Contractible Cliques in k-Connected Graphs*

Xiaolong Huang ${ }^{1}$
Zemin Jin ${ }^{1}$
Xingxing $\mathrm{Yu}^{1,2}$
Xiaoyan Zhang ${ }^{1}$
${ }^{1}$ Center for Combinatorics, LPMC
Nankai University
Tianjin, 300071
P. R. China
${ }^{2}$ School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332
USA

October 25, 2005

Abstract

Kawarabayashi proved that for any integer $k \geq 4$, every k-connected graph contains two triangles sharing an edge, or admits a k-contractible edge, or admits a k-contractible triangle. This implies Thomassen's result that every triangle-free k-connected graph contains a k-contractible edge. In this paper, we extend Kawarabayashi's technique and prove a more general result concerning k-contractible cliques.

[^0]
1 Introduction

A graph is k-connected if it has at least $k+1$ vertices and contains no vertex cut of size smaller than k. An edge (or a subgraph) in a k-connected graph is k-contractible if its contraction results in a k-connected graph. Tutte [6] showed that if G is a 3 -connected graph then $G=K_{4}$ or G contains a 3 -contractible edge. This result is used to show that all 3-connected graphs can be obtained from K_{4} by two simple operations. Those 4 -connected graphs without 4-contractible edges are characterized in [2] and [4].

Thomassen [5] showed that for $k \geq 4$, every k-connected graph contains a triangle or admits a k-contractible edge. This result is then used in [5] to prove a conjecture of Lovász. Extending techniques of Egawa [1], Kawarabayashi [3] improved Thomassen's result by showing that for $k \geq 4$, every k-connected graph contains two triangles sharing an edge, or admits a k-contractible edge not contained in any triangle, or admits a k-contractible triangle which does not share an edge with any other triangle.

A clique in a graph is a maximal complete subgraph, and a clique of size i is called an i-clique. (Note that if two cliques share an edge then both cliques are of size at least 3.) With this notation, Kawarabayashi's result can be stated as follows. For any integer $k \geq 4$, every k-connected graph contains two triangles sharing an edge, or admits a k-contractible i-clique for some $2 \leq i \leq 3$.

We aim to investigate the existence of a k-contractible subgraph of larger size in a k-connected graph. It turns out that the existence of such subgraphs depends on the number of triangles sharing a common edge. We are able to modify Kawarabayashi's method and prove the following more general result.
(1.1) Theorem. Let $t \geq 0$ and $k \geq \max \{4, t+3\}$ be integers, and let G be a k-connected graph. Then one of the following holds.
(i) There is an edge contained in $t+1$ triangles in G.
(ii) There exist two cliques in G sharing at least one edge.
(iii) There exist in G a clique of size at least 4 and a clique of size at least 3 whose intersection is non-empty.
(iv) There is a k-contractible clique in G of size at most $t+2$.

When $t=0$ and G is triangle-free, (i), (ii), and (iii) of Theorem (1.1) cannot hold. Hence, Theorem (1.1) implies that G admits a k-contractible edge, and we obtain Thomassen's result as a consequence. When $t=1$ and no two triangles in G share an edge, (i), (ii), and (iii) cannot hold. Hence, Kawarabayashi's result follows from Theorem (1.1).

We consider simple graphs only. Let G be a graph. We use $V(G)$ and $E(G)$ to denote the vertex set and edge set of G, respectively. For any $x \in V(G), N_{G}(x)$ denotes the neighborhood of x in G, and we write $d_{G}(x)=\left|N_{G}(x)\right|$. Let H be a subgraph of G. Then $N_{G}(H)$ denotes the set of vertices of $G-V(H)$ each of which is adjacent to a vertex in $V(H)$. When H is connected, we use G / H to denote the graph obtained from G by contracting H. Also, for any $e \in E(G)$, we use G / e to denote the graph obtained from G by contracting e.

To prove Theorem (1.1), we first observe that if an i-clique in a k-connected graph is not k contractible, then its vertex set must be contained in a vertex cut of size at most $k+i-2$ (unless G is small). We then define a collection of vertex cuts arising from non-contractible cliques. In
section 2 , we derive properties about those cuts and associated components. It turns out that we only need to consider those cuts of size at most $k+1$. We complete the proof of Theorem (1.1) in Section 3.

2 Cuts and components

Let G be a k-connected graph. Let K be an i-clique in G, where $i \geq 2$, and let u denote the vertex of G / K representing the contraction of K. Suppose G / K is not k-connected. Then either there is a vertex cut S^{\prime} of G / K such that $\left|S^{\prime}\right| \leq k-1$ or G / K is a complete graph on at most k vertices. In the former case, since G is k-connected, S^{\prime} is not a cut in G, and hence, $u \in S^{\prime}$. Note that $S:=\left(S^{\prime}-\{u\}\right) \cup V(K)$ is a cut in G. Since G is k-connected and because $\left|S^{\prime}\right| \leq k-1$, we have $k \leq|S| \leq k+i-2$. Therefore, if an i-clique K in G is not k-contractible then either $V(K)$ is contained in a cut of size at least k and at most $k+i-2$ or G / K is a complete graph on at most k vertices.

Again, let G be a k-connected graph. For any clique K in G which is not k-contractible, let $\mathcal{C}_{K}(G)$ denote the collection of minimum cuts in G containing $V(K)$. (Note that if $\mathcal{C}_{K}(G)=\emptyset$ then G / K is a complete graph with at most k vertices.) Thus, if $S \in \mathcal{C}_{K}(G)$ and T is a cut in G containing $V(K)$ then $|T| \geq|S|$, and $T \in \mathcal{C}_{K}(G)$ if, and only if, $|T|=|S|$. Define $\mathcal{C}(G)=\bigcup_{K} \mathcal{C}_{K}(G)$, where the union is taken over all cliques K in G which are not k-contractible. For $i \geq 2$ and $k \leq j \leq k+i-2$, let $\mathcal{C}_{i}^{j}(G):=\left\{S \in \mathcal{C}(G):|S|=j\right.$ and $S \in \mathcal{C}_{K}(G)$ for some i-clique K in $G\}$. The following observation shows when $\mathcal{C}(G) \neq \emptyset$.
(2.1) Lemma. Let $t \geq 0$ and $k \geq \max \{4, t+3\}$ be integers, and let G be a k-connected graph. Then one of the following holds.
(i) There is an edge contained in $t+1$ triangles in G.
(ii) There exist two cliques in G sharing at least one edge.
(iii) There is a k-contractible clique in G of size at most $t+2$.
(iv) $\mathcal{C}(G) \neq \emptyset$.

Proof. Suppose (i) fails. Then every clique in G has size at most $t+2$, which implies that G is not a complete graph (because $k \geq t+3$). Let x, y be two non-adjacent vertices of G. Then any clique K in G contains x or y but not both; for otherwise, either K is k-contractible ((iii) holds), or G / K is not complete, which implies $\mathcal{C}_{K}(G) \neq \emptyset$, and hence, (iv) holds.

Let X be a clique in G containing x. Then $y \notin V(X)$. We may assume that G / X is a complete graph on at most k vertices; for otherwise, either X is k-contractible ((iii) holds) or $\mathcal{C}_{X}(G) \neq \emptyset$ ((iv) holds). So let Y denote a clique in G containing $V(G)-V(X)$. Then $V(X) \cup V(Y)=V(G)$.

We may assume $|V(X \cap Y)| \leq 1$; for otherwise (ii) holds. Hence, $|V(G)| \leq|V(X)|+|V(Y)| \leq$ $|V(G)|+1$. By symmetry, we may assume that $|V(X)| \leq|V(Y)|$. Then $|V(Y)| \geq 3$ (because G is k-connected and $k \geq 4$). Now x must have at least two neighbors in Y; for otherwise, $d_{G}(x) \leq|V(X)| \leq t+2 \leq k-1$, a contradiction. Therefore, Y shares an edge with a clique in G containing x, which implies (ii).

Our second lemma concerns the sizes of components associated with cuts in $\mathcal{C}(G)$.
(2.2) Lemma. Let $t \geq 0$ and $k \geq \max \{4, t+3\}$ be integers, and let G be a k-connected graph. Then one of the following holds.
(i) There is an edge contained in $t+1$ triangles in G.
(ii) There exist two cliques in G sharing at least one edge.
(iii) There is a k-contractible clique in G of size at most $t+2$.
(iv) $\mathcal{C}(G) \neq \emptyset$, and for any $S \in \mathcal{C}(G)$ and any component H of $G-S$, we have $|V(H)| \geq k-t$, and if $k=4$ and $S \in \mathcal{C}_{3}^{5}(G)$ then $|V(H)| \geq 4$.

Proof. By Lemma (2.1), if $\mathcal{C}(G)=\emptyset$ then (i), (ii) or (iii) holds. So we may assume that $\mathcal{C}(G) \neq \emptyset$, and let $S \in \mathcal{C}(G)$. Without loss of generality, we may assume that $S \in \mathcal{C}_{i}^{j}(G)$, where $i \geq 2$ and $k \leq j \leq k+i-2$, and let K be an i-clique such that $S \in \mathcal{C}_{K}(G)$. Note that $|S-V(K)| \leq k-2$. Let H be a component of $G-S$.

First, assume $|V(H)|=1$. Let x denote the only vertex in $V(H)$. Since G is k-connected, $d_{G}(x) \geq k$. Therefore, since $|S-V(K)| \leq k-2$, we see that x has at least two neighbors in $V(K)$. Thus, $i \geq 3$ (since K is a clique) and (ii) holds.

So assume $|\bar{V}(H)| \geq 2$, and let $x y \in E(H)$. We may assume that $x y$ is contained in at most t triangles; for otherwise we have (i). Thus $\left|N_{G}(x) \cap N_{G}(y)\right| \leq t$. We may further assume that x and y each have at most one neighbor in K, as otherwise, $i \geq 3$ (since K is a clique) and (ii) holds. Therefore, $|V(H)| \geq\left|N_{G}(x) \cup N_{G}(y)\right|-|S-V(K)|-2 \geq\left|N_{G}(x)\right|+\left|N_{G}(y)\right|-\mid N_{G}(x) \cap$ $N_{G}(y) \mid-(k-2)-2 \geq 2 k-t-k=k-t$. As a consequence, (iv) holds when $k \neq 4$ or $S \in \mathcal{C}_{3}^{5}(G)$.

Now let us consider the case when $k=4$ and $S \in \mathcal{C}_{3}^{5}(G)$. Then K is a 3 -clique and $|S-V(K)|=$ 2. Since $k \geq t+3$ and $k=4$, we see that $t \leq 1$. Suppose $|V(H)|<4$. Since $|V(H)| \geq k-t \geq 3$, $|V(H)|=3$ and $t=1$. If any vertex of H has two neighbors in K, then we see that (i) holds (since $t=1$). So we may assume that each vertex of H has at most one neighbor in K. Since G is 4 -connected, this forces each vertex of H to be adjacent to at least one vertex in $S-V(K)$. Since $|S-V(K)|=2$ and $|V(H)|=3$, at least two vertices of H must share a neighbor in $S-V(K)$. If H is a triangle then (i) holds (since $t=1$). So we may assume that H is a path. Again, since G is 4-connected, the two degree 1 vertices of H are adjacent to both vertices in $S-V(K)$, and the degree 2 vertex of H is adjacent to one vertex in $S-V(K)$. This implies (i).

The next lemma will allow us to focus on those cuts from $\mathcal{C}(G)$ whose size is at most $k+1$.
(2.3) Lemma. Let $t \geq 0$ and $k \geq \max \{4, t+3\}$ be integers, and let G be a k-connected graph. Then one of the following holds.
(i) There is an edge contained in $t+1$ triangles in G.
(ii) There exist two cliques in G sharing at least one edge.
(iii) There exist in G a clique of size at least 4 and a clique of size at least 3 whose intersection is non-empty.
(iv) There is a k-contractible clique in G of size at most $t+2$.
(v) $\mathcal{C}(G) \neq \emptyset$, and for any $S \in \mathcal{C}(G)$ and for any component H of $G-S$, some edge of H belongs to a unique clique in G whose size is 2 or 3 . Moreover, if an edge of H is contained in a clique in G of size at least 4 then some edge of H is not contained in any triangle.

Proof. By Lemma (2.1), we may assume $\mathcal{C}(G) \neq \emptyset$, as otherwise (i), (ii) or (iv) holds. So we may assume that $\mathcal{C}(G) \neq \emptyset$. Let $S \in \mathcal{C}(G)$. Without loss of generality, assume that L is an l-clique such that $S \in \mathcal{C}_{L}(G)$. Note that $k \leq|S| \leq k+l-2$.

Let H be a component of $G-S$. We may assume that $|V(H)| \geq k-t \geq 3$; for otherwise, it follows from Lemma (2.2) that (i) or (ii) or (iv) holds. If every edge of H belongs to a unique clique in G of size at most 3, then (v) holds. If some edge of H is contained in two cliques in G then (ii) holds. So we may assume that some edge e of H is contained in a j-clique in G, say J, with $j \geq 4$. Let $|V(J \cap H)|=s$. Clearly $s \leq j$.

We may assume that no two vertices of $J \cap H$ share a common neighbor outside J, for otherwise (ii) holds. Thus $|N(J \cap H)| \geq s(k-(j-1))+(j-s)$. We may also assume that each vertex of $J \cap H$ has at most one neighbor in L; otherwise because L is a clique, (ii) holds. Hence, $|N(J \cap H)-S| \geq$ $|N(J \cap H)|-|S|+(|L|-s) \geq s(k-(j-1))+(j-s)-(k+l-2)+(l-s)=(s-1) k-(s-1) j-s+2$. Since $k \geq t+3$ and $t+2 \geq j,|N(J \cap H)-S| \geq(s-1)(t+3)-(s-1)(t+2)-s+2=1$.

Thus, $|V(H)-V(J \cap H)| \geq|N(J \cap H)-S| \geq 1$. So at least one vertex in H does not belong to $V(J)$. Therefore, there is an edge e^{\prime} of H which has exactly one incident vertex in J. If e^{\prime} belongs to a triangle in G, then (iii) holds. If e^{\prime} does not belong to any triangle in G, then (v) holds.

For a k-connected graph G, let $\mathcal{C}^{\prime}(G)=\mathcal{C}_{2}^{k}(G) \cup \mathcal{C}_{3}^{k}(G) \cup \mathcal{C}_{3}^{k+1}(G)$. Note that when (v) of Lemma (2.3) holds, some edge of H is contained in a unique clique in G of size at most 3, and so, $\mathcal{C}^{\prime}(G) \neq \emptyset$ or G has a contractible clique of size at most 3 .
(2.4) Lemma. Let $t \geq 0$ and $k \geq \max \{4, t+3\}$ be integers, and let G be a k-connected graph. Then one of the following holds.
(i) There is an edge contained in $t+1$ triangles in G.
(ii) There exist two cliques in G sharing at least one edge.
(iii) There exist in G a clique of size at least 4 and a clique of size at least 3 whose intersection is non-empty.
(iv) There is a k-contractible clique in G of size at most $t+2$.
(v) $\mathcal{C}^{\prime}(G) \neq \emptyset$, and for any $S, S^{\prime} \in \mathcal{C}^{\prime}(G)$ and for any component H of $G-S, V(H) \nsubseteq S^{\prime}$.

Proof. Assume that (i) - (iv) fail. Then by (v) of Lemma (2.3), $\mathcal{C}^{\prime}(G) \neq \emptyset$. Let $S, S^{\prime} \in \mathcal{C}^{\prime}(G)$, H be a component of $G-S$, and H^{\prime} be a component of $G-S^{\prime}$. Let $W=G-(S \cup V(H))$ and $W^{\prime}=G-\left(S^{\prime} \cup V\left(H^{\prime}\right)\right)$. Let H_{1}, H_{2}, and H_{3} denote $V\left(H \cap H^{\prime}\right), V(H) \cap S^{\prime}$, and $V\left(H \cap W^{\prime}\right)$, respectively. Let W_{1}, W_{2}, and W_{3} denote $V\left(W \cap H^{\prime}\right), V(W) \cap S^{\prime}$, and $V\left(W \cap W^{\prime}\right)$, respectively. Let Q_{1}, Q_{2}, and Q_{3} denote $S \cap V\left(H^{\prime}\right), S \cap S^{\prime}$, and $S \cap V\left(W^{\prime}\right)$, respectively. See Figure 1 .

Suppose (v) fails as well, with $H_{1}=\emptyset=H_{3}$. Then by by (v) of Lemma (2.3), $H_{2}=V(H)$ contains two adjacent vertices x and y of G such that $x y$ belongs to a unique clique in G of size at most 3 . In particular, $\left|N_{G}(x) \cap N_{G}(y)\right| \leq 1$. Thus, since G is k-connected, $\left|N_{G}(x) \cup N_{G}(y)\right| \geq$ $2 k-1$.

We claim that $\left|H_{2}\right| \geq k-1$. If $|S|=k$ then $\left|H_{2}\right| \geq\left|N_{G}(x) \cup N_{G}(y)\right|-|S| \geq 2 k-1-k=k-1$. Now suppose $|S|=k+1$. Then there is a 3 -clique T such that $S \in \mathcal{C}_{T}(G)$. Since we assume (ii) fails, T shares no edge with any other clique. Hence both x and y have at most one neighbor in

	H	S	W
	H^{\prime}	H_{1}	Q_{1}
	W_{1}		
S^{\prime}	H_{2}	Q_{2}	W_{2}
	W^{\prime}	H_{3}	Q_{3}
		W_{3}	

Figure 1: Cuts and components
T. Therefore, $\left|\left(N_{G}(x) \cup N_{G}(y)\right) \cap S\right| \leq k$, and so, $\left|H_{2}\right| \geq\left|\left(N_{G}(x) \cup N_{G}(y)\right)-S\right| \geq \mid\left(N_{G}(x) \cup\right.$ $\left.N_{G}(y)\right)\left|-\left|\left(N_{G}(x) \cup N_{G}(y)\right) \cap S\right| \geq 2 k-1-k=k-1\right.$.

Similarly, we can show that if $H_{1}=W_{1}=\emptyset$ then $\left|Q_{1}\right| \geq k-1$, if $W_{1}=W_{3}=\emptyset$ then $\left|W_{2}\right| \geq k-1$, and if $H_{3}=W_{3}=\emptyset$ then $\left|Q_{3}\right| \geq k-1$. We distinguish three cases.

Case 1. $\left|S^{\prime}\right|=k$ and $|S|=k$.
In this case, $\left|Q_{2} \cup W_{2}\right|=\left|S^{\prime}\right|-\left|H_{2}\right| \leq k-(k-1)=1$. Therefore, $W_{1} \neq \emptyset$ or $W_{3} \neq \emptyset$; as otherwise, $\left|W_{2}\right|=|V(W)| \geq k-1 \geq 3$, a contradiction. So by symmetry, assume $W_{1} \neq \emptyset$. Then $Q_{1} \cup Q_{2} \cup W_{2}$ is a cut in G. Since G is k-connected, $\left|Q_{1} \cup Q_{2} \cup W_{2}\right| \geq k$, and so, $\left|Q_{1}\right| \geq k-1$. Thus $\left|Q_{2} \cup Q_{3}\right|=|S|-\left|Q_{1}\right| \leq 1$, and hence $\left|Q_{2} \cup Q_{3} \cup W_{2}\right| \leq 2$. Therefore, since G is k connected and $k \geq 4, Q_{2} \cup Q_{3} \cup W_{2}$ cannot be a cut in G. So $W_{3}=\emptyset$. Since $H_{3}=\emptyset$, we have $\left|Q_{3}\right|=\left|V\left(W^{\prime}\right)\right| \geq k-1 \geq 3$, a contradiction.

Case 2. $\left|S^{\prime}\right|=k+1$ and $|S|=k$, or $\left|S^{\prime}\right|=k$ and $|S|=k+1$.
Suppose $\left|S^{\prime}\right|=k+1$ and $|S|=k$. Then $\left|Q_{2} \cup W_{2}\right|=\left|S^{\prime}\right|-\left|H_{2}\right| \leq 2$. So $W_{1} \neq \emptyset$ or $W_{3} \neq \emptyset$; for otherwise, $\left|W_{2}\right|=|V(W)| \geq k-1 \geq 3$, a contradiction. By symmetry, we may assume $W_{1}=\emptyset$. Then $\left|Q_{1} \cup Q_{2} \cup W_{2}\right| \geq k$ because G is k-connected. Hence, $\left|Q_{1}\right| \geq k-2$. Since $|S|=k$, we have $\left|Q_{2} \cup Q_{3}\right| \leq 2$. Then $W_{3} \neq \emptyset$, as otherwise, $\left|Q_{3}\right| \geq k-1 \geq 3$, a contradiction. So $Q_{3} \cup Q_{2} \cup W_{2}$ is a cut in G. Since G is k-connected and $k \geq 4$, we must have $k=4,\left|Q_{2}\right|=0$, and $\left|Q_{3}\right|=\left|W_{2}\right|=2$. Since $\left|S^{\prime}\right|=5$, we have $|V(H)|=\left|H_{2}\right|=3$ and $S^{\prime} \in \mathcal{C}_{3}^{5}(G)$. Hence H is a triangle, and by (v) of Lemma (2.3), no two vertices of H has a common neighbor in S. However this would force some vertex in $V(H)$ to have degree at most 3 in G, a contradiction.

Now assume $\left|S^{\prime}\right|=k$ and $|S|=k+1$. Then $\left|Q_{2} \cup W_{2}\right|=\left|S^{\prime}\right|-\left|H_{2}\right| \leq 1$. Therefore, $W_{1} \neq \emptyset$ or $W_{3} \neq \emptyset$, for otherwise, $\left|W_{2}\right|=|V(W)| \geq k-1 \geq 3$, a contradiction. Let T denote a 3-clique such that $S \in \mathcal{C}_{T}(G)$. By symmetry, assume that $V(T) \subseteq Q_{1} \cup Q_{2}$.

Suppose $W_{3}=\emptyset$. Then $W_{1} \neq \emptyset$ and $Q_{1} \cup Q_{2} \cup W_{2}$ is a cut in G containing $V(T)$. Since $S \in \mathcal{C}_{T}(G),\left|Q_{1} \cup Q_{2} \cup W_{2}\right| \geq|S|=k+1$. This, together with $\left|Q_{2} \cup W_{2}\right| \leq 1$, implies $\left|Q_{1}\right| \geq k$, and hence, $\left|Q_{2} \cup Q_{3}\right|=|S|-\left|Q_{1}\right| \leq 1$. On the other hand, since $H_{3}=\emptyset=W_{3},\left|Q_{3}\right|=\left|V\left(W^{\prime}\right)\right| \geq$ $k-1 \geq 3$, a contradiction.

So $W_{3} \neq \emptyset$. Then $W_{2} \cup Q_{2} \cup Q_{3}$ is a cut in G, and hence, $\left|W_{2} \cup Q_{2} \cup Q_{3}\right| \geq k$. Thus, since $\left|Q_{2} \cup W_{2}\right| \leq 1,\left|Q_{3}\right| \geq k-1$, and so, $\left|Q_{1} \cup Q_{2}\right|=|S|-\left|Q_{3}\right| \leq 2$. Now $\left|Q_{1} \cup Q_{2} \cup W_{2}\right| \leq 3$, which implies that $Q_{1} \cup Q_{2} \cup W_{2}$ cannot be a cut in G. So $W_{1}=\emptyset$. Since $H_{1}=\emptyset,\left|Q_{1}\right|=\left|V\left(H^{\prime}\right)\right| \geq$ $k-1 \geq 3$, a contradiction.

Case 3. $|S|=\left|S^{\prime}\right|=k+1$.
Then $\left|W_{2} \cup Q_{2}\right|=\left|S^{\prime}\right|-\left|H_{2}\right| \leq k+1-(k-1)=2$. Note that $W_{1} \neq \emptyset$ or $W_{3} \neq \emptyset$, for otherwise, $\left|W_{2}\right|=|V(W)| \geq k-1 \geq 3$, a contradiction. Let T denote a 3 -clique such that $S \in \mathcal{C}_{T}(G)$. By symmetry, assume $V(T) \subseteq Q_{1} \cup Q_{2}$.

First, assume $W_{1}=\emptyset$. Then $\left|Q_{1}\right|=\left|V\left(H^{\prime}\right)\right| \geq k-1$ (since $H_{1}=\emptyset$) and $W_{3} \neq \emptyset$. Now $W_{3} \neq \emptyset$ implies that $W_{2} \cup Q_{2} \cup Q_{3}$ is a cut in G, and hence, $\left|W_{2} \cup Q_{2} \cup Q_{3}\right| \geq k \geq 4$. Also $\left|Q_{1}\right| \geq k-1$ implies $\left|Q_{2} \cup Q_{3}\right|=|S|-\left|Q_{1}\right| \leq k+1-(k-1)=2$. Since $\left|W_{2} \cup Q_{2}\right| \leq 2$ and $\left|Q_{2} \cup Q_{3}\right| \leq 2$, we have $k=4, Q_{2}=\emptyset,\left|Q_{3}\right|=\left|W_{2}\right|=2,\left|S^{\prime}\right|=|S|=5$, and $\left|H_{2}\right|=|V(\bar{H})|=5-2=3$. Thus, $S \in \mathcal{C}_{3}^{5}(G)$ and $|V(H)|=3$, contradicting (iv) of Lemma (2.2) (since we assume (i), (ii), (iii) of Lemma (2.2) fail).

Now assume $W_{1} \neq \emptyset$. Then $Q_{1} \cup Q_{2} \cup W_{2}$ is a cut in G containing $V(T)$. Since $S \in \mathcal{C}_{T}(G)$, we see that $\left|Q_{1} \cup Q_{2} \cup W_{2}\right| \geq|S|=k+1$. Since $\left|W_{2} \cup Q_{2}\right| \leq 2,\left|Q_{1}\right| \geq k-1$, and so, $\left|Q_{2} \cup Q_{3}\right| \leq|S|-\left|Q_{1}\right| \leq(k+1)-(k-1)=2$. If $W_{3}=\emptyset$ then $\left|Q_{3}\right|=\left|V\left(W^{\prime}\right)\right| \geq k-1 \geq 3$ (since $H_{3}=\emptyset$), a contradiction. So $W_{3} \neq \emptyset$. Thus $W_{2} \cup Q_{2} \cup Q_{3}$ is a cut in G, and hence, $\left|W_{2} \cup Q_{2} \cup Q_{3}\right| \geq k \geq 4$. This implies that $k=4, Q_{2}=\emptyset,\left|W_{2}\right|=2,\left|Q_{3}\right|=2,|S|=\left|S^{\prime}\right|=5$, and $\left|H_{2}\right|=|V(H)|=5-2=3$. Again, $S \in \mathcal{C}_{3}^{5}(G)$ and $|V(H)|=3$, which contradicts (iv) of Lemma (2.2).

3 Proof of the main result

In this section, we prove Theorem (1.1). Our argument is similar to that in [3] which was first introduced by Egawa [1]. Let G be a k-connected graph and let $t \geq 0$ be an integer, and assume $k \geq \max \{4, t+3\}$. We first show that it suffices to consider cuts in $\mathcal{C}^{\prime}(G)$. We then complete the proof by investigating the sizes of components associated with cuts in $\mathcal{C}^{\prime}(G)$.

Suppose for a contradiction that Theorem (1.1) is false. Then we have the following.
(1) No edge of G is contained in $t+1$ triangles.
(2) No two cliques in G share an edge.
(3) No clique in G of size at least 4 shares a vertex with a clique in G of size at least 3 .
(4) No clique in G is k-contractible.

Therefore, it follows from (v) of Lemma (2.3) that $\mathcal{C}^{\prime}(G) \neq \emptyset$. We choose $S \in \mathcal{C}^{\prime}(G)$ and a component H of $G-S$ such that
(5) $|V(H)|$ is minimum.

By (1) - (4) and by (iv) of Lemma (2.2), $|V(H)| \geq k-t \geq 3$. Let $W=G-(S \cup V(H))$. Next we show that
(6) $S \in \mathcal{C}_{3}^{k+1}(G)$.

Suppose $S \notin \mathcal{C}_{3}^{k+1}(G)$. Then $|S|=k$. By (1) - (4) and (v) of Lemma (2.3), we may choose an edge of H which belongs to a unique clique K in G of size at most 3. Let $S^{\prime} \in \mathcal{C}_{K}(G)$. Then $\left|S^{\prime}\right| \leq k+1$. Let H^{\prime} be a component of $G-S^{\prime}$ and let $W^{\prime}=G-\left(S^{\prime} \cup V\left(H^{\prime}\right)\right)$.

Let H_{1}, H_{2}, and H_{3} denote $V\left(H \cap H^{\prime}\right), V(H) \cap S^{\prime}$, and $V\left(H \cap W^{\prime}\right)$, respectively. Let W_{1}, W_{2}, and W_{3} denote $V\left(W \cap H^{\prime}\right), V(W) \cap S^{\prime}$, and $V\left(W \cap W^{\prime}\right)$, respectively. Let Q_{1}, Q_{2}, and Q_{3} denote $S \cap V\left(H^{\prime}\right), S \cap S^{\prime}$, and $S \cap V\left(W^{\prime}\right)$, respectively. (See Figure 1.)

By (1) - (4) and by (v) Lemma (2.4), we have $H_{1} \neq \emptyset \neq W_{3}$ or $H_{3} \neq \emptyset \neq W_{1}$. By symmetry, we may assume that $H_{1} \neq \emptyset \neq W_{3}$. Then $H_{2} \cup Q_{2} \cup Q_{1}$ is a cut in G containing $V(K)$. Therefore, since $S^{\prime} \in \mathcal{C}_{K}(G)$ and by (5), $\left|H_{2} \cup Q_{2} \cup Q_{1}\right| \geq\left|S^{\prime}\right|+1$. Since $W_{3} \neq \emptyset, W_{2} \cup Q_{2} \cup Q_{3}$ is a cut in G, and so, $\left|W_{2} \cup Q_{2} \cup Q_{3}\right| \geq k=|S|$. This implies that $|S|+\left|S^{\prime}\right|=\left|H_{2} \cup Q_{2} \cup Q_{1}\right|+\left|W_{2} \cup Q_{2} \cup Q_{3}\right| \geq$ $\left(\left|S^{\prime}\right|+1\right)+|S|$, a contradiction.

By (6), let T be a 3 -clique in G such that $S \in \mathcal{C}_{T}(G)$.
(7) For any clique K in G containing an edge of H and for any $S^{\prime} \in \mathcal{C}_{K}(G),\left|S^{\prime}\right|=k+1$.

Let K denote a clique containing an edge of H, and let $S^{\prime} \in \mathcal{C}_{K}(G)$. Let H^{\prime} be a component of $G-S^{\prime}$ and let $W^{\prime}=G-\left(S^{\prime} \cup V\left(H^{\prime}\right)\right)$. Let H_{1}, H_{2}, and H_{3} denote $V\left(H \cap H^{\prime}\right), V(H) \cap S^{\prime}$, and $V\left(H \cap W^{\prime}\right)$, respectively. Let W_{1}, W_{2}, and W_{3} denote $V\left(W \cap H^{\prime}\right), V(W) \cap S^{\prime}$, and $V\left(W \cap W^{\prime}\right)$, respectively. Let Q_{1}, Q_{2}, and Q_{3} denote $S \cap V\left(H^{\prime}\right), S \cap S^{\prime}$, and $S \cap V\left(W^{\prime}\right)$, respectively. (See Figure 1.) Note that $V(K) \subseteq Q_{2} \cup H_{2}$.

Suppose $\left|S^{\prime}\right|=k$. Then $S^{\prime} \in \mathcal{C}^{\prime}(G)$. Hence, by (1) - (4) and by (v) of Lemma (2.4), we may assume from symmetry that $H_{1} \neq \emptyset \neq W_{3}$. Then $H_{2} \cup Q_{2} \cup Q_{1}$ and $W_{2} \cup Q_{2} \cup Q_{3}$ are cuts in G. Since $V(K) \subseteq Q_{2} \cup H_{2}$, it follows from the choice of S (see (5)) that $\left|H_{2} \cup Q_{2} \cup Q_{1}\right| \geq|S|+1$. Since $W_{2} \cup Q_{2} \cup Q_{3}$ is a cut in $G,\left|W_{2} \cup Q_{2} \cup Q_{3}\right| \geq k=\left|S^{\prime}\right|$. This implies that $|S|+\left|S^{\prime}\right|=$ $\left|H_{2} \cup Q_{2} \cup Q_{1}\right|+\left|W_{2} \cup Q_{2} \cup Q_{3}\right| \geq(|S|+1)+\left|S^{\prime}\right|$, a contradiction.

Thus, for any clique K containing an edge of H, if $S^{\prime} \in \mathcal{C}_{K}(G)$ then $\left|S^{\prime}\right| \geq k+1$. Hence by (v) of Lemma (2.3), every edge of H is contained in a unique clique in G which is of size 3. So $\left|S^{\prime}\right|=k+1$. So we have (7).

Next, we take a spanning tree P of H, and label the edges of P as e_{1}, \ldots, e_{m} such that for each $1 \leq i \leq m$ the subgraph of H induced by $\left\{e_{1}, \ldots, e_{i}\right\}$ is connected. For each $1 \leq i \leq m$, it follows from (7) that e_{i} belongs to a 3-clique T_{i} in G, and for any $S_{i} \in \mathcal{C}_{T_{i}}(G)$, we have $\left|S_{i}\right|=k+1$.

Let H^{i} be a component in $G-S_{i}$ and let $W^{i}=G-\left(S_{i} \cup V\left(H^{i}\right)\right)$. Let H_{1}^{i}, H_{2}^{i} and H_{3}^{i} denote $V\left(H \cap H^{i}\right), V(H) \cap S_{i}$ and $V\left(H \cap W^{i}\right)$, respectively. Let W_{1}^{i}, W_{2}^{i} and W_{3}^{i} denote $V\left(W \cap H^{i}\right)$, $V(W) \cap S_{i}$ and $V\left(W \cap W^{i}\right)$, respectively. Let Q_{1}^{i}, Q_{2}^{i} and Q_{3}^{i} denote $S \cap V\left(H^{i}\right), S \cap S_{i}$ and $S \cap V\left(W^{i}\right)$, respectively. Since T is fixed, we may assume that the notation is chosen so that $V(T) \subseteq Q_{1}^{i} \cup Q_{2}^{i}$ for all $1 \leq i \leq m$.

Note that $V\left(T_{i}\right) \subseteq H_{2}^{i} \cup Q_{2}^{i}$, and $\left|V\left(T_{i} \cap T\right)\right| \leq 1$ (since $\left.\left|V\left(T_{i} \cap H\right)\right| \geq 2\right)$.
(8) $H_{3}^{i}=\emptyset,\left|H_{2}^{i}\right|=\left|Q_{3}^{i}\right|+1$ and $\left|Q_{3}^{i}\right| \geq 1$, and $|V(H)| \geq k$.

First, assume $H_{3}^{i} \neq \emptyset$. Then $H_{2}^{i} \cup Q_{2}^{i} \cup Q_{3}^{i}$ is a cut in G containing $V(K)$. Hence by (5) and since $S_{i} \in \mathcal{C}_{K}(G),\left|H_{2}^{i} \cup Q_{2}^{i} \cup Q_{3}^{i}\right| \geq\left|S_{i}\right|+1=k+2$. So $\left|H_{2}^{i}\right| \geq(k+2)-\left|Q_{2}^{i} \cup Q_{3}^{i}\right|=\left|Q_{1}^{i}\right|+1$. If $W_{1}^{i} \neq \emptyset$, then $Q_{1}^{i} \cup Q_{2}^{i} \cup W_{2}^{i}$ is a cut in G containing $V(T)$. Since $S \in \mathcal{C}_{T}(G),\left|Q_{1}^{i} \cup Q_{2}^{i} \cup W_{2}^{i}\right| \geq|S|=k+1$. This shows $2 k+2=|S|+\left|S_{i}\right|=\left|H_{2}^{i} \cup Q_{2}^{i} \cup Q_{3}^{i}\right|+\left|Q_{1}^{i} \cup Q_{2}^{i} \cup W_{2}^{i}\right| \geq 2 k+3$, a contradiction. So $W_{1}^{i}=\emptyset$. Therefore, $|V(H)|=\left|H_{1}^{i}\right|+\left|H_{2}^{i}\right|+\left|H_{3}^{i}\right| \geq\left|H_{1}^{i}\right|+\left|Q_{1}^{i}\right|+1=\left|V\left(H^{i}\right)\right|+1$. This shows that S_{i} and H^{i} contradict the choices of S and H (see (5)).

Thus, $H_{3}^{i}=\emptyset$. It follows from (1) - (4) and (v) of Lemma (2.4) that $H_{1}^{i} \neq \emptyset \neq W_{3}^{i}$. So $H_{2}^{i} \cup Q_{2}^{i} \cup Q_{1}^{i}$ is a cut in G containing $V\left(T_{i}\right) \cup V(T)$, and $W_{2}^{i} \cup Q_{2}^{i} \cup Q_{3}^{i}$ is a cut in G. Since $S \in \mathcal{C}_{T}(G)$ and by (5), $\left|H_{2}^{i} \cup Q_{2}^{i} \cup Q_{1}^{i}\right| \geq k+2$. Since G is k-connected, $\left|W_{2}^{i} \cup Q_{2}^{i} \cup Q_{3}^{i}\right| \geq k$. This shows that $|S|+\left|S_{i}\right| \geq 2 k+2$. On the other hand, $|S|=\left|S_{i}\right|=k+1$. Hence $\left|H_{2}^{i} \cup Q_{2}^{i} \cup Q_{1}^{i}\right|=k+2$ and $\left|W_{2}^{i} \cup Q_{2}^{i} \cup Q_{3}^{i}\right|=k$. So we have $\left|H_{2}^{i}\right|=\left|Q_{3}^{i}\right|+1$. Since $\left|H_{2}^{i}\right| \geq 2$, we have $\left|Q_{3}^{i}\right| \geq 1$.

To prove $|V(H)| \geq k$, we first show that there is an edge of G whose incident vertices are contained in H_{1}^{i}. For otherwise, any $z \in V\left(H_{1}^{i}\right)$ has all its neighbors contained in $H_{2}^{i} \cup Q_{2}^{i} \cup Q_{1}^{i}$. Since z is adjacent to at most one vertex of T as well as to at most one vertex of T_{i}, and since
$\left|V\left(T_{i} \cap T\right)\right| \leq 1$, we see that $d_{G}(z) \leq\left|H_{2}^{i} \cup Q_{1}^{i} \cup Q_{2}^{i}\right|-3=(k+2)-3=k-1$, a contradiction (since G is k-connected).

So let $x y$ be an edge of G such that $x, y \in V\left(H_{1}^{i}\right)$. Note that x and y each have at most one neighbor in T as well as at most one neighbor in T_{i}. So $\mid\left(N_{G}(x) \cup N_{G}(y)\right) \cap\left(H_{2}^{i} \cup Q_{2}^{i} \cup\right.$ $\left.Q_{1}^{i}\right) \mid \leq k+1$. Also since $x y$ is contained in only one triangle (by (2) and (7)), we see that $\left|N_{G}(x) \cap N_{G}(y)\right| \leq 1$. Therefore, since G is k-connected, $\left|N_{G}(x) \cup N_{G}(y)\right| \geq 2 k-1$. Hence $\left|H_{1}^{i}\right| \geq\left|N_{G}(x) \cup N_{G}(y)\right|-\left|\left(N_{G}(x) \cup N_{G}(y)\right) \cap\left(H_{2}^{i} \cup Q_{2}^{i} \cup Q_{1}^{i}\right)\right| \geq(2 k-1)-(k+1)=k-2$. This means $|V(H)| \geq\left|H_{1}^{i}\right|+\left|H_{2}^{i}\right| \geq(k-2)+2=k$, completing the proof of (8).

Next we show that
(9) $\left|N_{G}(U) \cap V(H)\right| \geq|U|+1$ for all non-empty subsets U of $S-V(T)$.

Suppose for some non-empty subset U of $S-V(T)$ we have $\left|N_{G}(U) \cap V(H)\right| \leq|U|$. Note that $|U| \leq|S-V(T)| \leq k-2<|V(H)|$. So $V(H)-N_{G}(U) \neq \emptyset$. Thus, $S^{*}:=(S-U) \cup\left(N_{G}(U) \cap V(H)\right)$ is a cut in G containing $V(T)$. Since $S \in \mathcal{C}_{T}(G)$ and $\left|S^{*}\right| \leq|S|$, we see $S^{*} \in \mathcal{C}_{T}(G)$. Note that $H-N_{G}(U)$ contains a component H^{*} of $G-S^{*}$ and $\left|V(H)-N_{G}(U)\right|<|V(H)|$. So S^{*} and H^{*} contradict the choices of S and H (see (5)).
(10) $N_{G}\left(Q_{3}^{i}\right) \cap V(H)=H_{2}^{i}$.

By (8), we have $H_{3}^{i}=\emptyset$. So $N_{G}\left(Q_{3}^{i}\right) \cap V(H) \subseteq H_{2}^{i}$. Since $\left|H_{2}^{i}\right|=\left|Q_{3}^{i}\right|+1$ (by (8)) and $\left|N_{G}\left(Q_{3}^{i}\right) \cap V(H)\right| \geq\left|Q_{3}^{i}\right|+1=\left|H_{2}^{i}\right|$ (by (9)), we have (10).
(11) For any $1 \leq j \leq m,\left|\bigcup_{i=1}^{j}\left(N_{G}\left(Q_{3}^{i}\right) \cap V(H)\right)\right| \leq\left|\bigcup_{i=1}^{j} Q_{3}^{i}\right|+1$.

We prove (11) by induction on j. When $j=1$, (11) follows from (8) and (10). So assume $j \geq 2$. If $Q_{3}^{j} \subseteq \bigcup_{i=1}^{j-1} Q_{3}^{i}$, the result follows from the induction hypothesis. Hence, we may assume $Q_{3}^{j} \nsubseteq \bigcup_{i=1}^{j-1} Q_{3}^{i}$. For convenience, let $R:=Q_{3}^{j} \cap\left(\bigcup_{i=1}^{j-1} Q_{3}^{i}\right)$ and $A:=\left(N_{G}\left(Q_{3}^{j}\right) \cap V(H)\right) \cap$ $\left(\bigcup_{i=1}^{j-1} N_{G}\left(Q_{3}^{i}\right) \cap V(H)\right)$. Note that $|A|=\left|\left(N_{G}\left(Q_{3}^{j}\right) \cap\left(\bigcup_{i=1}^{j-1} N_{G}\left(Q_{3}^{i}\right)\right)\right) \cap V(H)\right| \geq\left|N_{G}(R) \cap V(H)\right|$.

We claim that $|A| \geq|R|+1$. If $R \neq \emptyset$, then $|A| \geq\left|N_{G}(R) \cap V(H)\right| \geq|R|+1$ (by (9)). Now assume $R=\emptyset$. Since $\left\{e_{1}, \ldots, e_{j}\right\}$ induces a connected subgraph of $H,\left|H_{2}^{j} \cap\left(\bigcup_{i=1}^{j-1} H_{2}^{i}\right)\right| \geq 1$. By (10), $A=\left(N_{G}\left(Q_{3}^{j}\right) \cap\left(\bigcup_{i=1}^{j-1} N_{G}\left(Q_{3}^{i}\right)\right)\right) \cap V(H)=H_{2}^{j} \cap\left(\bigcup_{i=1}^{j-1} H_{2}^{i}\right)$, and so, $|A| \geq 1$. Therefore, $|A| \geq|R|+1$.

Thus $\left|\bigcup_{i=1}^{j}\left(N\left(Q_{3}^{i}\right) \cap V(H)\right)\right|=\left|\left(N_{G}\left(Q_{3}^{j}\right) \cap V(H)\right) \cup\left(\bigcup_{i=1}^{j-1}\left(N_{G}\left(Q_{3}^{i}\right) \cap V(H)\right)\right)\right| \leq\left(\left|\bigcup_{i=1}^{j-1} Q_{3}^{i}\right|+\right.$ $1)+\left(\left|Q_{3}^{j}\right|+1\right)-(|R|+1) \leq\left|\bigcup_{i=1}^{j} Q_{3}^{i}\right|+1$. This proves (11).

Since P is a spanning tree of H and $E(P)=\left\{e_{1}, \ldots, e_{m}\right\}$, we see that $\bigcup_{i=1}^{m} H_{2}^{i}=V(H)$. Note that $\bigcup_{i=1}^{m}\left(N_{G}\left(Q_{3}^{i}\right) \cap V(H)\right)=\bigcup_{i=1}^{m} H_{2}^{i}$. Hence it follows from (11) that $|V(H)| \leq\left|\bigcup_{i=1}^{m} N_{G}\left(Q_{3}^{i}\right)\right|+$ $1 \leq|S-V(T)|+1 \leq k+1-3+1=k-1$, contradicting (8). This completes the proof of Theorem (1.1).

Acknowledgment. The authors thank the referees for their helpful suggestions.

References

[1] Y. Egawa, Cycles in k-connected graphs whose deletion results in $(k-2)$-connected graph, J. Combin. Theory Ser. B 42 (1987) 371-377.
[2] M. Fontet, Graphes 4-essentiels, C. R. Acad. Sci. Paris 287 (1978) 289-290.
[3] K. Kawarabayashi, Contractible edges and triangles in k-connected graphs, J. Combin. Theory Ser. B 85 (2002) 207-221.
[4] N. Martinov, Uncontractible 4-connected graphs, J. Graph Theory 6 (1982) 343-344.
[5] C. Thomassen, Non-separating cycles in k-connected graphs, J. Graph Theory 5 (1981) 351-354.
[6] W. T. Tutte, A theory on 3-connected graphs, Indag. Math. 23 (1961) 441-455.

[^0]: *Xingxing Yu was partially supported by NSF grant DMS-0245530 and NSA grant MDA-904-03-1-0052

