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The displacement and split decompositions

for a Q-polynomial distance-regular graph∗

Paul Terwilliger

Abstract

Let Γ denote a Q-polynomial distance-regular graph with diameter at least three

and standard module V . We introduce two direct sum decompositions of V . We call

these the displacement decomposition for Γ and the split decomposition for Γ. We

describe how these decompositions are related.

1 Introduction

In this paper Γ = (X,R) will denote a Q-polynomial distance-regular graph with diameter
D ≥ 3 and adjacency matrix A (see Section 2 for formal definitions). In order to describe
our main results we make a few comments. Fix a vertex x ∈ X . For 0 ≤ i ≤ D let
E∗

i = E∗

i (x) denote the diagonal matrix in MatX(C) that represents the projection onto
the ith subconstituent of Γ with respect to x. Let E0, E1, . . . , ED denote a Q-polynomial
ordering of the primitive idempotents for A and let A∗ = A∗(x) denote the corresponding
dual adjacency matrix. The subconstituent algebra T = T (x) is the subalgebra of MatX(C)
generated by A and A∗. Let W denote an irreducible T -module. By the displacement of W
we mean ρ+ τ + d−D, where ρ = min{i|E∗

i W 6= 0}, τ = min{i|EiW 6= 0}, d = |{i|EiW 6=
0}| − 1. We show the displacement of W is nonnegative and at most D. Let V = CX

denote the standard module. We show V =
∑D

η=0
Vη (orthogonal direct sum), where Vη

denotes the subspace of V spanned by the irreducible T -modules that have displacement
η. This is the displacement decomposition with respect to x. For −1 ≤ i, j ≤ D we define
Vij = (E∗

0V + · · ·+ E∗

i V ) ∩ (E0V + · · ·+ EjV ). We show V =
∑D

i=0

∑D

j=0
Ṽij (direct sum),

where Ṽij denotes the orthogonal complement of Vi,j−1 + Vi−1,j in Vij with respect to the
Hermitean dot product. This direct sum is the split decomposition with respect to x. The
above decompositions are related as follows. For 0 ≤ η ≤ D we show Vη =

∑

Ṽij , where
the sum is over all ordered pairs i, j such that 0 ≤ i, j ≤ D and i + j = D + η. Using
this we obtain the following results. For 0 ≤ i, j ≤ D we show Vij = 0 if i + j < D. For
0 ≤ i ≤ D let θi (resp. θ∗i ) denote the eigenvalue of A (resp. A∗) for Ei (resp. E∗

i ). For
0 ≤ i, j ≤ D we show (A − θjI)Ṽij ⊆ Ṽi+1,j−1 and (A∗ − θ∗i I)Ṽij ⊆ Ṽi−1,j+1, where Ṽrs := 0
unless r, s ∈ {0, 1, . . . , D}. We finish with an application related to the work of Brouwer,
Godsil, Koolen and Martin [4] concerning the dual width of a subset of X .

∗Keywords. Distance-regular graph, association scheme, Terwilliger algebra, subconstituent algebra.
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2 Preliminaries concerning distance-regular graphs

In this section we review some definitions and basic concepts concerning distance-regular
graphs. For more background information we refer the reader to [1], [3], [19] and [29].

Let C denote the complex number field. Let X denote a nonempty finite set. Let MatX(C)
denote the C-algebra consisting of all matrices whose rows and columns are indexed by X

and whose entries are in C. Let V = CX denote the vector space over C consisting of
column vectors whose coordinates are indexed by X and whose entries are in C. We observe
MatX(C) acts on V by left multiplication. We call V the standard module. We endow V with
the Hermitean inner product 〈 , 〉 that satisfies 〈u, v〉 = utv for u, v ∈ V , where t denotes
transpose and denotes complex conjugation. For all y ∈ X, let ŷ denote the element of V
with a 1 in the y coordinate and 0 in all other coordinates. We observe {ŷ | y ∈ X} is an
orthonormal basis for V.

Let Γ = (X,R) denote a finite, undirected, connected graph, without loops or multiple
edges, with vertex set X and edge set R. Let ∂ denote the path-length distance function
for Γ, and set D := max{∂(x, y) | x, y ∈ X}. We call D the diameter of Γ. We say Γ is
distance-regular whenever for all integers h, i, j (0 ≤ h, i, j ≤ D) and for all vertices x, y ∈ X

with ∂(x, y) = h, the number

phij = |{z ∈ X | ∂(x, z) = i, ∂(z, y) = j}|

is independent of x and y. The phij are called the intersection numbers of Γ.

For the rest of this paper we assume Γ is distance-regular with diameter D ≥ 3.

We recall the Bose-Mesner algebra of Γ. For 0 ≤ i ≤ D let Ai denote the matrix in MatX(C)
with xy entry

(Ai)xy =

{

1, if ∂(x, y) = i

0, if ∂(x, y) 6= i
(x, y ∈ X).

We call Ai the ith distance matrix of Γ. We abbreviate A := A1 and call this the adjacency
matrix of Γ. We observe (i) A0 = I; (ii)

∑D

i=0
Ai = J ; (iii) Ai = Ai (0 ≤ i ≤ D); (iv)

At
i = Ai (0 ≤ i ≤ D); (v) AiAj =

∑D

h=0
phijAh (0 ≤ i, j ≤ D), where I (resp. J) denotes the

identity matrix (resp. all 1’s matrix) in MatX(C). Using these facts we find A0, A1, . . . , AD is
a basis for a commutative subalgebra M of MatX(C). We call M the Bose-Mesner algebra of
Γ. It turns out A generates M [1, p. 190]. By [3, p. 45], M has a second basis E0, E1, . . . , ED

such that (i) E0 = |X|−1J ; (ii)
∑D

i=0
Ei = I; (iii) Ei = Ei (0 ≤ i ≤ D); (iv) Et

i = Ei (0 ≤
i ≤ D); (v) EiEj = δijEi (0 ≤ i, j ≤ D). We call E0, E1, . . . , ED the primitive idempotents
of Γ.

We recall the eigenvalues of Γ. Since E0, E1, . . . , ED form a basis for M there exist complex
scalars θ0, θ1, . . . , θD such that A =

∑D

i=0
θiEi. Observe AEi = EiA = θiEi for 0 ≤ i ≤ D.

By [1, p. 197] the scalars θ0, θ1, . . . , θD are in R. Observe θ0, θ1, . . . , θD are mutually distinct
since A generates M . We call θi the eigenvalue of Γ associated with Ei (0 ≤ i ≤ D). Observe

V = E0V + E1V + · · ·+ EDV (orthogonal direct sum).

For 0 ≤ i ≤ D the space EiV is the eigenspace of A associated with θi.

2



We now recall the Krein parameters. Let ◦ denote the entrywise product in MatX(C).
Observe Ai ◦ Aj = δijAi for 0 ≤ i, j ≤ D, so M is closed under ◦. Thus there exist complex
scalars qhij (0 ≤ h, i, j ≤ D) such that

Ei ◦Ej = |X|−1

D
∑

h=0

qhijEh (0 ≤ i, j ≤ D).

By [2, p. 170], qhij is real and nonnegative for 0 ≤ h, i, j ≤ D. The qhij are called the Krein
parameters. The graph Γ is said to be Q-polynomial (with respect to the given ordering
E0, E1, . . . , ED of the primitive idempotents) whenever for 0 ≤ h, i, j ≤ D, qhij = 0 (resp.
qhij 6= 0) whenever one of h, i, j is greater than (resp. equal to) the sum of the other two
[1, 4, 5, 6, 9, 10, 14, 15, 23, 24]. From now on assume Γ is Q-polynomial with respect to
E0, E1, . . . , ED.

We recall the dual Bose-Mesner algebra of Γ. Fix a vertex x ∈ X. We view x as a “base
vertex.” For 0 ≤ i ≤ D let E∗

i = E∗

i (x) denote the diagonal matrix in MatX(C) with yy

entry

(E∗

i )yy =

{

1, if ∂(x, y) = i

0, if ∂(x, y) 6= i
(y ∈ X). (1)

We call E∗

i the ith dual idempotent of Γ with respect to x [29, p. 378]. We observe (i)
∑D

i=0
E∗

i = I; (ii) E∗

i = E∗

i (0 ≤ i ≤ D); (iii) E∗t
i = E∗

i (0 ≤ i ≤ D); (iv) E∗

i E
∗

j = δijE
∗

i

(0 ≤ i, j ≤ D). By these facts E∗

0 , E
∗

1 , . . . , E
∗

D form a basis for a commutative subalgebra
M∗ = M∗(x) of MatX(C). We call M∗ the dual Bose-Mesner algebra of Γ with respect to
x [29, p. 378]. For 0 ≤ i ≤ D let A∗

i = A∗

i (x) denote the diagonal matrix in MatX(C)
with yy entry (A∗

i )yy = |X|(Ei)xy for y ∈ X . Then A∗

0, A
∗

1, . . . , A
∗

D is a basis for M∗ [29,
p. 379]. Moreover (i) A∗

0 = I; (ii) A∗

i = A∗

i (0 ≤ i ≤ D); (iii) A∗t
i = A∗

i (0 ≤ i ≤ D); (iv)
A∗

iA
∗

j =
∑D

h=0
qhijA

∗

h (0 ≤ i, j ≤ D) [29, p. 379]. We call A∗

0, A
∗

1, . . . , A
∗

D the dual distance
matrices of Γ with respect to x. We abbreviate A∗ := A∗

1 and call this the dual adjacency
matrix of Γ with respect to x. The matrix A∗ generates M∗ [29, Lemma 3.11].

We recall the dual eigenvalues of Γ. Since E∗

0 , E
∗

1 , . . . , E
∗

D form a basis for M∗, there exist
complex scalars θ∗0, θ

∗

1, . . . , θ
∗

D such that A∗ =
∑D

i=0
θ∗iE

∗

i . Observe A∗E∗

i = E∗

i A
∗ = θ∗iE

∗

i for
0 ≤ i ≤ D. By [29, Lemma 3.11] the scalars θ∗0, θ

∗

1, . . . , θ
∗

D are in R. The scalars θ∗0, θ
∗

1, . . . , θ
∗

D

are mutually distinct since A∗ generates M∗. We call θ∗i the dual eigenvalue of Γ associated
with E∗

i (0 ≤ i ≤ D).

We recall the subconstituents of Γ. From (1) we find

E∗

i V = span{ŷ | y ∈ X, ∂(x, y) = i} (0 ≤ i ≤ D). (2)

By (2) and since {ŷ | y ∈ X} is an orthonormal basis for V we find

V = E∗

0V + E∗

1V + · · ·+ E∗

DV (orthogonal direct sum).

For 0 ≤ i ≤ D the space E∗

i V is the eigenspace of A∗ associated with θ∗i . We call E∗

i V the
ith subconstituent of Γ with respect to x.
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We recall the subconstituent algebra of Γ. Let T = T (x) denote the subalgebra of MatX(C)
generated by M and M∗. We call T the subconstituent algebra (or Terwilliger algebra) of Γ
with respect to x [29, Definition 3.3]. We observe T is generated by A and A∗. We observe
T has finite dimension. Moreover T is semi-simple since it is closed under the conjugate
transponse map [12, p. 157]. See [7, 8, 11, 16, 17, 18, 20, 26, 29, 30, 31] for more information
on the subconstituent algebra.

For the rest of this paper we adopt the following notational convention.

Definition 2.1 We assume Γ = (X,R) is a distance-regular graph with diameter D ≥ 3.
We assume Γ is Q-polynomial with respect to the ordering E0, E1, . . . , ED of the primitive
idempotents. We fix x ∈ X and write A∗ = A∗(x), E∗

i = E∗

i (x) (0 ≤ i ≤ D), T = T (x). We
abbreviate V = CX . For notational convenience we define E−1 = 0, ED+1 = 0 and E∗

−1 = 0,
E∗

D+1
= 0.

We have some comments.

Lemma 2.2 [29, Lemma 3.2] With reference to Definition 2.1, the following (i), (ii) hold.

(i) AE∗

i V ⊆ E∗

i−1V + E∗

i V + E∗

i+1V (0 ≤ i ≤ D).

(ii) A∗EiV ⊆ Ei−1V + EiV + Ei+1V (0 ≤ i ≤ D).

Lemma 2.3 With reference to Definition 2.1, the following (i)–(iv) hold.

(i) A
∑i

h=0
E∗

hV ⊆
∑i+1

h=0
E∗

hV (0 ≤ i ≤ D).

(ii) (A− θiI)
∑i

h=0
EhV =

∑i−1

h=0
EhV (0 ≤ i ≤ D).

(iii) A∗
∑i

h=0
EhV ⊆

∑i+1

h=0
EhV (0 ≤ i ≤ D).

(iv) (A∗ − θ∗i I)
∑i

h=0
E∗

hV =
∑i−1

h=0
E∗

hV (0 ≤ i ≤ D).

Proof: (i) Immediate from Lemma 2.2(i).
(ii) Recall AEj = θjEj for 0 ≤ j ≤ D.
(iii) Immediate from Lemma 2.2(ii).
(iv) Recall A∗E∗

j = θ∗jE
∗

j for 0 ≤ j ≤ D. �

3 The irreducible T -modules

In this section we recall some results on T -modules for later use.

With reference to Definition 2.1, by a T-module we mean a subspace W ⊆ V such that
BW ⊆ W for all B ∈ T. Let W denote a T -module. Then W is said to be irreducible
whenever W is nonzero and W contains no T -modules other than 0 and W. Let W,W ′ denote
T -modules. By an isomorphism of T -modules from W to W ′ we mean an isomorphism of
vector spaces σ : W → W ′ such that (σB − Bσ)W = 0 for all B ∈ T . The modules W,W ′
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are said to be isomorphic as T -modules whenever there exists an isomorphism of T -modules
from W to W ′. Any two nonisomorphic irreducible T -modules are orthogonal [7, Lemma
3.3].

Let W denote a T -module and let W ′ denote a T -module contained in W . Then the orthog-
onal complement of W ′ in W is a T -module [18, p. 802]. It follows that each T -module is
an orthogonal direct sum of irreducible T -modules. In particular V is an orthogonal direct
sum of irreducible T -modules.

Let W denote an irreducible T -module. By the endpoint of W we mean min{i|0 ≤ i ≤
D, E∗

i W 6= 0}. By the diameter of W we mean |{i|0 ≤ i ≤ D, E∗

i W 6= 0}| − 1. By the dual
endpoint of W we mean min{i|0 ≤ i ≤ D, EiW 6= 0}. By the dual diameter of W we mean
|{i|0 ≤ i ≤ D, EiW 6= 0}| − 1. The diameter of W is equal to the dual diameter of W [23,
Corollary 3.3]. There exists a unique irreducible T -module with diameter D. We call this
module the primary T -module. The primary T -module has basis A0x̂, . . . , ADx̂ [29, Lemma
3.6].

Lemma 3.1 [29, Lemma 3.4, Lemma 3.9, Lemma 3.12] With reference to Definition 2.1,
let W denote an irreducible T -module with endpoint ρ, dual endpoint τ , and diameter d.
Then ρ, τ, d are nonnegative integers such that ρ + d ≤ D and τ + d ≤ D. Moreover the
following (i)–(iv) hold.

(i) E∗

i W 6= 0 if and only if ρ ≤ i ≤ ρ+ d, (0 ≤ i ≤ D).

(ii) W =
∑d

h=0
E∗

ρ+hW (orthogonal direct sum).

(iii) EiW 6= 0 if and only if τ ≤ i ≤ τ + d, (0 ≤ i ≤ D).

(iv) W =
∑d

h=0
Eτ+hW (orthogonal direct sum).

Lemma 3.2 With reference to Definition 2.1, let W denote an irreducible T -module with
endpoint ρ, dual endpoint τ , and diameter d. Then the following (i), (ii) hold.

(i) AE∗

ρ+iW ⊆ E∗

ρ+i−1W + E∗

ρ+iW + E∗

ρ+i+1W (0 ≤ i ≤ d).

(ii) A∗Eτ+iW ⊆ Eτ+i−1W + Eτ+iW + Eτ+i+1W (0 ≤ i ≤ d).

Proof: (i) Follows from Lemma 2.2(i) and since E∗

jW = E∗

j V ∩W for 0 ≤ j ≤ D.
(ii) Follows from Lemma 2.2(ii) and since EjW = EjV ∩W for 0 ≤ j ≤ D. �

Remark 3.3 With reference to Definition 2.1, let W denote an irreducible T -module. Then
A and A∗ act on W as a tridiagonal pair in the sense of [21, Definition 1.1]. This follows
from Lemma 3.1, Lemma 3.2, and since A,A∗ together generate T . See [22, 32, 33, 34, 35,
36, 37, 38, 39, 40, 41] for information on tridiagonal pairs.

Lemma 3.4 [6, Lemma 5.1, Lemma 7.1] With reference to Definition 2.1, let W denote an
irreducible T -module with endpoint ρ, dual endpoint τ , and diameter d. Then the following
(i), (ii) hold.
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(i) 2ρ+ d ≥ D.

(ii) 2τ + d ≥ D.

Lemma 3.5 With reference to Definition 2.1, let W denote an irreducible T -module with
endpoint ρ, dual endpoint τ , and diameter d. Then

W =

d
∑

h=0

Wh (direct sum), (3)

where

Wh = (E∗

ρW + · · ·+ E∗

ρ+hW ) ∩ (EτW + · · ·+ Eτ+d−hW ) (0 ≤ h ≤ d). (4)

Proof: Immediate from Remark 3.3 and [21, Theorem 4.6]. �

Remark 3.6 The sum (3) is not orthogonal in general.

4 The displacement decomposition

In this section we introduce the displacement decomposition for the standard module.

Definition 4.1 With reference to Definition 2.1, let W denote an irreducible T -module. By
the displacement of W we mean the integer ρ+ τ + d−D, where ρ, τ, d denote respectively
the endpoint, dual endpoint, and diameter of W .

Lemma 4.2 With reference to Definition 2.1, let W denote an irreducible T -module with
displacement η. Then 0 ≤ η ≤ D.

Proof: Let ρ, τ, d denote respectively the endpoint, dual endpoint, and diameter of W . By
Lemma 3.4 we have 2ρ+d ≥ D and 2τ+d ≥ D; adding these inequalities we find ρ+τ+d ≥ D

so η ≥ 0. By Lemma 3.1 we have ρ ≤ D and τ + d ≤ D. Combining these inequalities we
find ρ+ τ + d ≤ 2D so η ≤ D. �

Definition 4.3 With reference to Definition 2.1, For 0 ≤ η ≤ D we let Vη denote the
subspace of V spanned by the irreducible T -modules that have displacement η. We observe
Vη is a T -module.

Lemma 4.4 With reference to Definition 2.1,

V =
D
∑

η=0

Vη (orthogonal direct sum). (5)
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Proof: We mentioned earlier that V is spanned by the irreducible T -modules. By Lemma
4.2 and Definition 4.3, each of these modules is contained in one of V0, V1, . . . , VD. Therefore
V =

∑D

η=0
Vη. To show this sum is orthogonal and direct, it suffices to show V0, V1, . . . , VD

are mutually orthogonal. For distinct integers i, j (0 ≤ i, j ≤ D) observe Vi, Vj are or-
thogonal since the isomorphism classes of irreducible T -modules that span Vi are distinct
from the isomorphism classes of irreducible T -modules that span Vj . We have now shown

V0, V1, . . . , VD are mutually orthogonal so the sum
∑D

η=0
Vη is orthogonal and direct. �

Definition 4.5 We call the sum (5) the displacement decomposition of V with respect to x.

5 The split decomposition

In this section we introduce the split decomposition of the standard module.

Definition 5.1 With reference to Definition 2.1, for −1 ≤ i, j ≤ D we define

Vij = (E∗

0V + E∗

1V + · · ·+ E∗

i V ) ∩ (E0V + E1V + · · ·+ EjV ). (6)

We observe Vij = 0 if i = −1 or j = −1.

In the following three lemmas we make some observations concerning Definition 5.1. In each
case the proof is routine and omitted.

Lemma 5.2 With reference to Definition 2.1, for 0 ≤ i, j ≤ D the space Vij consists of
those vectors v ∈ V such that E∗

hv = 0 for i < h ≤ D and Ehv = 0 for j < h ≤ D.

Lemma 5.3 With reference to Definition 2.1, we have Vi−1,j ⊆ Vij and Vi,j−1 ⊆ Vij for
0 ≤ i, j ≤ D.

Lemma 5.4 With reference to Definition 2.1, the following (i)–(iii) hold.

(i) ViD = E∗

0V + E∗

1V + · · ·+ E∗

i V (0 ≤ i ≤ D).

(ii) VDj = E0V + E1V + · · ·+ EjV (0 ≤ j ≤ D).

(iii) VDD = V .

Later in the paper we will show Vij = 0 if i+ j < D, (0 ≤ i, j ≤ D).

Definition 5.5 With reference to Definition 2.1, for 0 ≤ i, j ≤ D we let Ṽij denote the
orthogonal complement of Vi,j−1+Vi−1,j in Vij. For notational convenience we define Ṽij := 0
unless i, j ∈ {0, 1, . . . , d}.

Our next goal is to show Vrs =
∑r

i=0

∑s

j=0
Ṽij (direct sum) for 0 ≤ r, s ≤ D. We will use the

following lemma.
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Lemma 5.6 With reference to Definition 2.1,

dim Ṽij = dimVij − dimVi,j−1 − dimVi−1,j + dimVi−1,j−1 (7)

for 0 ≤ i, j ≤ D.

Proof: Let z denote the dimension of Vi,j−1 + Vi−1,j. The space Ṽij is the orthogonal com-
plement of Vi,j−1 + Vi−1,j in Vij so dim Ṽij + z = dim Vij. Using Definition 5.1 we find
Vi,j−1 ∩ Vi−1,j = Vi−1,j−1 so z + dim Vi−1,j−1 = dim Vi,j−1 + dimVi−1,j. From these comments
we routinely obtain (7). �

Theorem 5.7 With reference to Definition 2.1, for 0 ≤ r, s ≤ D we have

Vrs =
r

∑

i=0

s
∑

j=0

Ṽij (direct sum).

Proof: We first show

Vrs =
r

∑

i=0

s
∑

j=0

Ṽij. (8)

The proof is by induction on r + s. The result is trivial for r + s = 0 so assume r + s > 0.
Recall Ṽrs is the orthogonal complement of Vr,s−1 + Vr−1,s in Vrs. Therefore

Vrs = Ṽrs + Vr,s−1 + Vr−1,s. (9)

By induction we have both

Vr,s−1 =
r

∑

i=0

s−1
∑

j=0

Ṽij , Vr−1,s =
r−1
∑

i=0

s
∑

j=0

Ṽij. (10)

Combining (9), (10) we routinely obtain (8). We now show the sum (8) is direct. From
Lemma 5.6 we routinely obtain

dimVrs =
r

∑

i=0

s
∑

j=0

dim Ṽij

and it follows the sum (8) is direct. �

Corollary 5.8 With reference to Definition 2.1,

V =
D
∑

i=0

D
∑

j=0

Ṽij (direct sum). (11)

Proof: Set r = D and s = D in Theorem 5.7 and use Lemma 5.4(iii). �

Definition 5.9 We call the sum (11) the split decomposition of V with respect to x. This
decomposition is not orthogonal in general.
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6 The displacement and split decompositions

In this section we describe the relationship between the displacement decomposition and
the split decomposition. Our main result is the following. With reference to Definition 2.1,
for 0 ≤ η ≤ D we show Vη =

∑

Ṽij , where the sum is over all ordered pairs i, j such that
0 ≤ i, j ≤ D and i+ j = D + η. We begin with a lemma.

Lemma 6.1 With reference to Definition 2.1, let W denote an irreducible T -module with
endpoint ρ, dual endpoint τ , and diameter d. Let the subspaces W0,W1, . . . ,Wd be as in
Lemma 3.5. Then Wh ⊆ Ṽρ+h,τ+d−h for 0 ≤ h ≤ d.

Proof: Comparing (4) and (6) we find Wh ⊆ Vρ+h,τ+d−h. We show Wh is orthogonal to
Vρ+h−1,τ+d−h + Vρ+h,τ+d−h−1. For w ∈ Wh and for v ∈ Vρ+h−1,τ+d−h we show 〈w, v〉 = 0.
Let W⊥ denote the orthogonal complement of W in V . Observe V = W + W⊥ (direct
sum) and that W⊥ is a T -module. Observe there exists w1 ∈ W and v1 ∈ W⊥ such that
v = w1 + v1. By the construction w ∈ W and v1 ∈ W⊥ so 〈w, v1〉 = 0. We show w1 = 0. By
Lemma 5.2 and since v ∈ Vρ+h−1,τ+d−h we find E∗

i v = 0 for ρ+ h ≤ i ≤ D and Ejv = 0 for
τ + d− h+ 1 ≤ j ≤ D. Since V = W +W⊥ is a direct sum of T -modules we find E∗

i w1 = 0
for ρ+ h ≤ i ≤ D and Ejw1 = 0 for τ + d− h+ 1 ≤ j ≤ D. Since w1 ∈ W and since W has
endpoint ρ we have E∗

i w1 = 0 for 0 ≤ i ≤ ρ− 1. Similarly since W has dual endpoint τ we
have Ejw1 = 0 for 0 ≤ j ≤ τ − 1. From these comments we find

w1 ∈ (E∗

ρW + · · ·+ E∗

ρ+h−1W ) ∩ (EτW + · · ·+ Eτ+d−hW ). (12)

Using (4) we find the intersection on the right in (12) is equal to Wh∩Wh−1, where W−1 = 0.
The sum (3) is direct so Wh ∩Wh−1 = 0. We now see w1 = 0. Now v = v1 so 〈w, v〉 = 0.
We have now shown Wh is orthogonal to Vρ+h−1,τ+d−h. By a similar argument we find Wh is
orthogonal to Vρ+h,τ+d−h−1. We conclude W ⊆ Ṽρ+h,τ+d−h. �

Theorem 6.2 With reference to Definition 2.1, the following (i)–(iii) hold.

(i) For 0 ≤ η ≤ D we have Vη =
∑

Ṽij, where the sum is over all ordered pairs i, j such
that 0 ≤ i, j ≤ D and i+ j = D + η.

(ii) Ṽij = 0 if i+ j < D, (0 ≤ i, j ≤ D).

(iii) Vij = 0 if i+ j < D, (0 ≤ i, j ≤ D).

Proof: (i), (ii) For −D ≤ η ≤ D we define V ′

η =
∑

Ṽij where the sum is over all ordered

pairs i, j such that 0 ≤ i, j ≤ D and i + j = D + η. Using (11) we find V =
∑D

η=−D V ′

η

(direct sum). We show V ′

η = 0 for −D ≤ η < 0 and V ′

η = Vη for 0 ≤ η ≤ D. Since the sums

V =
∑D

η=0
Vη and V =

∑D

η=−D V ′

η are direct it suffices to show Vη ⊆ V ′

η for 0 ≤ η ≤ D. Let
η be given. Let W denote an irreducible T -module with displacement η. Combining Lemma
3.5 and Lemma 6.1 we find W ⊆ V ′

η . The space Vη is spanned by the irreducible T -modules
that have displacement η; therefore Vη ⊆ V ′

η . We have now shown Vη ⊆ V ′

η for 0 ≤ η ≤ D.
We conclude V ′

η = 0 for −D ≤ η < 0 and V ′

η = Vη for 0 ≤ η ≤ D. Lines (i), (ii) follow.
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(iii) Combine (ii) above with Theorem 5.7. �

We have some comments.

Theorem 6.3 With reference to Definition 2.1, for 0 ≤ i, j ≤ D such that i + j ≥ D, and
for 0 ≤ η ≤ D,

Vij ∩ Vη =
∑

Ṽrs,

where the sum is over all ordered pairs r, s such that 0 ≤ r ≤ i and 0 ≤ s ≤ j and
r + s−D = η.

Proof: Combine Theorem 5.7 and Theorem 6.2(i). �

Corollary 6.4 With reference to Definition 2.1, for 0 ≤ i, j ≤ D such that i + j ≥ D, we
have Ṽij = Vij ∩ Vη where η = i+ j −D.

Proof: Apply Theorem 6.3 with η = i+ j −D. �

7 The action of A and A∗ on the split decomposition

In this section we describe how the adjacency matrix and the dual adjacency matrix act on
the split decomposition.

Theorem 7.1 With reference to Definition 2.1, the following (i), (ii) hold.

(i) (A− θjI)Ṽij ⊆ Ṽi+1,j−1 (0 ≤ i, j ≤ D).

(ii) (A∗ − θ∗i I)Ṽij ⊆ Ṽi−1,j+1 (0 ≤ i, j ≤ D).

Proof: (i) Assume i+ j ≥ D; otherwise Ṽij = 0 and the result is trivial. For convenience we
treat the cases i = D and i < D separately. To obtain the result for the case i = D, we show
(A−θjI)ṼDj = 0. From Corollary 6.4 (with i = D and η = j) we have ṼDj = VDj∩Vj . Using
Lemma 2.3(ii) and Lemma 5.4(ii) we find (A− θjI)VDj = VD,j−1. Therefore (A− θjI)ṼDj ⊆
VD,j−1. Recall Vj is a T -module so (A− θjI)Vj ⊆ Vj. Therefore (A− θjI)ṼDj ⊆ Vj. Now

(A− θjI)ṼDj ⊆ VD,j−1 ∩ Vj

= 0

in view of Theorem 6.3. We have now shown (A− θjI)ṼDj = 0 so we are done for the case
i = D. Next assume i < D. From Corollary 6.4 we have Ṽij = Vij ∩ Vη where η = i+ j −D.
Using Lemma 2.3 and (6) we find (A− θjI)Vij ⊆ Vi+1,j−1. Therefore (A− θjI)Ṽij ⊆ Vi+1,j−1.
Recall Vη is a T -module so (A− θjI)Vη ⊆ Vη. Therefore (A− θjI)Ṽij ⊆ Vη. Now

(A− θjI)Ṽij ⊆ Vi+1,j−1 ∩ Vη

= Ṽi+1,j−1

in view of Corollary 6.4.
(ii) Similar to the proof of (i) above. �
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8 An application

In this section we give an application of Theorem 6.2(iii). We first give two definitions.

Definition 8.1 Let Γ = (X,R) denote a distance-regular graph with standard module V .
For v ∈ V , by the support of v we mean the subset of X consisting of those vertices y such
that coordinate y of v is nonzero.

Definition 8.2 [4, Section 4] Let Γ denote a distance-regular graph with diameter D ≥ 3.
Assume Γ is Q-polynomial with respect to the ordering E0, E1, . . . , ED of the primitive
idempotents. Let v denote a nonzero vector in the standard module V . By the dual width
of v we mean

max{i|0 ≤ i ≤ D, Eiv 6= 0}.

Theorem 8.3 Let Γ = (X,R) denote a distance-regular graph with diameter D ≥ 3. As-
sume Γ is Q-polynomial with respect to the ordering E0, E1, . . . , ED of the primitive idem-
potents. Let v denote a nonzero vector in the standard module V and let g denote the
corresponding dual width from Definition 8.2. Then for all x ∈ X there exists y in the
support of v such that

∂(x, y) ≥ D − g. (13)

Proof: We assume the result is false and obtain a contradiction. By this assumption there
exists x ∈ X such that ∂(x, y) < D − g for all vertices y in the support of v. Abbreviate
E∗

i = E∗

i (x) for 0 ≤ i ≤ D. Then v ∈ E∗

0V + · · · + E∗

fV where f = D − g − 1. Using
Definition 8.2 we find v ∈ E0V + · · ·+ EgV . Now

v ∈ (E∗

0V + · · ·+ E∗

fV ) ∩ (E0V + · · ·+ EgV )

= Vfg.

We mentioned f = D − g − 1 so f + g < D; combining this with Theorem 6.2(iii) we find
Vfg = 0. Now v = 0 for a contradiction. The result follows. �

Remark 8.4 Referring to Theorem 8.3, pick any x ∈ X . If v is not orthogonal to the
primary module for T (x) then (13) follows from [25, Equation (2.8)]. See also [4, Lemma 1].

9 Directions for further research

In this section we give some suggestions for further research.

Problem 9.1 With reference to Definition 2.1, recall that for 0 ≤ i, j ≤ D the space Ṽij

depends on x. Does the dimension of Ṽij depend on x?

11



Problem 9.2 With reference to Definition 2.1, let W denote an irreducible T -module and
consider the multiplicity with which W appears in V . In general this multiplicity is not
determined by the intersection numbers of Γ [26]. Is this multiplicity determined by the
intersection numbers of Γ and the scalars {dimṼij | 0 ≤ i, j ≤ D}?

Problem 9.3 Let Γ denote a Q-polynomial distance-regular graph. In many cases Γ exists
on the top fiber of a ranked poset [13], [27], [28]. For this case investigate the relationship
between the poset structure and the split decomposition of Γ.
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