Skip to main content
Log in

Reconstructing under Group Actions

  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

We give a bound on the reconstructibility of an action GX in terms of the reconstructibility of a the action NX, where N is a normal subgroup of G, and the reconstructibility of the quotient G/N. We also show that if the action GX is locally finite, in the sense that every point is either in an orbit by itself or has finite stabilizer, then the reconstructibility of GX is at most the reconstructibility of G. Finally, we give some applications to geometric reconstruction problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. László Babai. Automorphism groups, isomorphism, reconstruction. In Handbook of combinatorics, Vol. 1, 2, pages 1447–1540. Elsevier, Amsterdam, (1995)

  2. Bondy, J.A.: A graph reconstructor's manual. In Surveys in combinatorics, 1991 (Guildford, 1991), pages 221–252. Cambridge Univ. Press, Cambridge, (1991)

  3. Bondy, J.A., Hemminger, R.L.: Graph reconstruction–-a survey. J. Graph Theory 1(3), 227–268 (1977)

    Google Scholar 

  4. Brylawski, T.H.: Reconstructing combinatorial geometries. In Graphs and combinatorics (Proc. Capital Conf., George Washington Univ., Washington, D.C., 1973), pages 226–235. Lecture Notes in Math., Vol. 406. Springer, Berlin, (1974)

  5. Brylawski, T.H.: On the nonreconstructibility of combinatorial geometries. J. Combin. Theory Ser. B, 19(1) 72–76, (1975)

    Google Scholar 

  6. Cameron, P.J.: Some open problems on permutation groups. In Groups, combinatorics & geometry (Durham, 1990), pages 340–350. Cambridge Univ. Press, Cambridge, (1992)

  7. Cameron, P.J.: Stories about groups and sequences. Des. Codes Cryptogr., 8(3):109–133, 1996. Corrected reprint of ``Stories about groups and sequences'' [Des. Codes Cryptogr. 8(1-2), (1996), 109–133; MR 97f:20004a

  8. Cameron, P.J.: Stories from the age of reconstruction. Congr. Numer., 113:31–41, 1996. Festschrift for C. St. J. A. Nash-Williams

  9. Harary, F.: On the reconstruction of a graph from a collection of subgraphs. In Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), pages 47–52. Publ. House Czechoslovak Acad. Sci., Prague, (1964)

  10. Kelly, P.J.: On Isometric Transformations. PhD thesis, University of Waterloo, (1942)

  11. Kelly, P.J.: A congruence theorem for trees. Pacific J. Math. 7, 961–968 (1957)

    Google Scholar 

  12. Kocay, W.L.: A family of nonreconstructible hypergraphs. J. Combin. Theory Ser. B 42(1), 46–63 (1987)

    Google Scholar 

  13. Krasikov, I., Roditty, Y.: On a reconstruction problem for sequences. J. Combin. Theory Ser. A 77(2), 344–348 (1997)

    Google Scholar 

  14. Maynard, P., Siemons, J.: On the reconstruction of linear codes. J. Combin. Des. 6(4), 285–291 (1998)

    Google Scholar 

  15. Maynard, P., Siemons, J.: On the reconstruction index of permutation groups: semiregular groups. Preprint, (2000)

  16. Mnukhin, V.B.: Reconstruction of the k-orbits of a permutation group. Mat. Zametki 42(6), 863–872, 911 (1987)

    Google Scholar 

  17. Mnukhin, V.B.: The k-orbit reconstruction and the orbit algebra. Acta. Appl. Math. 29(1-2), 83–117, 1992. Interactions between algebra and combinatorics

    Google Scholar 

  18. Mnukhin, V.B.: The k-orbit reconstruction for abelian and Hamiltonian groups. Acta Appl. Math. 52(1-3), 149–162. 1998. Algebra and combinatorics: interactions and applications (Königstein, 1994)

    Google Scholar 

  19. Nash-Williams, C. St. J. A.: The reconstruction problem. In Lowell W. Beineke and Robin J. Wilson, editors, Selected topics in graph theory, pages 205–236. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, (1978)

  20. Nash-Williams, C. St. J. A.: Reconstruction of infinite graphs. Discrete Math., 95(1-3):221–229, 1991. Directions in infinite graph theory and combinatorics (Cambridge, 1989)

    Google Scholar 

  21. Pebody, L., Radcliffe, A. J., Scott, A. D.: All finite subsets of the plane are 18-reconstructible. SIAM J. Discrete Math. 16, 262–275 (2003)

    Google Scholar 

  22. Pebody, L.: The reconstructibility of finite abelian groups. CPC, 37(6), 867–892 (2004)

    Google Scholar 

  23. Radcliffe, A. J., Scott, A. D.: Reconstructing subsets of Z n . J. Combin. Theory Ser. A, 83(2), 169–187 (1998)

    Google Scholar 

  24. Radcliffe, A. J., Scott, A. D.: Reconstructing subsets of reals. Electron. J. Combin. 6(1): Research Paper 20, 7 pp. (electronic), (1999)

  25. Radcliffe, A. J., Scott, A. D.: Reconstructing subsets of nonabelian groups. Preprint, (2000)

  26. Scott, A. D.: Reconstructing sequences. Discrete Math. 175(1-3), 231–238 (1997)

    Google Scholar 

  27. Stockmeyer, P. K.: The falsity of the reconstruction conjecture for tournaments. J. Graph Theory 1(1), 19–25 (1977)

    Google Scholar 

  28. Stockmeyer, P. K.: A census of nonreconstructible digraphs. I. Six related families. J. Combin. Theory Ser. B 31(2), 232–239 (1981)

    Google Scholar 

  29. Ulam, S. M.: A collection of mathematical problems. Interscience Publishers, New York-London, 1960. Intersci. Tracts Pure Appl. Math. no. 8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.J. Radcliffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radcliffe, A., Scott, A. Reconstructing under Group Actions. Graphs and Combinatorics 22, 399–419 (2006). https://doi.org/10.1007/s00373-006-0675-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-006-0675-y

Keywords

Navigation