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On the Maximum Number of Cliques in a Graph

David R. Wood∗
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Abstract. A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum
number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m

edges; (2) graphs with n vertices, m edges, and maximum degree ∆; (3) d-degenerate graphs
with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with
n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of cliques in
a planar graph with n vertices is 8(n − 2).

Key words. extremal graph theory, Turán’s Theorem, clique, complete subgraph, degeneracy,
graph minor, planar graph, K5-minor, K3,3-minor

1. Introduction

The typical question of extremal graph theory asks for the maximum number of edges
in a graph in a certain family; see the surveys [2, 38, 39, 40]. For example, a celebrated
theorem of Turán [47] states that the maximum number of edges in a graph with n vertices
and no (k + 1)-clique is 1

2
(1 − 1

k
)n2. Here a clique is a (possibly empty) set of pairwise

adjacent vertices in a graph. For k ≥ 0, a k-clique is a clique of cardinality k. Since an
edge is nothing but a 2-clique, it is natural to consider the maximum number of ℓ-cliques
in a graph. The following generalisation of Turán’s Theorem, first proved by Zykov [52],
has been rediscovered and itself generalised by several authors [8, 10, 15, 16, 17, 20, 27,
31, 33, 36].

Theorem 1. ([52]) For all integers k ≥ ℓ ≥ 0, the maximum number of ℓ-cliques in a

graph with n vertices and no (k + 1)-clique is
(

k
ℓ

) (

n
k

)ℓ
.

A simple inductive proof of Theorem 1 is included in Appendix A. In this paper we
determine the maximum number of cliques in a graph in each of the following classes:

– graphs with n vertices and m edges (Section 3),
– graphs with n vertices, m edges, and maximum degree ∆ (Section 4),
– d-degenerate graphs with n vertices and m edges (Section 5),
– planar graphs with n vertices and m edges (Section 6), and
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– graphs with n vertices and no K5-minor or no K3,3-minor (Section 7).

We now review some related work from the literature. Eckhoff [5, 6] determined the
maximum number of cliques in a graph with m edges and no (k+1)-clique. Lower bounds
on the number of cliques in a graph have also been obtained [4, 13, 14, 22, 23, 24, 25].
The number of cliques in a random graph has been studied [3, 29, 37]. Bounds on the
number of cliques in a graph have recently been applied in the analysis of an algorithm
for finding small separators [32] and in the enumeration of minor-closed families [28].

2. Preliminaries

Every graph G that we consider is undirected, finite, and simple. Let V (G) and E(G) be
the vertex and edge sets of G. Let ∆(G) be the maximum degree of G. We say G is a
(|V (G)|, |E(G)|)-graph or a (|V (G)|, |E(G)|, ∆(G))-graph.

Let C(G) be the set of cliques in G. Let c(G) := |C(G)|. Let Ck(G) be the set of
k-cliques in G. Let ck(G) := |Ck(G)|. Our aim is to prove bounds on c(G) and ck(G).

A clique is not necessarily maximal1. In particular, ∅ is a clique of every graph, {v} is
a clique for each vertex v, and each edge is a clique. Thus every graph G satisfies

c(G) ≥ c0(G) + c1(G) + c2(G) = 1 + |V (G)| + |E(G)| . (1)

A triangle is a 3-clique. Equation (1) implies that

c(G) = 1 + |V (G)| + |E(G)| if and only if G is triangle-free. (2)

Triangle-free graphs have the fewest cliques. Obviously the complete graph Kn has the
most cliques for a graph on n vertices. In particular, c(Kn) = 2n since every set of vertices
in Kn is a clique.

Say v is a vertex of a graph G. Let Gv be the subgraph of G induced by the neighbours
of v. Observe that X is a clique of G containing v if and only if X = Y ∪{v} for some clique
Y of Gv. Thus the number of cliques of G that contain v is exactly c(Gv). Every clique of
G either contains v or is a clique of G\v. Thus C(G) = C(G\v)∪{Y ∪{v} : Y ∈ C(Gv)}
and

c(G) = c(G \ v) + c(Gv) ≤ c(G \ v) + 2deg(v) . (3)

Let G be a graph with induced subgraphs G1, G2 and S such that G = G1 ∪ G2 and
G1 ∩ G2 = S. Then G is obtained by pasting G1 and G2 on S. Observe that C(G) =
C(G1) ∪ C(G2) and C(G1) ∩ C(G2) = C(S). Thus

c(G) = c(G1) + c(G2) − c(S) . (4)

Lemma 1. Let G be an (n, m)-graph that is obtained by pasting G1 and G2 on S. Say Gi

has ni vertices and mi edges. Say S has nS vertices and mS edges. If c(Gi) ≤ xni +ymi+z
and c(S) ≥ xns + ymS + z, then c(G) ≤ xn + ym + z.

1 Moon and Moser [26] proved that the maximum number of maximal cliques in a graph with n vertices
is approximately 3n/3; see [9, 11, 12, 18, 19, 34, 35, 42, 50, 51] for related results.
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Proof. By Equation (4),

c(G) = c(G1) + c(G2) − c(S)

≤ (xn1 + ym1 + z) + (xn2 + ym2 + z) − (xns + yms + z)

= x(n1 + n2 − nS) + y(m1 + m2 − mS) + z

= xn + ym + z .

The following special case of Lemma 1 will be useful.

Corollary 1. Let G be an (n, m)-graph that is obtained by pasting G1 and G2 on a k-

clique. Say Gi has ni vertices and mi edges. Assume that c(Gi) ≤ xni + ymi + z and that

xk + y
(

k
2

)

+ z ≤ 2k. Then c(G) ≤ xn + ym + z.

3. General Graphs

We now determine the maximum number of cliques in an (n, m)-graph.

Theorem 2. Let n and m be non-negative integers such that m ≤
(

n
2

)

. Let d and ℓ be the

unique integers such that m =
(

d
2

)

+ ℓ where d ≥ 1 and 0 ≤ ℓ ≤ d−1. Then the maximum

number of cliques in an (n, m)-graph equals 2d + 2ℓ + n − d − 1.

Proof. First we prove the lower bound. Let V (G) := {v1, v2, . . . , vn} and E(G) := {vivj :
1 ≤ i < j ≤ d}∪{vivd+1 : 1 ≤ i ≤ ℓ}, as illustrated in Figure 1. Then G has

(

d
2

)

+ ℓ edges.
Now {v1, v2, . . . , vd} is a clique, which contains 2d cliques (including ∅). The neighbourhood
of vd+1 is an ℓ-clique with 2ℓ cliques. Thus there are 2ℓ cliques that contain vd+1. Finally
vd+2, vd+3, . . . , vn are isolated vertices, which contribute n − d − 1 cliques to G. In total,
G has 2d + 2ℓ + n − d − 1 cliques.

Fig. 1. A (14, 31)-graph with 269 cliques (d = 8 and ℓ = 3).

Now we prove the upper bound. That is, every (n, m)-graph G has at most 2d + 2ℓ +
n − d − 1 cliques. We proceed by induction on n + m. For the base case, suppose that
m = 0. Then d = 1, ℓ = 0, and c(G) = n + 1 = 2d + 2ℓ + n − d − 1. Now assume that
m ≥ 1. Let v be a vertex of minimum degree in G. Then deg(v) ≤ d − 1, as otherwise

every vertex has degree at least d, implying m ≥ dn
2
≥ d(d+1)

2
=
(

d+1
2

)

, which contradicts

the definition of d. By Equation (3), c(G) ≤ c(G \ v)+2deg(v). To apply induction to G \ v
(which has n − 1 vertices and m − deg(v) edges) we distinguish two cases.

First suppose that deg(v) ≤ ℓ. Thus m − deg(v) =
(

d
2

)

+ ℓ − deg(v). By induction,

c(G) ≤ 2d + 2ℓ−deg(v) + n − 1 − d − 1 + 2deg(v). Hence the result follows if 2d + 2ℓ−deg(v) +
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n − 1 − d− 1 + 2deg(v) ≤ 2d + 2ℓ + n − d− 1. That is, 2ℓ−deg(v) − 1 ≤ (2ℓ−deg(v) − 1)2deg(v),
which is true since 0 ≤ deg(v) ≤ ℓ.

Otherwise ℓ + 1 ≤ deg(v) ≤ d − 1. Thus m − deg(v) =
(

d−1
2

)

+ d − 1 + ℓ − deg(v). By

induction, c(G) ≤ 2d−1 + 2d−1+ℓ−deg(v) + n − 1 − d + 2deg(v). Hence the result follows if
2d−1 + 2d−1+ℓ−deg(v) + n− 1− d + 2deg(v) ≤ 2d + 2ℓ + n− d− 1. That is, 2ℓ(2deg(v)−ℓ − 1) ≤
2d−1−deg(v)+ℓ(2deg(v)−ℓ − 1). Since deg(v) ≥ ℓ + 1, we need 2ℓ ≤ 2d−1−deg(v)+ℓ, which is true
since deg(v) ≤ d − 1.

4. Bounded Degree Graphs

We now determine the maximum number of cliques in an (n, m, ∆)-graph. West [49]
proved a related result.

Theorem 3. The number of cliques in an (n, m, ∆)-graph G is at most

1 + n +

(

2∆+1 − ∆ − 2
(

∆+1
2

)

)

m ≤ 1 +

(

2∆+1 − 1

∆ + 1

)

n .

Proof. G has one 0-clique and n 1-cliques. For k ≥ 2, each edge is in at most
(

∆−1
k−2

)

k-

cliques, and each k-clique contains
(

k
2

)

edges. Thus G has at most m
(

∆−1
k−2

)

/
(

k
2

)

k-cliques.
Thus the number of cliques (not counting 0- and 1-cliques) is at most

∆+1
∑

k=2

m
(

∆−1
k−2

)

(

k
2

) = m
∆+1
∑

k=2

2

k(k − 1)
· (∆ − 1)!

(k − 2)!(∆ − 1 − k + 2)!

=
m
(

∆+1
2

)

∆+1
∑

k≥2

2(∆ − 1)!
(

∆+1
2

)

k!(∆ + 1 − k)!

=
m
(

∆+1
2

)

∆+1
∑

k=2

(∆ + 1)!

k!(∆ + 1 − k)!

=
m
(

∆+1
2

)

((

∆+1
∑

k=0

(

∆ + 1

k

)

)

− (∆ + 1)!

1!(∆ + 1 − 1)!
− (∆ + 1)!

0!(∆ + 1 − 0)!

)

=
m
(

∆+1
2

)

(

2∆+1 − ∆ − 2
)

.

The result follows since m ≤ ∆n
2

.

The bound in Theorem 3 is tight for many values of m.

Proposition 1. For all n and m such that m ≤ ∆n
2

and m ≡ 0 (mod
(

∆+1
2

)

), there is an

(n, m, ∆)-graph G with

c(G) = 1 + n +

(

2∆+1 − ∆ − 2
(

∆+1
2

)

)

m .

Proof. Let p := m/
(

∆+1
2

)

. Let G consist of p copies of K∆+1, plus n − p(∆ + 1) isolated
vertices. Then G is an (n, m, ∆)-graph. Each copy of K∆+1 contributes 2∆+1 − ∆ − 2
cliques with at least two vertices. Thus G has 1 + n + (2∆+1 − ∆ − 2)p cliques.
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5. Degenerate Graphs

A graph G is d-degenerate if every subgraph of G has a vertex with degree at most d.
The following simple result is well known; see [7, 32] for example.

Proposition 2. Every d-degenerate graph G with n ≥ d vertices has at most 2d(n−d+1)
cliques.

Proof. We proceed by induction on n. If n = d then c(G) ≤ 2d = 2d(n − d + 1). Now
assume that n ≥ d + 1. Let v be a vertex of G with deg(v) ≤ d. By Equation (3),
c(G) ≤ c(G \ v)+ 2deg(v). Now G \ v is d-degenerate since it is a subgraph of G. Moreover,
G \ v has at least d vertices. By induction, c(G \ v) ≤ 2d(n − 1 − d + 1). Thus c(G) ≤
2d(n − 1 − d + 1) + 2d = 2d(n − d + 1).

The bound in Proposition 2 is tight.

Proposition 3. For all n ≥ d, there is a d-degenerate graph Gn with n vertices and

exactly 2d(n − d + 1) cliques (and with a d-clique).

Proof. Let Gd be the complete graph Kd. Then Gd has the desired properties. For n ≥
d + 1, let Gn be the graph obtained by adding one new vertex v adjacent to every vertex
in some d-clique in Gn−1. Then Gn is d-degenerate and contains a d-clique. (Gn is a
chordal graph called a d-tree; see [1].) By Equation (3), c(Gn) = c(Gn−1) + 2deg(v) =
2d(n − 1 − d + 1) + 2d = 2d(n − d + 1).

Proposition 2 can be made sensitive to the number of edges as follows.

Theorem 4. For all d ≥ 1, every d-degenerate graph G with n vertices and m ≥
(

d
2

)

edges

has at most

n +
(2d − 1)m

d
− (d − 3)2d + d + 1

2

cliques.

Proof. We proceed by induction on n + m. For the base case, suppose that m =
(

d
2

)

+ ℓ
where d ≥ 1 and 0 ≤ ℓ ≤ d − 1. Thus c(G) ≤ 2d + 2ℓ + n − d − 1 by Theorem 2, and the
result follows if

2d + 2ℓ + n − d − 1 ≤ n +
(2d − 1)m

d
− (d − 3)2d + d + 1

2
.

That is, d(2ℓ − 1) ≤ ℓ(2d − 1), which we prove in Lemma 2 below.
Now assume that m ≥

(

d+1
2

)

. Now G has a vertex v with deg(v) ≤ d. By Equation (3),

c(G) ≤ c(G\v)+2deg(v). The graph G\v has m−deg(v) ≥
(

d
2

)

edges, and is d-degenerate
since it is a subgraph of G. By induction,

c(G \ v) ≤ n − 1 +
(2d − 1)(m − deg(v))

d
− (d − 3)2d + d + 1

2
.

Thus the result follows if

−1 +
(2d − 1)(m − deg(v))

d
+ 2deg(v) ≤ (2d − 1)m

d
.

That is, d(2deg(v) − 1) ≤ (2d − 1) deg(v), which holds by Lemma 2 below.
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Lemma 2. d(2ℓ − 1) ≤ ℓ(2d − 1) for all integers d ≥ ℓ ≥ 0.

Proof. The case ℓ = 0 is trivial. Now assume that ℓ ≥ 1. We proceed by induction on d.
The base case d = ℓ is trivial. Assume that d ≥ ℓ + 1 ≥ 2 and by induction,

(d − 1)(2ℓ − 1) ≤ ℓ(2d−1 − 1). (5)

Since d ≥ 2,
d

d − 1
≤ 2 < 2 +

1

2d−1 − 1
=

2d − 1

2d−1 − 1
. (6)

Equations (5) and (6) imply that

(d − 1)(2ℓ − 1) · d

d − 1
< ℓ(2d−1 − 1) · 2d − 1

2d−1 − 1
.

That is, d(2ℓ − 1) < ℓ(2d − 1), as desired.

Note that a d-degenerate n-vertex graph has at most dn−
(

d+1
2

)

edges, and Theorem 4

with m = dn −
(

d+1
2

)

is equivalent to Proposition 2.
The bound in Theorem 4 is tight for many values of m.

Proposition 4. Let d ≥ 1. For all n and m such that
(

d
2

)

≤ m ≤ dn −
(

d+1
2

)

and

m mod d =

{

0 if d is odd
d
2

if d is even ,

there is a d-degenerate (n, m)-graph G with

c(G) = n +
(2d − 1)m

d
− (d − 3)2d + d + 1

2
.

Proof. Let n′ := m
d

+ 1
2
(d + 1). Then n′ is an integer and d ≤ n′ ≤ n. Let G consist

of a d-degenerate n′-vertex graph with 2d(n′ − d + 1) cliques (from Proposition 3), plus
n − n′ isolated vertices. Then G has m edges and c(G) = 2d(n′ − d + 1) + n − n′ =
n + (2d − 1)m

d
− 1

2
((d − 3)2d + d + 1).

A graph is 1-degenerate if and only if it is a forest. Thus Theorem 4 with d = 1 implies
that every forest has at most n + m− 1 cliques, which also follows from Equation (2). In
particular, c(T ) = 2n for every n-vertex tree T .

Theorem 4 with d = 2 implies that every 2-degenerate graph has at most n+ 1
2
(3m+1)

cliques. Outerplanar graphs are 2-degenerate. The construction in Propositions 3 and
4 can produce outerplanar graphs. (Add each new vertex adjacent to two consecutive
vertices on the outerface.) Thus this bound is tight for outerplanar graphs.

6. Planar Graphs

Papadimitriou and Yannakakis [30] and Storch [44] proved that every n-vertex planar
graph has O(n) cliques; see [7] for a more general result. The proof is based on the
corollary of Euler’s Formula that planar graphs are 5-degenerate. By Theorem 4, if G is
a planar (n, m)-graph with m ≥ 10, then c(G) < n + 31

5
m < 98

5
n. We now prove that the

bound for 3-degenerate graphs in Theorem 4 also holds for planar graphs.
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Theorem 5. Every planar (n, m)-graph G with m ≥ 3 has at most n + 7
3
m − 2 cliques.

Proof. We proceed by induction on n + m. The result is easily verified if m = 3.
Suppose that G has a separating triangle T . Thus G is obtained by pasting two induced

subgraphs G1 and G2 on T . Say Gi has ni vertices and mi edges. Then mi ≥ 3 since
T ⊂ Gi. By induction, c(Gi) ≤ ni + 7

3
mi − 2. By Corollary 1 with k = 3, x = 1, y = 7

3

and z = −2, we have c(G) ≤ n + 7
3
m − 2 (since 1 · 3 + 7

3

(

3
2

)

− 2 = 23). Now assume that
G has no separating triangle.

Let v be a vertex of G. We have c(G) = c(G \ v) + c(Gv) by Equation (3). The graph
G\v has m−deg(v) edges. Suppose that m−deg(v) ≤ 2. (Then we cannot apply induction
to G\v.) Then G has no 4-clique and at most two triangles. If G has at most one triangle,
then c(G) ≤ 1 + n + m + 1 ≤ n + 7

3
m − 2 since m ≥ 3. Otherwise G has two triangles,

and c(G) ≤ 1 + n + m + 2 < n + 7
3
m − 2 since m ≥ 5.

Now assume that m − deg(v) ≥ 3. By (3), applying induction to G \ v,

c(G) = c(G \ v) + c(Gv) ≤ (n − 1) + 7
3
(m − deg(v)) − 2 + c(Gv) .

Fix a plane embedding of G. If uw is an edge of Gv, then the edges vu and vw are
consecutive in the circular ordering of edges incident to v defined by the embedding
(as otherwise G would contain a separating triangle). Thus ∆(Gv) ≤ 2 and c(Gv) ≤
1 + 7

3
deg(v) by Theorem 3. Hence

c(G) ≤ (n − 1) + (7
3
(m − deg(v)) − 2) + (1 + 7

3
deg(v)) = n + 7

3
m − 2 .

If n ≥ 3 in Theorem 5 then m ≤ 3(n − 2) by Euler’s Formula. Thus we have the
following corollary.

Corollary 2. Every planar graph with n ≥ 3 vertices has at most 8(n − 2) cliques.

We now prove bounds on the number of 3- and 4-cliques in a planar graph.

Proposition 5. For every planar graph G with n ≥ 3 vertices, c3(G) ≤ 3n − 8 and

c4(G) ≤ n − 3.

Proof. We proceed by induction on n. The result is trivial if n ≤ 4. Now assume that
n ≥ 5. First suppose that G has no separating triangle. Then c4(G) = 0, and every
triangle of G is a face. By Euler’s Formula, c3(G) ≤ 2n − 4 < 3n − 8 faces. Now suppose
that G has a separating triangle T . Thus G is obtained by pasting two induced subgraphs
G1 and G2 on T . Say Gi has ni vertices. Then ni ≥ 3 since T ⊂ Gi. By induction,
c3(Gi) ≤ 3ni − 8 and c4(Gi) ≤ ni − 3. Every clique of G is a clique of G1 or G2. Thus
c4(G) = c4(G1)+c4(G2) ≤ n1−3+n2−3 = n−3. Moreover, T is a triangle in both G1 and
G2. Thus c3(G) ≤ (3n1−8)+(3n2−8)−1 = 3(n1 +n2)−17 = 3(n+3)−17 = 3n−8.

Note that Proposition 5 and Euler’s Formula (which implies c2(G) ≤ 3n − 6) reprove
Corollary 2, since 1 + n + 3(n − 2) + (3n − 8) + (n − 3) = 8(n − 2).

We now show that all our bounds for planar graphs are tight.

Proposition 6. For all n ≥ 3 there is a maximal planar n-vertex graph Gn with c2(Gn) =
3(n − 2), c3(Gn) = 3n − 8, c4(Gn) = n − 3, and c(Gn) = 8(n − 2).
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Proof. Let G3 := K3. Then c2(G3) = 3, c3(G3) = 1, c4(G3) = 0, and c(G3) = 8. Say Gn−1

is a maximal planar (n − 1)-vertex graph with c2(Gn−1) = 3(n − 3), c3(Gn−1) = 3n − 11,
c4(Gn−1) = n − 4, and c(Gn) = 8(n − 3). Let Gn be the maximal planar n-vertex graph
obtained by adding one new vertex v adjacent to each vertex of some face of Gn−1, as
illustrated in Figure 2. Then c2(Gn) = c2(Gn−1) + 3 = 3(n− 2), c3(Gn) = c3(Gn−1) + 3 =
3n− 8, c4(Gn) = c4(Gn−1)+ 1 = n− 3, and c(Gn) = c(Gn−1) + c(Gn(v)) = 8(n− 3) +8 =
8(n − 2). (Note that Gn is also an example of a 3-degenerate graph with the maximum
number of cliques; see Proposition 3.)

Fig. 2. A planar graph with 124 vertices, 366 edges, 364 triangles, 121 4-cliques, and 976 cliques.
It is obtained by repeatedly adding one degree-3 vertex inside each internal face (starting from
K3).

Proposition 7. For all n ≥ 3 and m ∈ {3, 6, . . . , 3n − 6}, there is a planar (n, m)-graph
G with c(G) = n + 7

3
m − 2.
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Proof. Let n′ := m
3
+2. Let G consist of a maximal planar graph on n′ vertices with 8(n′−2)

cliques (from Proposition 6), plus n − n′ isolated vertices. Then G has n vertices and m
edges, and c(G) = 8(n′−2)+n−n′ = n+7n′−16 = n+7(m

3
+2)−16 = n+ 7

3
m−2.

7. Graphs with no K5-Minor

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges. The graphs with no K3-minor are the forests, which have at most 2n
cliques, and this bound is tight. The graphs with no K4-minor (called series-parallel)
are 2-degenerate, and thus have at most 4(n − 1) cliques, and this bound is tight. The
Kuratowski-Wagner Theorem characterises planar graphs as those with no K5-minor and
no K3,3-minor. We now extend Corollary 2 for graphs with no K5-minor (but possibly a
K3,3-minor).

Theorem 6. Every graph G with n ≥ 3 vertices and no K5-minor has at most 8(n − 2)
cliques.

Proof. Let V8 be the graph obtained from the 8-cycle by adding an edge between each
pair of antipodal vertices; see Figure 3. Let G be a minimum counterexample to the
theorem. We can assume that G is edge-maximal with no K5-minor. Wagner [48] proved
that (a) G is a maximal planar graph, (b) G = V8, or (c) G is obtained by pasting two
smaller graphs (that are thus not counterexamples), each with no K5-minor, on an edge
or a triangle T . In case (a) the result is Corollary 2. In case (b), since V8 is triangle-free,
c(V8) = 1 + |V (V8)| + |E(V8)| = 21 < 8(|V (V8)| − 2) by Equation (2). In case (c), if T is
an edge, we have c(G) ≤ 8(n − 2) by Corollary 1 with k = 2, x = 8, y = 0 and z = −16
(since 8 · 2 + 0 − 16 < 22). In case (c), if T is a triangle, we have c(G) ≤ 8(n − 2) by
Corollary 1 with k = 3, x = 8, y = 0 and z = −16 (since 8 · 3 + 0 − 16 = 23).

Fig. 3. The graph V8.

A similar result is obtained for graphs with no K3,3-minor.

Theorem 7. Every graph G with n ≥ 3 vertices and no K3,3-minor has at most 4
3
(7n−11)

cliques. Conversely, for all n ≡ 2 (mod 3) with n ≥ 5 there is an n-vertex graph with no

K3,3-minor and c(G) = 4
3
(7n − 11).

Proof. Let G be a minimum counterexample. We can assume that G is edge-maximal with
no K3,3-minor. Wagner [48] proved that (a) G is a maximal planar graph, (b) G = K5,
or (c) G is obtained by pasting two smaller graphs (that are thus not counterexamples),
each with no K3,3-minor, on an edge. In case (a) the result follows from Corollary 2 since
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8n − 16 < 4
3
(7n − 11). In case (b), c(K5) = 32 = 4

3
(7 · 5 − 11). In case (c), we have

c(G) ≤ 4
3
(7n − 11) by Corollary 1 with k = 2, x = 28

3
, y = 0 and z = −44

3
(since

28
3
· 2 + 0 − 44

3
= 22). By the same analysis, the graph obtained from K5 by repeatedly

pasting copies of K5 on an edge has no K3,3-minor and 4
3
(7n − 11) cliques.

We finish with an open problem: What is the maximum number of cliques in an n-
vertex graph G with no Kt-minor? Kostochka [21] and Thomason [45] independently
proved that G is O(t

√
log t)-degenerate2. Thus Proposition 2 implies that G has at most

2O(t
√

log t)n cliques; similar bounds can be found in [28, 32]. It is unknown whether this
bound can be improved to ctn for some constant c (possibly for sufficiently large n).

We have proved that c(G) ≤ 2t−2(n− t + 3) whenever t ≤ 5. Moreover, the graph G in
Proposition 3 (with t = d + 2) has no Kt-minor and c(G) = 2t−2(n − t + 3). However, for
large values of t this upper bound does not hold for the complete k-partite graph K2,2,...,2.
By Theorem 8 in Appendix B, the maximum order of a clique minor in K2,2,...,2 is ⌊3

2
k⌋.

But by Proposition 10, c(K2,2,...,2) = 3k > 2⌊3k/2⌋−1(2k − ⌊3
2
k⌋ + 2) for all k ≥ 42.

Acknowledgements. Thanks to a referee for pointing out reference [43].
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8. Paul Erdős. On the number of complete subgraphs contained in certain graphs.

Magyar Tud. Akad. Mat. Kutató Int. Közl., 7:459–464, 1962.
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23. László Lovász and Miklós Simonovits. On the number of complete subgraphs
of a graph. In Proc. of 5th British Combinatorial Conference, vol. XV of Congr.

Numer., pp. 431–441. Utilitas Math., 1976.
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A. Graphs with Bounded Cliques

In this appendix we give a simple inductive proof of Theorem 1.
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Proposition 8. For all integers k ≥ ℓ ≥ 0, every graph G with n ≥ ℓ vertices and no

(k + 1)-clique has at most
(

k
ℓ

) (

n
k

)ℓ
ℓ-cliques.

Proof. We proceed by induction on n. For the base case, suppose that n ≤ k. Trivially

cℓ(G) ≤
(

n
ℓ

)

, which is at most
(

k
ℓ

) (

n
k

)ℓ
by Lemma 3 below. Now assume that the result

holds for graphs with less than n vertices, and n > k. Let G be a graph with n vertices,
no (k + 1)-clique, and with cℓ(G) maximum. We can add edges to G until it contains a
k-clique X. Every ℓ-clique of G is the union of some i-clique of G \ X and some (ℓ − i)-
clique of G[X], for some 0 ≤ i ≤ ℓ. Moreover, the vertices in each i-clique of G \ X have
at most k − i common neighbours in X (since X is a clique and G has no (k + 1)-clique).
Thus from each i-clique of G \ X, we obtain at most

(

k−i
ℓ−i

)

ℓ-cliques of G. By induction,

ci(G \ X) ≤
(

k
i

) (

n−k
k

)i
. Thus

cℓ(G) ≤
ℓ
∑

i=0

(

k

i

)(

n − k

k

)i(
k − i

ℓ − i

)

=

(

k

ℓ

) ℓ
∑

i=0

(

ℓ

i

)

(n

k
− 1
)i

=

(

k

ℓ

)

(n

k

)ℓ

,

by the binomial theorem3.

Lemma 3.
(

n
ℓ

)

kℓ ≤
(

k
ℓ

)

nℓ for all integers k ≥ n ≥ ℓ ≥ 0.

Proof. We proceed by induction on ℓ. The claim is trivial with ℓ = 0. Now assume
that ℓ ≥ 1. Thus k − n ≤ ℓ(k − n), implying kn + k − n ≤ kn + ℓ(k − n). That is,
k(n − ℓ + 1) ≤ n(k − ℓ + 1). By induction,

(

n

ℓ − 1

)

kℓ−1 · k(n − ℓ + 1) ≤
(

k

ℓ − 1

)

nℓ−1 · n(k − ℓ + 1) .

That is,
n! kℓ(n − ℓ + 1)

(n − ℓ + 1)! (ℓ − 1)!
≤ k! nℓ(k − ℓ + 1)

(k − ℓ + 1)! (ℓ − 1)!
.

Hence
n! kℓ

(n − ℓ)! ℓ!
≤ k! nℓ

(k − ℓ)! ℓ!
,

as desired.

Proposition 9. Every graph G with n vertices and no (k+1)-clique has at most
(

n
k

+ 1
)k

cliques.

Proof. By Proposition 8 and the binomial theorem,

c(G) ≤
k
∑

ℓ=0

(

k

ℓ

)

(n

k

)ℓ

=
(n

k
+ 1
)k

.

We now prove that Propositions 8 and 9 are tight.

3 Twice we use that xt =
∑t

j=0

(

t
j

)

(x − 1)j for all real x.
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Proposition 10. For every complete k-partite graph G = Kn1,n2,...,nk
,

c(G) =

k
∏

i=1

(ni + 1) .

In particular, if every ni = n
k

then c(G) = (n
k

+ 1)k and cℓ(G) =
(

k
ℓ

)

(n
k
)ℓ whenever

0 ≤ ℓ ≤ k.

Proof. Every clique consists of at most one vertex from each of the k colour classes.
There are ni + 1 ways to choose at most one vertex from the i-th colour class. Thus
c(G) =

∏

i(ni +1). (This result can also be proved using Equation (3).) Now assume that
every ni = n

k
. Every ℓ-clique consists of exactly one vertex from each of ℓ colour classes.

There are
(

k
ℓ

)

ways to choose ℓ colour classes and n
k

ways to choose exactly one vertex
from each colour class. Each combination gives a distinct ℓ-clique. The result follows.

It is interesting to note that the extremal examples in Proposition 1 for graphs of
bounded degree (disjoint copies of cliques) are the complements of the extremal examples
in Proposition 10 for graphs with bounded cliques (complete multipartite graphs).

B. Clique Minors in a Complete Multipartite Graph

The Hadwiger number of a graph G, denoted by η(G), is the maximum order of a clique
minor in G. Stiebitz [43] proved that η(G) ≤ 1

2
(n+k) for every n-vertex graph G with no

(k + 1)-clique. We now prove that this bound is tight for every complete k-partite graph
if the largest colour class is not too large.

Theorem 8. Let G be a complete k-partite graph on n vertices with n′ vertices in the

largest colour class. Then η(G) = min
{

1
2
(n + k), n − n′ + 1

}

.

The proof of Theorem 8 is based on the following lemma.

Lemma 4. Let G be the complete k-partite graph Kn1,n2,...,nk
with each ni ≥ 1. Then η(G)

equals k plus the size of the largest matching in G′ := Kn1−1,n2−1,...,nk−1.

Proof. Consider G′ to be a subgraph of G, so that S := V (G) \ V (G′) is a k-clique of G.
Let M be a matching of G′. If v is a vertex and e is an edge of G′, then v is adjacent to
at least one endpoint of e. Thus every vertex in S is adjacent to at least one endpoint of
every edge in M , and for all edges e and f in M , at least one endpoint of e is adjacent
to at least one endpoint of f . Thus by contracting each edge of M within G, we obtain a
Kk+|M |-minor in G.

Now suppose that Kt is a minor of G with t maximum. Then G has disjoint vertex sets
X1, X2, . . . , Xt, such that each Xi induces a connected subgraph of G, and for all i 6= j,
some vertex in Xi is adjacent to some vertex in Xj .

Suppose that some Xi contains two vertices v and w in the same colour class of G.
Since v and w have the same neighbourhood, we can delete w from Xi and still have a
Kt-minor. Now assume that the vertices in each set Xi are from distinct colour classes.

Suppose that some Xi contains at least three vertices u, v, w. Since the neighbourhood
of u is contained in the union of the neighbourhoods of v and w, we can delete u from Xi

and still have a Kt-minor. Now assume that each set Xi has cardinality 1 or 2.
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Suppose that for some colour class ℓ, no set Xi contains a vertex coloured ℓ. Then
X1, . . . , Xt along with a set consisting of one vertex coloured ℓ forms a Kt+1-minor, which
is a contradiction. Now assume that for every colour class ℓ, there is some set Xi that
contains a vertex coloured ℓ.

Suppose that for some colour class ℓ, every set Xi that contains some vertex coloured ℓ
has cardinality 2. Let Xi = {v, w} be such a set, where v is coloured ℓ. Thus v is adjacent
to some vertex in every set Xj. Thus we can delete w from Xi and still have a Kt-minor.
Now assume that for each colour class ℓ, some set Xi consists of one vertex coloured ℓ.
No two singleton sets Xi and Xj contain vertices of the same colour. Thus there are k
singleton sets Xi, one for each colour class. The remaining sets Xi thus form a matching
in G′.

Proof of Theorem 8. Sitton [41] proved that the size of the largest matching in a com-
plete multipartite graph on n vertices with n′ vertices in the largest colour class is
min

{⌊

n
2

⌋

, n − n′}. Applying this result to the graph G′ in Lemma 4,

η(G) = k + min
{

1
2
(n − k), (n − k) − (n′ − 1)

}

= min
{

1
2
(n + k), n − n′ + 1

}

.
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