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Abstract. We consider one—factorizations of complete graphs which possess an automor-
phism group fixing k > 0 vertices and acting regularly (i.e., sharply transitively) on the
others. Since the cases k = 0 and k = 1 are well known in literature, we study the case k > 2
in some detail. We prove that both £ and the order of the group are even and the group
necessarily contains k — 1 involutions. Constructions for some classes of groups are given.
In particular we extend the result of [7]: let G be an abelian group of even order and with
k — 1 involutions, a one—factorization of a complete graph admitting G as an automorphism
group fixing k vertices and acting regularly on the others can be constructed.

Key words. One-factorization, Sharply transitive permutation group, Starter.

1. Introduction

A one—factor in a graph is a set of pairwise disjoint edges that partition the set of
vertices and a one—factorization in a graph is a partition of the set of edges into
one-factors.

One-factorizations of complete graphs have been studied from different point
of view, we refer to [14] and to the monograph [18] for a survey and for the general
notions that will not be explicitly defined here. A complete graph admits a one—
factorization if and only if it has an even number of vertices. For this reason, we will
only be concerned with the complete graph K, v an even integer.

As the number of non-isomorphic one-factorizations of K, rapidly explodes as
v increases, [9], a general classification seems to be not possible. In an attempt to
describe one—factorizations which have some degree of symmetry, one can impose
conditions on the automorphism group. We recall that an automorphism group is
a group of bijections on the vertex-set preserving the one—factorization.

Let k be an integer, with 0 < k < v, in this paper we deal with the following

Questions. Does there exist a one—factorization of K, admitting an automorphism
group G fixing k vertices and acting regularly (i.e. sharply transitively) on the others?
What can we say about the one—factorization? What can we say about G?



Giuseppe Mazzuoccolo, Gloria Rinaldi

The case k = 1is completely settled. The existence is well known for any group G
of odd order, [8], and the one—factorization is said to be 1—rotational, or pyramidal
under G (see [14] for the terminology).

When k = 0, there exists a one—factorization of K, admitting a cyclic sharply-
vertex-transitive automorphism group except when v = 2", n > 3, [11]. This result
was extended to all abelian groups in [7], and to many other classes of groups, see
[31, [4], [5], [6], [16], giving ground to conjecture that for each group G of even order
(except for the cyclic groups of order 2", n > 3) a one—factorization of a complete
graph admitting G as a sharply-vertex-transitive automorphism group always exists.
Further results are also in [13].

When k = 2, a one-factorization of K, admitting a cyclic automorphism group
fixing 2 vertices and acting regularly on the others is constructed in [14] for all even
v’s. Other examples were constructed in [2] in case the automorphism group G is
symmetrically sequenceable.

Paralleling the notations introduced in [14], a one-factorization with an auto-
morphism group G which acts regularly on all but k£ pointwise fixed vertices, will be
said k-pyramidal under G (when k = 2 the term bipyramidal is used in [14]). We will
also say that G realizes a k—pyramidal one—factorization.

When k > 2 we prove that necessarily k is even and G contains exactly k — 1
involutions.

Hence, a group G of even order with & — 1 involutions stands as a candidate to
realize a sharply-vertex-transitive one—factorization as well as a k-pyramidal one—
factorization of a complete graph of suitable order.

In [7], Buratti proved that each abelian group of even order (except for the cyclic
group of order 2", n > 3) realizes a sharply-vertex-transitive one—factorization. In
[2], Anderson proved that each abelian group of even order with a unique involution
realizes a bipyramidal one—factorization, see also Theorem 1 below.

In this note we extend these results and we prove that each abelian group of even
order and with k — 1 (k > 2) involutions realizes a k—pyramidal one—factorization
of a complete graph.

In addition we also examine some other classes of groups and we obtain an
analogous result for the class of dihedral groups (thus extending a result of [3]), and
for the class of Hamiltonian groups.

2. Preliminaries and Construction

Consider the complete graph K, and denote respectively by V and E its vertex-set
and its edge-set.

Proposition 1. Let F be a one—factorization of K, which is k-pyramidal under the
action of a group G. If k > 2 then k is even and G has even order.

Proof. Suppose k to be odd, k # 1. Let 0oy, ..., ook be the fixed vertices and let
F be the one—factor containing [coy, 003]. F] is fixed by G, as well as all its edges
containing 003, ..., 0ok. This implies the existence of at least one more vertex which
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is fixed by G: a contradiction. The group G acts regularly on an even number of
vertices, therefore it has even order. O

In the rest of the paper set k = 2t > 0, v = 2n + 2t and denote by F a
2t—pyramidal one—factorization of K, under the action of a group G. Obviously
2n is precisely the order of G in this case. Denote by X = {o0y, ... , 00y} the set of
fixed vertices and identify V — X with the elements of G. The action of G on V can
be assumed to occur by right multiplication: an element g € G fixes each element
of X (i.e, o0jg = o0j,i = 1,...,2t) and g maps a vertex v € V — X onto vg. This
action extends to edges and one—factors. Hence if R is any subset of V we write:
Rg = {xg | x € R}, in particular if § = [x, y] is an edge then [x, y]g = [xg, ygl
Furthermore, if U is a collection of subsets of V, then we write Ug = {Sg | S € U}.
In particular, if U is a collection of edges of K, then Ug = {[xg, yg] | [x, y] € U}.

Denote by 1 the identity of G and set G = {g; = lg, g2, ..., &}

Proposition 2. The group G contains exactly 2t — 1 involutions, it fixes 2t — 1
one—factors of F and acts regularly on the others.

Proof. The edge-set of the complete subgraph K is pointwise fixed by G, then
the group G fixes at least 21 — 1 one—factors of F. Consider the set of edges of K,
of type [oc0y, gi], as g; varies in G. They belong to different factors and form an
orbit of length 2n under the action of G. We conclude that G has exactly 2t — 1
fixed one-factors and acts regularly on the others. Consider an edge e = [g;, g/,
gi,g&j € G. The stabilizer G, has either cardinality 2 or it is trivial according to
whether gj_lg,- is an involution or not. If G, = {15} then |Orbg(e)| = 2n and each
of these 2n edges belongs to a different one—factor. In fact if F denotes the one-fac-
tor containing e, the existence of g € G — {15} mapping e onto an edge of F forces
F to be fixed by G and to contain 7 + 2n distinct edges: a contradiction. If |G| = 2
then |Orbg(e)| = n. The involution gj_lgi fixes e together with the one-factor, say
F, to which e belongs. Therefore the one—factor F is fixed by G, it contains ¢ edges
with both vertices in X and Orbg(e) yields the other edges. In particular the ele-
ment gjgi_l is an involution itself, say o, and Orbg(e) = {[g,0g] | ¢ € T} where
T denotes a set of distinct representatives for the right cosets in G of the subgroup
{1, o}. We conclude that each involution 7 € G corresponds to a fixed one-factor,
namely the one containing the orbit of the edge [1, t], and viceversa. We conclude
that the number of involutions in G is 2t — 1. O

Given a group G of even order 2n possessing 2¢ — | involutions, ¢ > 1, we want to
test the existence of a one—factorization which is 2¢-pyramidal under G. Moreover,
we want the minimum amount of information which is necessary to reconstruct the
one-factorization from G. Use previous notations and set X = {coy, ..., 00y},
with G N X = @ and construct the complete graph with vertex-set V = G U X.
Consider the natural action of G on vertices, edges and factors as before and let Jg
be the set of involutions of G. An edge e = [g;, g;] with both vertices in G will be
called a proper edge and there are two possibilities:
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— It has trivial stabilizer in G and |Orbg(e)| = 2n. In this case gj,g,._l is not an
involution (otherwise gi_lgj fixes e), e is called a long edge and we set @ (¢) =
{(gi, g} and de = {g;g ', gigj').

— The element gj'lg,- is an involution fixing e. The edge is called short in this case,
|Orbg(e)| = n,theelement gjgi‘l isaninvolution itself and we set de = {gjgi_l}.

If Sisaset of long proper edges, we define 8S = | J,g deand @(S) = U, o5 @ (e).
Obviously these unions can contain repeated elements and so, in general, will return
a multiset.

Definition 1. Let Sg = {ey, ... , en—} be a set of n —t distinct long and proper edges.
We say that Sg is a weak-starter in G if the following conditions are satisfied:

- 08¢ =G — (Jg U{lg)
- @(e;))ND(ej) =0, foreveryi,je{l,...,n—t}

When |Jg| = 1, this definition coincides with the definition of right even starter
introduced in [2].

Furthermore, if G is an abelian group with an elementary abelian 2—Sylow sub-
group P, then a weak-starter in G is the patterned frame starter in G — P, see [10]
page 473. If G itself is elementary abelian, then a set Si is a weak-starter in G if and
only if S¢ is the empty set.

Proposition 3. Let G be a group of order 2n which contains exactly 2t — 1 involutions.
The existence of a weak-starter in G is equivalent to the existence of a one—factoriza-
tion of Kay4+2, which is 2t-pyramidal under G.

Proof. Suppose theexistencein G of a weak -starter Sg = {[gi, hi],i = 1,...,n—t}.
We construct a one—factorization F of Ky,42,. Let H = {H), ..., Hy,_} be a one-
factorization of K. Pair each factor H; with an involution o; € G in such a way
that distinct factors of H are paired with distinct involutions. Complete each one-
factor H; to a one—factor R; of K,.., adding all proper short edges [g, o;gl, g € T},
denoting by 7; a set of distinct representatives for the right cosets of {lg, 0;} in
G. In this way, we obtain 2t — 1 distinct one—factors for F and each of them is
fixed by G. Observe also that each proper edge of R; is short and de = {0;}. Let
{ai,...,an} = G — ®(Sc). Construct a one—factor F containing all edges [oo;, a;il,
i=1,..., 2t together with theedges of Sg.Set F = {Ry, ..., Ryy_1JU{Fg| g € G},
F is a set of one—factors and contains at most (n + ¢)(2n + 2t — 1) edges. To prove
that F is a one—factorization of K>, 12, it is sufficient to prove that each edge e of
the complete graph with vertex-set G U X appears in at least one one-factor of F.
If e has both its vertices in X, then it is an edge of Ky and appears in exactly one
one-factor R; € F.If e = [00;,h], h € G, thene € Fai_lh. If e is a short proper
edge, then de = {0;} and e lies in R;, the one—factor associated to the involution
o;. If e = [x, y] is a long proper edge, let [g;, h;] € Sg such that de = d[g;, h;]. If
yx~l = h;gi_', then [x, y] € Fg with g = gi‘lx; otherwise if yx~! = g,-h,.'l then
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[x,y] € Fgwithg =g ly. Obviously F is 2¢-pyramidal under G. For the converse
follow the proof of Proposition 2: a weak-starter S¢ is the set {ey, ..., e,—,} of proper
edges of a non-fixed one-factor F. In fact each e; is long and @ (¢;) N P (e;) = J,
i # j. Moreover if ¢; = [g;,h;] and e; = [gj, hj], i # j, thenitis de; N de; = @
otherwise either h;’h; or gj"lh,- maps e; onto e; and fixes the one—factor F which
is a contradiction. a

In general the one-factorization constructed from a weak-starter is not unique.
In the above construction different choices of H as well as different choices of the
edges with a vertex in X and the other in G can lead to non isomorphic one—factor-
izations.

Proposition 4. A group G of order 2n with 2t — 1 involutions and such that 2t > n,
realizes a 2t—pyramidal one—factorization of a complete graph.

Proof. To prove the statement it is sufficient to prove the existence of a weak-starter
in G. If t = n (that is G is an elementary abelian 2—group), then the empty set is a
weak-starterin G. Supposet < n and suppose a weak-starter does not existin G. Let
S be a maximum cardinality set of long edges such that 35 and @ (S) do not contain
repeated elements, and denote by m its cardinality. Since S is not a weak-starter, we
have m < n —t and there exists a non-identity element g € G — 9 such that g is not
an involution of G. We also have |@(S)| = 2m < 2n — 2t, this implies |®(S)| < n
by the hypothesis on 2¢. Consider the edge set E = {[x, y] : 8([x, y]) = (g, g~ "}}.
Through each vertex a € G there are exactly two edges of E, namely [a, ga] and
[a, g~'a], so that |E| = 2n. Furthermore at most 2|®(S)| < 2n edges of E have at
least one vertex in @ (S) and then there exists at least one edge e € E with both the
vertices in G — @ (S). The set § = S U {e} is a set of long edges such that 3§ and
@ (S) do not contain repeated elements: a contradiction. O

In the next sections we will examine some classes of groups. We will make use
of the notions of sequenceability and R-sequenceability in a finite group G. These
notions, together with some relevant results, are briefly summarized below.

Definition 2. A non-trivial finite group G of order n, with identity 1g, is said to be
sequenceable if its elements can be listed in a sequence gy, g2, ..., gn in such a way
that the quotients gzgl_l, g3g2_', ceeh g,,g”__ll are distinct.

Definition 3. A non-trivial finite group G of even order 2n with identity 1g and with a
unique involution j is said to be symmetrically sequenceable if its elements can be listed
in a sequence (symmetric sequence) g\, g2, ... , & in such a way that the quotients
gp_gl'l,ggg;l, e g;_,,gz_”l_l are distinct and gn4i = gn—i+1j, i =1,...,n.

Definition 4. 4 group G of order n with identity 1 is said to be R-sequenceable if the
elements of G — {1} can be listed in an R—sequence gy, g2, ... , gn—1 Such that the
quotients gzgl_l, g3g2_l, RN g,,_lg”—_lz, glgn__ll are distinct.
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For a recent survey on this topic we refer to [15]. Usually the quotients on a
sequence (either symmetric or not) or on an R—sequence gi, ..., g are defined by
& ' gi+1,i =1,...,t,nevertheless our definitions 2, 3 and 4 are equivalent to those
given in [15] and are more efficient in our context. Observe also thatif gy, ..., g, is
a sequence then for each h € G, gih, ..., gnh is a sequence itself. Moreover, it is a
symmetric sequence if and only if the previous one is symmetric.

We simply recall that each solvable group with a unique involution, except for
the quaternion group Qs, is symmetrically sequenceable, [1].

Each abelian 2—group is R—sequenceable if and only if it is not cyclic, [12].

The only groups known to be non-sequenceable are the abelian groups with
more than one involution, the quaternion group Qg and the dihedral groups Dg
and Dg. Each dihedral group of order at least 10 is sequenceable.

It was proved in [2] that each symmetrically sequenceable group, together with
Qg, possesses a right even starter (i.e., a weak-starter in our terminology) this,
together with Proposition 3, proves the following:

Theorem 1 [2]. Each symmetrically sequenceable group, together with the quaternion
group Qs, realizes a bipyramidal one—factorization of a complete graph.

3. Abelian k—Pyramidal One—Factorizations

In this section we prove some preliminary Lemmas and Propositions which will lead
to the main Theorem 2.
We will denote by Z,, the cyclic group of order » in additive notation.

Lemma 1. Let G be a sequenceable group then G x Zy admits a weak-starter.

Proof. Let g1, g2,...,8n be a sequence for G. Consider the set of edges S’ =
{E], €2y ... 7ell—l}Whereei = [(givxl')’ (gi-i-l! yl)]’l = 1! o 1n_1 and-xl = )’l = 07
i.e., e = [(g1,0), (g2,0)], and each edge ¢;; is defined from the previous edge ¢;
setting ¢; | = I"(¢;) where:

(i1, i + 1), (842, yi + D] if givagiy)) = @raagri) ™ = r>i
I'(e;) = | |
[(Gi+1,yi + 1), (gig2, )] if gis28) = (8rs28,, ) = r <i

Denote by 7 the set of all short edges in §’. The set S = §' — I is a weak-starter
in G x Z;. In fact it is obvious that @ (e;) N ®(e;) = # when i # j. Moreover, let
(g, x) be an element of order greater than 2in G x Z;. Let (g;, g;i+1) and (gr, gr+1)
be the two pairs of elements of the sequence for G such that g;1g; l' = g and
gr+18°" = g~!. Denote by m and /i the minimum and the maximum between i and
r, respectively. If x = O then (g, x) = 3([(gm, ¥), (&m+1, ¥)]) and otherwise, ifx = 1,
then (g, x) = 3([(gm, ¥), (gm+1, ¥ + 1)]), where y is a suitable element in Z;. O

Lemma 2. Let G be an R-sequenceable group of even order then G x Zy admits a
weak-starter.
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Proof. Let g, ..., gu—1 be an R-sequence of G. Without loss in generality we can
suppose that g g"__[I is an involution of G. Paralleling the construction of Lemma 1,
considerthesetS’ = {ey, ..., e,—2} wheree; = [(gi, xi), (gix1, yi),i=1,...,n=2,

x1 =y =0,ie,e; =[(g1,0), (g2,0)],and each edge ¢; ., is defined by the previous
edge ¢; setting ;] = I"(¢;), where I' is defined as in Lemma 1. Denote by 7 the set
of all short edges in §’. The set § = §' — I is a weak-starter in G x Z». O

Lemma 3. The group Zg, admits a weak-starter S such that 0,4n ¢ ®(S).

Proof. Consider the following sets:

St ={[1,2n+ 1], [5n,n + 1]}
S={2n+1-i2n+1+il/i=1,...,n—1)
S3={n+1-i3n+il/i=1,... ,n—1}
S4={[—i,4n+il/i=1,... ,n—1}
Ss={5n+i,Tn+1-i]/i=1,...,n}

we have:
S| = {£2n, £@n - 1)}, &(S)) ={l,n+1,2n + 1, 5n}.

08 = {(£2i,i =1,...,n—1},P(8) ={n+2,n+3,...,2n,2n+2,2n+3, ..., 3n}.
0S3={x£@n+2i-1),i=1,...,n—1},
D(S3)=1{2,3,...,n,3n+1,3n+2,...,4n - 1}.

0Ss ={£(@n+2i),i=1,...,n—1},

D Sy) ={4n+1,4n+2,... ,5n—=1,7n+1,7n+2,...,8n —1}.

Ss ={x@2n—-2i+1),i=1,...,n},®(Ss)={5n+1,5n+2,...,7n}.

The union § = S} US,US3US4USs is a weak-starter in Zg, such that 0, 4n ¢ @(S).
a

Lemma 4. The group Zg,, x Zg, admits a weak-starter.

Proof. LetS| = {[a1,b1],...,[aam—1, bam—1]} be a weak-starter in Zg,, and let S, =
{[x1, 1], .-+ [Xan—1, yan—1]} be a weak-starter in Zg,. By Lemma 3, we can assume
0,4m ¢ @(S)) as well as 0,4n ¢ @(S3), so that &(S)) = Zg, — {0,4m} and
®(S3) = Zg, — {0,4n}). Letcy, ..., Cam, C4m+1, - - - » C8m DE & Ssymmetric sequence in
Zg, such that ¢4y, = 0 and ¢4,y = 4m. Similarly, letdy, ..., day, dapn+1, - - ., dg, be
a symmetric sequence in Zg, such that ds, = 4n and dg4,+; = 0.

Recall that both the sets +{¢c;+; —¢; |i=1,...,4m — 1} and {c;y] —¢; | i =
4m + 1, ..., 8m — 1} cover the elements of Zg,, — {0, 4m} exactly once.

In the same manner, both the sets {d; | —d; |i = 1,...,4n—1}and +{d; 4| —
di|i=4n+1,...,8n — 1} cover the elements of Zg, — {0, 4n} exactly once.
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Consider the following sets:

Q = {[(ai, x}), (bi, )] [(ai, ), (bi, xj)] | [ai, bi] € S1, [xj, yj] € S2)
R = {[(¢;,0), (ci+1,4m)] i =1,...,4m — 1}
Ui = {[(cam+2i+1, 0), (cam+2i42, 0] | i =0,...2m — 1}
Uz = {[(cam+2i+2, 4n), (Cam42i+3,4m)] | i =0, ..., 2m — 2}
Z = {[(0, d:), Gn, diy )] i =1,...,4n — 1)
Wi = ([0, dan+2i+1), (0, dap42i42)] | i =0, ...2n — 1}
Wy = {[(4m, dapi2i+2), @m, dapy2i43)] 11 =0,...,2n = 2}

Set U = U, UU; and W = W; U W, we have:
00 = (Zgm — {0,4m})) x (Zg, — {0, 4n}), @(Q) = P(S}) x P(S7) and &(Q) is
disjoint from both {0, 4m} x Zg, and Zg,, x {0, 4n}.
R = (Zgu — {0, 4m}) x {4n},
D(R) ={(c;,0),j=1,....4m = 1} U ((cj,4n), j =2,...,4m}.
U = (Zgm — {0,4m}) x {0)),
QW) ={(cj,0),j=4m+1,...,8m}U{(cj,4n), j=4m+2,...,8m — 1}.
0Z = {4m} x (Zg, — {0, 4n}),
@(Z2)={0,dj),j=1,....,4n =1} U{(4m,d}), j = 2,...,4n}.
oW = {0} x (Zg, — {0, 4n}),
OW)={0,d)),j=4n+1,...,8n}U{(dm,d;), j=4n+2,...,8n — 1},
Theset QURUU U Z U W is a weak-starter in Zg,,, X Zg,. O

Lemma 5. Let G be an R-sequenceable group of even order then G x Zg,, admits a
weak-starter.

Proof Let gy,...,gn—1 be an R-sequence of G. Let 8’ = ([x;,y;]|j=1,...,
4n — 1} be a starter of Zg, such that 0,4m ¢ @(S’), take for example the weak-
starter described in lemma 3. Set g, = g; and consider the following sets:

R={[gi xp) @+yplli=1,...,n—=1,j=1,...,4m -1}

T ={[(g,xp), g, ypllj=1,...,4m — 1)

The set G x Zg,, — (P(R) U &(T)) is exactly G x {0,4m}, and 9(RUT) =
G x (Zgy — {0, 4m}). The set G x {0, 4m} is a subgroup of G x Zg,, and it is isomor-
phicto G x Z», then apply Lemma 2 and construct a weak-starter U in G x {0, 4m}.
Theset S = RUT UU is a weak-starterin G x Zg,,. O

Lemma 6. Let G be a sequenceable group then G x Z4 admits a weak-starter.

Proof. Letgy,...,gn beasequence of G. Consider the set
S/: {elY"' Ye”—l’ fl?"' ’ﬁl_l}
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where

e = [(gi’xi)’ (gi+l’ yi)]! .fl = [(giv si)v (gi+l: ti)], [ = 1, ww s 5 1
with x| =t = 0 and Yy =85 = 1, i.C., e = [(gl, 0, (g2, 1)]’ fl — [(gl, 1), (g2, O)],
and each pair (ejy1, fi+1) is defined from the previous pair (e;, fi) setting
(ei+1, fi+1) = u((ei, fi)) where:

([(gl+l » Vi + 2)1 (gi+29 1 i i 2)] ) [(gi+l ) Li + 2)v (gi+21 Yi I 2)])
if gi42873) = (gr4287} )" implies r > i

w(lei, fi)) =
([(gi+1, i +2), @it2, yi +2)], [(8ix1, ti +2), (git2, )]

ifgi+2g,-—+ll = (8r+28:1)"’ implies r < i

Let I be the set of edges f; such that g,-_i_lg,._l is an involution (if G has odd
order then 7 is the empty set), in this case by definition of u we have df; = de;,
therefore if S = 8’ — I, then it is 8§ = 85’. Let eg = [(g1, 2), (g1, 3)], we prove that
the set S = S U {eg} is a weak-starter in G x Z4. In fact @(S’) does not contain
repeated vertices and the same holds for @ (S). Moreover, let u > 0 be the number of
involutions in G, therefore I contains u elements, G x Z4 has 2u + 1 involutions and
the number of elements (g, x) € G x Z4 such that (gz, 2x) # (lg, 0) is4n — 2u — 2.
Observe that this number is exactly |8S|. In fact [S| = 2n — u — 2, each edge of §
is long as well as ¢ and this implies |dS| = 4n — 2u — 2. Now, to prove that S is a
weak-starter, it is sufficient to prove that each element (g, x) with (g%, 2x) # (1, 0)
isin 8S. If g is an involution of G, there is exactly one index i € {1,...,n — 1} such
that g = g,-+1gl._l, in this case (g, x) € d¢;. Otherwise, if g2 # 1 there is a pair
of indices 1 <i < j <n — 1 such that {g, g~'} = {g,-+1gi_1,gj+1gj"l}. We have
either (g, x) € de; U df; or (g, x) € de; U df; according to whether x € {I, —1} or
x € {0, 2}. Finally, if g = 15 we have (g, x) € dep = {(1g, £1)}. O

Lemma 7. Let G be an R-sequenceable group of even order then G x Z4 admits a
weak-starter.

Proof. Letgy,...,gu—1 bean R-sequence of G. Without loss of generality we can
suppose g| g“__ll is an involution of G. We repeat the construction of Lemma 6 and
we consider the set

Sl:{elv--- vell—29fl"" v,fll—z]
where
e = [(givxi)v(gi+lvyi)]! _fl = [(giasi)a (gi+lvti)]v l = 1» y h _2

withx; = = 0and y; =51 = 1,1, e =[(g1,0), (82, D], f1 =[(g1, 1), (g2, 0],
and each pair (ej+1, fi+1) is defined from the previous pair (e;, f;) setting
(eix1, fix1) = m((e;, fi)) where u is defined as in Lemma 6.
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Let I be the set of edges f; such that gi+1gi_1 is an involution (if glgn__l1 is the
unique involution in G, then 7 is the empty set), in this case by definition of © we
have 3f; = de;, therefore if § = §” — I then 85 = 9S’. Moreover, the edges of S are
long and @ (S) does not contain repeated elements. Proceeding as in the previous
Lemma 6, we can observe that the elements in 85 are distinct and cover all the ele-
ments of G x Z4 which are different from the identity and the involutions, except for
(glg,,—_ll , £1) and (1g, £1). Let (gy—1, x) & @(S), i.e., (gn—1,%) € P({en—2, fu-2}),

if x = %1 let e, = [(gn—1., %), (81, 2)], otherwise let e,—1 = [(gn-1, ), (g1, 3)]-
Observe that (g1, 2) and (g1, 3) arenotin @(S) and de,—| = {(glg”__l1 , =1)}. Finally,
let eg = [(1g,0), (1g, 1)], the set S = SU {eg} U {e,—} is a weak-starter in G x Zj.

O

Proposition 5. Let G be an R-sequenceable group containing 2t — 1 involutions and
admitting a weak-starter Sg. Let K be a group of odd order. The group G x K realizes
a 2t—pyramidal one—factorization of a complete graph.

Proof. To prove the statement it is sufficient to construct a weak-starter in G x
K. Denote by g1, g2,...,8&—1 an R-sequence of G and by S¢ = {[x;, yi]/i =
l,...,n —1t}aweak-starter in G; we express the group K as union of the disjoint
sets K1, Ko and {1x}, defined in such a way that k € K iffk # 1x and k~! € K».
Consider the sets of edges:

0 ={[(g, k), (g, k™ H]lk € K1)
S = {[(X[, lK)v ()’h lK)]ll = 11"'1” _t}
R = {[(gi+1,k), (@i, k" Dk € Ky,i=1,...,n—1} (where g, = g1)

It is easy to verify that Q U § U R is a weak-starter in G x K. O

The above Lemmas 2, 5 and 7 lead to the following:

Proposition 6. Let G be an R-sequenceable group of even order. For eacht > 1 the
group G x Zy admits a weak-starter.

We are now able to prove the following:

Theorem 2. Each abelian group G of even order 2n and with 2t — 1 involutions, realizes
a 2t—pyramidal one—factorization of the complete graph K, ;.

Proof. Let P be the 2—Sylow subgroup of G, then G = P x K, where K is an
odd order abelian group. From the fundamental theorem on the structure of finite
abelian groups, P = Zyn X Zyny X ... X Zons, s > 1. If s = 1 then G is symmetrically
sequenceable, [1], and the assertion follows from Theorem 1. If s > 2, the group P
is a non cyclic abelian 2—group and then it is R—sequenceable, [12]. Therefore, the
proof follows from Proposition S as soon as we construct a weak-starter in P. If
P = Zyn x Zyn (i.e., s = 2), there are two possibilities: either ny, ny > 3 or at least
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one of them, say n, is less than 3. In the former case we construct a weak-starter in
P using Lemma 4, in the latter case, since Z,n; is sequenceable, a weak-starter is con-
structed applying Lemma 1 or Lemma 6. Now suppose P = Zyn X Zyny X ... X Zons,
with s > 2. Since Zym X ... x Zyn, is an even order R—sequenceable group, we
apply proposition 6 to construct a weak-starter in P. O

4. Dihedral and Hamiltonian k-pyramidal One—Factorizations

Non-abelian k—pyramidal one-factorizations are obtained in the previous chapters
in some special cases (see for examples Theorem 1, Lemmas 1, 2, 6, 7 and Proposi-
tion 6, when G is not abelian). In this section we look at two more classes of groups,
namely dihedral and Hamiltonian groups.

As a consequence of Proposition 4 we immediately obtain the following state-
ment:

Theorem 3. Each dihedral group D, realizes either a (n + 1)—pyramidal or a (n +
2)—pyramidal one—factorization of a complete graph, according to whether n is odd
or even.

We recall that each dihedral group realizes a sharply-vertex transitive one—fac-
torization, see [3], hence the previous Theorem 3 completes this result.

Proposition 7. Let G be a group of even order admitting a weak-starter. The group
G x (Z)", m > 2, admits a weak-starter itself.

Proof. Let S = {[u1,v1]...,[us, vs]} be a weak-starter in G and let ay, ..., aym_|
be an R—sequence of the elementary abelian 2—group (Z;)™. Set apn = a; and
for each j € {1,...,2™ — 1} let A; = {[(ui, aj), (vi,aj41)] | i = 1,...,s} and let
Ap = {[(u;, 0), (v;,0)],i =1,...,s}. Itiseasy to check that AU A; U...UAm_,
is a weak-starter in G x (Z3)". O

Recall that a Hamiltonian group is defined to be a group in which every sub-
group is normal. Apart from the abelian groups, each Hamiltonian group is the
direct product of the quaternion group Qs, together with an elementary abelian
2—group and an odd order group (see [17, p.253]).

Theorem 4. Each Hamiltonian group G of even order 2n and with 2t — 1 involutions,
realizes a 2t —pyramidal one—factorization of the complete graph Ky, 4 ;.

Proof. If G is abelian, the assertion follows from Theorem 2. Suppose G is not
abelian, then G = Qg x K x (Z»)", with K of odd order. From Theorem | we
know that Qg x K admits a weak-starter, in fact, if K is not trivial, then the group
Qg x K is solvable and with a unique involution and by [1] it is symmetrically
sequenceable. If m > 2, the existence of a weak-starter in G follows from Proposi-
tion 7. Suppose m = 1. If K is not trivial, then the assertion follows from Lemma
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1. If K is trivial, we conclude the proof by exhibiting a weak-starter in Qg x Z».
The group Qg can be presented as follows: Qg =< a,b:a* =1,b*> =a?,b"'ab =

=1 > Theset {[(a, 0), (1,0)],[(@~', 0), (ab, D], [(b~", 0), (b2, 0)], [(ab, 0), (b2, 1)],

a
[(a, 1), (b, D], [(b,0), (ab, 1)]} is a weak-starter in Qg x Z». O
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