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Abstract. The intersection of two Steiner triple systems (X,A) and (X,B) is the set
A∩B. The fine intersection problem for Steiner triple systems is to determine for each
v, the set I(v), consisting of all possible pairs (m,n) such that there exist two Steiner
triple systems of order v whose intersection I satisfies | ∪A∈I A| = m and |I| = n. We
show that for v ≡ 1 or 3 (mod 6), |I(v)| = Θ(v3), where previous results only imply
that |I(v)| = Ω(v2).
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1. Introduction

For a set X and non-negative integer k, denote by
(

X
k

)

the set of all k-subsets of
X . The support of A ⊆ 2X , denoted by supp(A), is the set ∪A∈AA. A set system
is a pair (X,A), where X is a finite set of points, and A ⊆ 2X . The elements of
A are called blocks. The order of a set system is the number of points in the set
system. Let K be a set of positive integers. The set K is a set of block sizes for
(X,A) if |A| ∈ K for all A ∈ A. A set system (X,A) is said to be k-uniform if
A ⊆

(

X
k

)

.
Let (X,A) be a set system and let G = {G1, . . . , Gs} be a partition of X

into subsets called groups. The triple (X,G,A) is a group divisible design (GDD)
when every 2-subset of X is either contained in exactly one block or in exactly
one group. We denote a GDD (X,G,A) by K-GDD if K is a set of block sizes for
(X,A). The type of a GDD (X,G,A) is the multiset [|G| : G ∈ G]. When more
convenient, we use the exponentiation notation to describe the type of a GDD:
a GDD of type gt11 · · · gtss is a GDD where there are exactly ti groups of size gi,
1 ≤ i ≤ s.
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A {3}-GDD of type 1v is a Steiner triple system (STS) of order v, and is
denoted STS(v). It is well-known that an STS(v) exists if and only if v ≡ 1 or 3
(mod 6) (see, for example, [3]). A partial triple system is a 3-uniform set system
(X,A) where every 2-subset of X is contained in at most one block of A.

The intersection of two K-GDDs (of the same type) D1 = (X,G,A1) and
D2 = (X,G,A2) is the set I(D1,D2) = A1∩A2. D1 and D2 are said to be disjoint

if I(D1,D2) = ∅. Let f : 2(
X

3 ) → Γ . The f -intersection problem for K-GDDs of
type T is to determine the set

Intf (K,T )

={r ∈ Γ : ∃ two K-GDDs of type T , D1 and D2, with f(I(D1,D2)) = r}.

The interest in this paper is the f -intersection problem for STS in the case when

f = Φ, where Φ : 2(
X

3 ) → Z
2
≥0 is defined as follows:

Φ(S) = (|supp(S)|, |S|), for S ⊆

(

X

3

)

.

We call this the fine intersection problem for STS for the reason that both the
number of blocks and the number of underlying points in the intersection are to
be determined simultaneously.

All previous work on the intersection of STS can be cast in the context of
f -intersection problems for STS, for appropriate choices of f .

Example 1. (Lindner and Rosa [6]) The classical problem of determining the
possible number of blocks in the intersection of two STS(v) is equivalent to the
f -intersection problem for STS with f(S) = |S|.

Example 2. (Hoffman and Lindner [5]) The flower intersection problem for STS(v)
is equivalent to the f -intersection problem for STS, with

f(S) =

{

|S|, if S contains a set of v−1
2 blocks intersecting in a common point;

∞, otherwise.

Example 3. (Chee [2]) The disjoint intersection problem for STS is equivalent to
the f -intersection problem for STS, with

f(S) =

{

|S|, if the blocks in S are pairwise disjoint;

∞, otherwise.

This is also equivalent to determining the possible values of n for which (3n, n) ∈
IntΦ({3}, 1

v).

The purpose of this paper is to initiate the study on the fine intersection
problem for STS.
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2. Admissible Region

In this section, we determine an admissible region for the fine intersection prob-
lem for STS; that is, we determine a subset of Z2

≥0 which contains IntΦ({3}, 1
v).

A partial triple system (X,A) of order v is said to be maximum if for ev-
ery partial triple system (X,B) of order v, we have |B| ≤ |A|. The number of
blocks in a maximum partial triple system is denoted D(2, 3, v). For a vector
x = (x1, . . . , xd) ∈ Z

d, we denote by x|i, 1 ≤ i ≤ d, the value xi. For a set of
vectors S ⊆ Z

d, we denote by S|i, 1 ≤ i ≤ d, the projection of S on the ith

dimension: S|i = {x|i : x ∈ S}.
We state below some prior results that are useful in establishing an admissible

region for IntΦ({3}, 1
v).

Theorem 1. (Lindner and Rosa [6]) Let b(v) = v(v−1)/6. Then for all v ≡ 1
or 3 (mod 6), v 6= 9, Int|·|({3}, 1

v) = {0, . . . , b(v)} \ {b(v) − 5, b(v) − 3, b(v) −
2, b(v)− 1}, and Int|·|({3}, 1

9) = {0, 1, 2, 3, 4, 6, 12}.

Theorem 2. (Doyen and Wilson [4]) Let v, w ≡ 1 or 3 (mod 6), and w < v.
There exists an STS(v) containing an STS(w) if and only if v ≥ 2w + 1.

Lemma 1. Let (m,n) ∈ IntΦ({3}, 1
v). Then the following conditions hold:

(i) m/3 ≤ n ≤ D(2, 3,m);
(ii) n 6∈ {b(v)− 5, b(v)− 3, b(v)− 2, b(v)− 1};
(iii) if v = 9, then n 6∈ {5, 8};
(iv) m 6∈ {1, 2, 4};
(v) if n > b(v)− (v − 1)/2, then m = v; and
(vi) if m < v and n = b(m), then v ≥ 2m+ 1.

Proof. To see that (i) holds, note that there exists a pair of STS(v) whose inter-
section is I, such that (supp(I), I) is a partial triple system of order m having n
blocks. Hence, n ≤ D(2, 3,m). That m/3 ≤ n follows easily from the observation
that the maximum number of points underlying n blocks of size three is 3n.

Theorem 1 together with the observation that IntΦ({3}, 1
v)|2 = Int|·|({3}, 1

v)
gives conditions (ii) and (iii).

The observation that IntΦ({3}, 1
v)|1 = Int|supp(·)|({3}, 1

v) and that the sup-
port of the set of blocks of a partial triple system can never contain one, two, or
four points gives condition (iv).

For condition (v), observe that each point of an STS(v) lies in (v−1)/2 blocks.
So unless we have less than b(v)− (v− 1)/2 blocks, we cannot drive the support
down to less than v points.

Any partial triple system of order m and n = b(m) blocks is an STS(m).
Theorem 2 then implies that v ≥ 2m+ 1, from which condition (vi) follows. �

We call the set

A(v) = {(m,n) ∈ Z
2
≥0 : (m,n) satisfies conditions (i)-(vi) of Lemma 1}

the admissible region for IntΦ({3}, 1
v).
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Lemma 2. Let v ≡ 1 or 3 (mod 6). Then |IntΦ({3}, 1
v)| ≤ (1 + o(1)) 1

18v
3.

Proof.

|IntΦ({3}, 1
v) ≤ |A(v)|

≤

v
∑

m=0

(D(2, 3,m)−m/3 + 1) (by condition (i) of Lemma 1)

=
v

∑

m=0

(

1

6
m2 + o(m2)

)

= (1 + o(1))
1

18
v3.

�

Existing results on the intersection of STS only determine that a negligible
portion of A(v) belongs to IntΦ({3}, 1

v). In particular, Theorem 1 only implies
that |IntΦ({3}, 1

v)| ≥ (1+o(1))16v
2. The main result of this paper is the following.

Main Theorem For v ≡ 1 or 3 (mod 6), |IntΦ({3}, 1
v)| = Θ(v3).

3. Proof of the Main Theorem

Our main tool is Wilson’s Fundamental Construction for GDDs [9].

Wilson’s Fundamental Construction
Input: (master) GDD D = (X,G,A);

weight function ω : X → Z≥0;
(ingredient) K-GDD DA = (XA,GA,BA) of type [ω(a) : a ∈ A],
for each block A ∈ A, where

XA = ∪a∈A{{a} × {1, . . . , ω(a)}} and
GA = {{a} × {1, . . . , ω(a)} : a ∈ A}.

Output: K-GDD D
∗ = (X∗,G∗,A∗) of type [

∑

x∈G ω(x) : G ∈ G], where
X∗ = ∪x∈X({x} × {1, . . . , ω(x)}),
G∗ = {∪x∈G({x} × {1, . . . , ω(x)}) : G ∈ G}, and
A∗ = ∪A∈ABA.

Notation: D
∗ = WFC(D, ω, {DA : A ∈ A}).

Note: By convention, for x ∈ X , {x} × {1, . . . , ω(x)} = ∅ if ω(x) = 0.

The master GDDs we use are the class of {4}-GDDs of type 1ut1, existence
for which has been settled by Rees and Stinson [7].

Theorem 3. (Rees and Stinson [7]) There exists a {4}-GDD of type 1ut1

whenever u ≥ 2t+ 1 and

(i) u ≡ 0 or 3 (mod 12) and t ≡ 1 or 7 (mod 12); or
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(ii) u ≡ 0 or 9 (mod 12) and t ≡ 4 or 10 (mod 12).

We call the distinguished group of size t in a {4}-GDD of type 1ut1, the hole.

Lemma 3. The number of blocks in a {4}-GDD of type 1ut1 that are disjoint
from the hole is u(u− 2t− 1)/12.

Proof. The number of blocks that have non-empty intersection with the hole is
easily seen to be ut/3. The total number of blocks in the GDD is

((

u+t
2

)

−
(

t
2

))

/6.

Hence, the number of blocks disjoint from the hole is
((

u+t
2

)

−
(

t
2

))

/6− ut/3 =
u(u− 2t− 1)/12. �

We also make use of the following result of Butler and Hoffman [1].

Theorem 4. (Butler and Hoffman [1]) Let g and t be positive integers such
that t ≥ 3, g2

(

t
2

)

≡ 0 (mod 3), and g(t−1) ≡ 0 (mod 2). Let b(gt) = g2t(t−1)/6
and denote by I(gt) = {0, . . . , b(gt)} \ {b(gt) − 5, b(gt) − 3, b(gt) − 2, b(gt) − 1}.
Then Int|·|({3}, g

t) = I(gt), except that

(i) Int|·|({3}, 1
9) = I(19) \ {5, 8};

(ii) Int|·|({3}, 2
4) = I(24) \ {1, 4};

(iii) Int|·|({3}, 3
3) = I(33) \ {1, 2, 5}; and

(iv) Int|·|({3}, 4
3) = I(43) \ {5, 7, 10}.

Let D = (X,G,A) be a {4}-GDD of type 1ut1, with G = {G1, . . . , Gu+1},
where

Gi =

{

{xi}, if 1 ≤ i ≤ u; and

{xu+1, . . . , xu+t}, if i = u+ 1.

For α, β ≥ 0 such that α+ β ≤ t, define the following weight function:

ωα,β(x) =











2, if x ∈ {x1, . . . , xu+α};

4, if x ∈ {xu+α+1, . . . , xu+α+β}; and

0, if x ∈ {xu+α+β+1, . . . , xu+t}.

We use Wilson’s Fundamental Construction with D as master GDD and ωα,β

as weight function. The required ingredient GDDs are {3}-GDDs of type 24,
type 2341, and type 23. The following are results on the intersections of these
ingredient GDDs.

Lemma 4. The following hold:

(i) Int|·|({3}, 2
3) = {0, 4};

(ii) Int|·|({3}, 2
4) = {0, 2, 8}; and

(iii) 0 ∈ Int|·|({3}, 2
341);
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Proof. (i) and (ii) follow from Theorem 4. The existence of a pair of disjoint
{3}-GDDs of type 2341 is given in [8], proving (iii). �

For a set A of integers, we denote by A + A the set {a + b : a, b ∈ A}, and
denote by

∑s
i=1 A the set A+ · · ·+A (s-fold sum).

Lemma 5. Let s ≥ 2. Then |Int|·|({3}, 2
4)| = 4s− 2.

Proof. We have
∑s

i=1 Int|·|({3}, 2
4) = {0, 2, 4, . . . , 8s} \ {8s− 10, 8s− 4, 8s− 2}.

�

Lemma 6. Let m ≥ 0 and r ∈ {1, 3, 7, 9, 13, 15, 19, 21}. Then for every a ≥
⌈(m+ 3)/2⌉, there exists an integer b ≥ 0 such that the following inequalities are
all satisfied:

(i) 24(m− a) + r ≤ 4(12b+ 1) + 1;
(ii) 12a ≥ 2(12b+ 1) + 1.

Proof. Let b be the smallest integer such that inequality (i) holds. Then

b =

⌈

24(m− a) + r − 5

48

⌉

≥

⌈

r − 5

48

⌉

≥

⌈

−
4

48

⌉

= 0.

It remains to show that inequality (ii) holds. To see that this is the case, observe
that

2(12b+ 1) + 1 = 24b+ 3

= 24

⌈

24(m− 1) + r − 5

48

⌉

+ 3

= 24

⌈

m− a

2
+

r − 5

48

⌉

+ 3

≤ 24

⌈

m− a

2
+

16

48

⌉

+ 3

≤ 24

(

m− a

2
+ 1

)

+ 3

= 12(m− a) + 27

≤ 12(2a− 3− a) + 27

= 12a− 9

≤ 12a.

�

Let m ≥ 0 and r ∈ {1, 3, 7, 9, 13, 15, 19, 21}. We now construct a pair of
STS(24m+ r) via Wilson’s Fundamental Construction. Write 24m+ r as 24a+
24(m− 1)+ r, where a ≥ ⌈(m+ 3)/2⌉. Choose b to be the smallest non-negative
integer so that the inequalities 24(m − a) + r ≤ 4(12b + 1) + 1 and 12a ≥
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2(12b+ 1) + 1 are both satisfied. Such a b exists by Lemma 6. Choose also non-
negative integers α and β such that 0 ≤ α + β ≤ 12b + 1 and 2α + 4β + 1 =
24(m − a) + r. This is always possible because {2α + 4β + 1 : 0 ≤ α + β ≤
12b+ 1} = {1, 3, 5, . . . , 4(12b+ 1) + 1} ∋ 24(m− a) + r.

Now, take D = {X,G,A) to be a {4}-GDD of type 112a(12b+ 1)1. The exis-
tence of such a GDD is implied by the inequality 12a ≥ 2(12b+1)+1 (via Theorem
3). Let G = WFC(D, ωα,β , {DA : A ∈ A}) and G

′ = WFC(D, ωα,β , {D
′
A : A ∈

A}), where DA and D
′
A are a pair of

(i) {3}-GDDs of type 24 intersecting in µA blocks, if A is disjoint from the hole
of D;

(ii) disjoint {3}-GDDs of type 24, if A contains a point of weight two from the
hole of D;

(iii) disjoint {3}-GDDs of type 2341, if A contains a point of weight four from
the hole of D; and

(iv) disjoint {3}-GDDs of type 23, if A contains a point of weight zero from the
hole of D.

Such ingredient GDDs all exist by Lemma 4.

It is clear from the description of Wilson’s Fundamental Construction that G
and G

′ are two {3}-GDDs of type 212a(2α + 4β)1, where 0 ≤ α + β ≤ 12b + 1,
intersecting in

∑

A∈A µA blocks, whose support is disjoint from the group of size
2α+4β. Now add a point to each of G and G

′ to obtain {3, 2α+4β+1}-GDDs of
type 124a+2α+4β+1 with exactly one block of size 2α+4β +1. Replace the block
of size 2α+ 4β + 1 = 24(m− a) + r in each of these GDDs with the respective
blocks from a pair of disjoint STS(24(m− a) + r) (which exists by Theorem 1).
The result is a pair of STS(24m+r) intersecting in 12a+

∑

A∈A µA blocks whose
support contains exactly 24a+ 1 points.

By varying a and µA, this shows that

|IntΦ({3}, 1
24m+r)| ≥

m
∑

a=⌈(m+3)/2⌉

∣

∣

∣

∣

∣

∣

a(12a−2(12b+1)−1)
∑

i=1

Int|·|({3}, 2
4)

∣

∣

∣

∣

∣

∣

. (1)

Lemma 7. For a ≥ ⌈(m+ 3)/2⌉, we have 12a−2(12b+1)−1≥ 24a−12m−27.

Proof. By the proof of Lemma 6, we know that b ≤
⌈

24(m−a)+r−5
48

⌉

≤ 1 + (m −

a)/2. So,

12a− 2(12b+ 1)− 1 = 12a− 24b− 3

≥ 12a− 24(1 + (m− a)/2)− 3

= 24a− 12m− 27.

�
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By Lemma 7, inequality (1) implies

|IntΦ({3}, 1
24m+r)| ≥

m
∑

a=⌈(m+3)/2⌉

∣

∣

∣

∣

∣

∣

a(24a−12m−27)
∑

i=1

Int|·|({3}, 2
4)

∣

∣

∣

∣

∣

∣

=
m
∑

a=⌈(m+3)/2⌉

(4a(24a− 12m− 27)− 2) (via Lemma 5)

=



96

m
∑

a=⌈(m+3)/2⌉

a2



 −



4(12m+ 27)

m
∑

a=⌈(m+3)/2⌉

a



−





m
∑

a=⌈(m+3)/2⌉

2





≥ (28m3 + o(m3))− (18m3 + o(m3))− o(m3)

= 10m3 + o(m3).

This shows that for v ≡ 1 or 3 (mod 6),

|IntΦ({3}, 1
v)| ≥ (1 + o(1))

5

6912
v3,

which together with Lemma 2 proves the Main Theorem.

4. Conclusion

In this paper, we initiated the study on the fine intersection problem for STS. We
established that |IntΦ({3}, 1

v)| = Θ(v3) for v ≡ 1 or 3 (mod 6). There remain
many interesting unsolved problems:

(i) What is the exact asymptotics of |IntΦ({3}, 1
v)|? There remains a wide gap

between our lower and upper bounds on |IntΦ({3}, 1
v)|. We think the upper

bound is probably the truth and make the conjecture that |IntΦ({3}, 1
v)| =

(1 + o(1)) 1
18v

3.
(ii) Determine completely the set IntΦ({3}, 1

v). This problem is probably very
difficult.

(iii) What is the number of non-isomorphic partial triple systems that can un-
derly the intersection of two STS(v)?

(iv) Determine all non-isomorphic partial triple systems that can underly the
intersection of two STS(v).

Intersection problems for STS remain well alive three decades after the sem-
inal paper of Lindner and Rosa [6],
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