hamiltonian cycle.
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The condition δ(G) ≥ n/2 ensures Hamiltonicity, but it does not ensure
existence of a k-factor containing a given Hamiltonian cycle. For, let n ≥ 6
be even, k ≥ 3 and set m = n/2, form the cycle C = v1v2 . . . vm and the path
P = vm+1vm+2 . . . vn. Then the join G = C +P obtained by adding all edges
between C and P satisfies δ(G) ≥ n/2 but G has no k-factor containing the
Hamiltonian cycle v1v2 . . . vn.

Similarly, in Theorem 36 by M. Cai, Y. Li and Kano below, we observe that
Ore’s condition, σ2 ≥ n, implies Hamiltonicity.

Theorem 36 ([22, 23]) Let k ≥ 2 be an integer and G a graph of order n
with δ(G) ≥ k and σ2(G) ≥ n. If n ≥ 8k − 16 for even n and n ≥ 6k − 13
for odd n, then for any given Hamiltonian cycle C, G has a [k, k + 1]-factor
containing C.

Matsuda [108] obtained this last result with the condition σ2 ≥ n replaced by
the weaker condition max{degG(x), degG(y)} ≥ n/2 for nonadjacent x and
y.

For [a, b]-factors Matsuda has proved an analogous result

Theorem 37 ([109]) Let 2 ≤ a < b be integers and let G be a Hamilto-

nian graph of order n ≥
(a + b− 4)(2a + b− 6)

b− 2
. Suppose that δ(G) ≥ a and

max{degG(x), degG(y)} ≥
(a− 2)n

a + b− 4
+2 for each pair of nonadjacent vertices

x and y of V (G). Then G has an [a, b]-factor containing a given Hamiltonian
cycle.

Let us mention an unpublished result of Y. Li:

Theorem 38 ([97]) Let k ≥ 2 be an integer and G a graph of order n with
δ(G) ≥ n/2 and δ(G − e) < n/2 for all e in E(G). If n ≥ 4k + 2 then for
any Hamiltonian cycle C of G there exists a [k, k + 1]-factor containing C.

Note that the graphs considered in that result are not necessarily regular.
Let us consider for example the join of a stable set of p, (p < n/4), vertices
and an (n/2− p)-regular Hamiltonian graph.
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We state two conjectures about factors containing Hamiltonian cycles.

Conjecture (Y. Zhu, Z. Liu, M. Cai) Let k ≥ 2 be an integer, and G a
2-connected graph of order n with n ≥ 8k, kn even and δ(G) ≥ k. If for any
two nonadjacent vertices u and v of G max{degG(u), degG(v)} ≥ n/2, then
G has a k-factor containing a Hamiltonian cycle.

Conjecture (Y. Zhu, Z. Liu, M. Cai) Let k ≥ 2 be an integer, and G
a 2-connected graph of order n with n ≥ 8k, kn even and δ(G) ≥ k. If

|NG(u)∪NG(v)| ≥
2n− 3

3
holds for any two nonadjacent vertices u and v of

G then G has a k-factor containing a Hamiltonian cycle.

We get a 2k-factor if we have for example a family of k edge-disjoint Hamil-
tonian cycles. Furthermore this factor is 2k-edge connected. In 1971 Nash-
Williams [113] established a sufficient condition, involving the minimum de-
gree and the order of the graph, for the existence of such a factor. Several
authors considered extensions of this result with conditions involving σ2 in-
stead of the minimum degree, but with different bounds on the order of the
graph (Faudree, Rousseau and Schelp [54], H. Li [102], Egawa [46]).

Theorem 39 ([102]) If G is a simple graph with n ≥ 20 and minimum
degree δ with n ≥ 2δ2 and σ2 ≥ n, then G contains at least ⌊(δ − 1)/2⌋
Hamiltonian cycles.

Theorem 40 ([103]) If G is a simple graph with n ≥ 20 and minimum
degree δ ≥ 5 and σ2 ≥ n, then G contains at least 2 edge disjoint Hamiltonian
cycles.

Theorem 41 ([46]) Let k and n be integers such that 2 ≤ k ≤
n

44
+ 1 and

let G be a graph of order n with δ(G) ≥ 4k − 2, σ2(G) ≥ n. Then G has k
edge disjoint Hamiltonian cycles.

Berman [16] has considered the parity of the number of connected f -factors
avoiding or containing special edge sets.
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4.2 K1,h-free graphs

G. Li, B. Zhu and C. Chen [99] proved that every 2-connected claw-free graph
having a k-factor, k ≥ 2, also has a connected [k, k + 1]-factor.

Egawa and Ota [47] found that a connected claw-free graph with δ ≥ (9k +
12)/8 and kn even has a k-factor.

B. Xu, Z. Liu and Tokuda prove

Theorem 42 ([149]) Let h ≥ 3 be an integer and let G be a connected
K1,h-free graph. Let g, f be maps from V (G) into the nonnegative integers
satisfying g(v) ≤ f(v), for each v in V (G). If G has a (g, f)-factor then G
contains a connected (g, f + h− 1)-factor.

For constant functions f and g, the result above is refined for h = 3 by B.
Xu and Z. Liu and for h ≥ 4 by Tokuda. The existence of an [a, b]-factor
guarantees, also, the existence of a connected [a, b]-factor if b is big enough.
More precisely,

Theorem 43 ([150, 128]) For integers h, a, b satisfying h ≥ 3, a ≥ 1 and
b ≥ a(h− 2) + 2, if G is connected, K1,h-free and has an [a, b]-factor, then G
has a connected [a,b]-factor.

4.3 Stability

Egawa and Enomoto [44], and independently Nishimura [117] gave a sufficient
condition for a graph to contain a k-factor, not necessarily connected, as a
function of the stability number of the graph and the connectivity. This
leads to the question of whether an integer f(a, b, κ) exists such that α(G) ≤
f(a, b, κ) guarantees existence of a connected [a, b]-factor in G.

Recently, Kouider and Lonc proved:

Theorem 44 ([88]) Let G be a κ-connected graph, a ≥ 2, b ≥ a + 3 and

(a, b) 6= (2, 5), (2, 7), (3, 6), (4, 7). If δ(G) ≥
10(a + 1)κ

9(a− 1)
+ a and
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α(G) ≤











4κb

(a + 1)2
for a odd,

4κb

a(a + 2)
for a even,

then G has a connected [a, b]-factor.

Theorem 45 ([88]) Let b ≥ a+1 and let one of the following two conditions
be satisfied

(i) a ≥ 4 and (a, b) 6= (4, 7) or

(ii) a = 3 and b is divisible by 4.

If G is a κ-connected graph such that κ ≥ 2, δ(G) ≥ 2κ + a, and α(G) ≤
4bκ

(a + 1)2
, then G has a 2-connected [a, b]-factor.

4.4 Toughness

Win’s theorem on trees and toughness, Theorem 7, combined with Theo-
rem 53 below implies Theorem 42 of B. Xu, Z. Liu and Tokuda.

In fact Ellingham, Nam and Voss [49, Lemma 6] prove that every connected
K1,h-free graph satisfies the condition of Theorem 7 by Win, when k in
Theorem 7 is taken to be equal to h. Thus G has an h-tree and a (g, f)-
factor so that application of Theorem 53 with f ′ = h produces a connected
(g, f + h − 1)-factor in G as wanted in Theorem 42. Theorem 7 together
with Theorem 46(ii) below also implies Theorem 42. B. Xu and Z. Liu ob-
served [151] that any connected 1/(h−2)-tough graph having a (g, f)-factor,
1 ≤ g(x) ≤ f(x) for all x in V (G) has a connected (g, f + h− 1)-factor.

Let h be any integer positive valued function on the vertices of G. In [49]
Ellingham, Nam and Voss consider the extension of a (g, f)-factor into a
connected (g, f + h)-factor. Thus they generalize Win’s theorem by giving
four different sufficient conditions. For greater clarity we reformulate their
result below for the case of a constant function h.
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Theorem 46 ([49]) Let h ≥ 1 be an integer. Let G be a connected graph
and g, f be positive integer-valued functions defined on V (G). Suppose that
G has a (g, f)-factor F in which each component has at least c vertices. Then
F extends into a connected (g, f +h)-factor of G if for every nonempty subset
S of V (G) at least one of the following properties hold:

(i) ω(G− S) < (h− 2)|S|+ 3; or,

(ii) c ≥ 2 and ω(G− S) < (h− 1)|S|+ 3; or,

(iii) ω(G− S) < ⌈(
h

2
−

1

c
)|S|)⌉ + 2,

(iv) c ≥ 2, and ω(G− S) < ⌈
ch− 2

2(ch− 1)
· h|S| +

2ch− 1

ch− 1
⌉.

As a corollary they show that any
1

h− 2
-tough graph has “the canonical”

extension (see Tokuda’s Theorem 43). We mention next the following result
of Katerinis.

Theorem 47 ([82]) Let a and b be two positive integers, 1 ≤ a ≤ b, and
let G be a graph of order n such that a · n is even if a = b. If tough(G) ≥

a− 1 +
a

b
, then G has an [a, b]-factor.

Ellingham, Nam and Voss use Theorem 47 above to derive the next two
theorems.

Theorem 48 ([49]) Let a and b be positive integers (4 ≤ a+2 ≤ b). If G is

a graph with tough(G) ≥ (a−1)+
a

b− 2
, then G has a connected [a, b]-factor

which contains an [a, b− 2]-factor.

Theorem 49 ([49]) Let a and b be positive integers (3 ≤ a+1 ≤ b). If G is

a graph with tough(G) ≥ max{a− 1+
a

b− 1
,

2a

a− 1
}, then G has a connected

[a, b]-factor which contains an [a, b− 1]-factor.

29



4.5 Extensions of factors

As an extension of Theorem 34 M. Cai proves

Theorem 50 ([25]) Let k be an integer, k ≥ 2, and G a connected graph of
order n. If G has a k-factor F and, moreover, among any three independent
vertices of G there is at least one pair of vertices with degree-sum at least
n − k, then G has a matching M such that M and F are edge disjoint and
M ∪ F is a connected [k, k + 1]-factor.

M. Cai and Y. Li further extend this in Theorems 51 and 52 below. They
define an almost k-factor to be a factor F− such that every vertex has degree
k except at most one vertex with degree k ± 1.

Theorem 51 ([24]) Let k be an odd integer, k ≥ 3, and G a connected
graph of order n with n ≥ 4k − 3 and minimum degree at least k. If
max{degG(u), degG(v)} ≥ n/2 for each pair of nonadjacent vertices u, v in
G, then G has an almost k-factor F− and a matching M such that F− and
M are edge disjoint and F− ∪M is a connected [k, k + 1]-factor of G.

Theorem 52 ([101]) Let G be a connected graph of order n, let g and f
be two positive integer functions defined on V (G) which satisfy 2 ≤ g(v) ≤
f(v) for each vertex v ∈ V (G). Let G have a (g, f)-factor F and put µ =
min{g(v)|v ∈ V (G)}. Suppose that among any three independent vertices of
G there is at least one pair of vertices with degree sum at least n− µ. Then
G has a matching M such that M and F are edge disjoint and M ∪ F is a
connected (g, f + 1)-factor of G.

An extension by spanning trees is proved by Tokuda, B. Xu and J. Wang.

Theorem 53 ([130]) Let G be a graph and g, f, f ′ positive integer-valued
functions defined on V (G). Assume G has a (g, f)-factor and an (1, f ′)-
factor F such that F is a spanning tree for G. Then G contains a connected
(g, f + f ′ − 1)-factor.
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This implies that if G has a (g, f)-factor and a k-tree then G has a connected
(g, f + k − 1)-factor.

Note that there are not so many works on connected (g, f)-factors in which f
and g are not constants. Factorization into even, connected [a, b]-factors has
not yet been considered. It might in some years be the subject of another
survey.

We would to thank M. Kano, B. Jackson and the referees for their helpfull
remarks
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