On the Maximum Number of Cliques in a Graph

David R. Wood*
Departament de Matemática Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain
e-mail: david.wood@upc.es

Abstract

A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m edges; (2) graphs with n vertices, m edges, and maximum degree Δ; (3) d-degenerate graphs with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs with n vertices and no K_{5}-minor or no $K_{3,3}$-minor. For example, the maximum number of cliques in a planar graph with n vertices is $8(n-2)$.

Key words. extremal graph theory, Turán's Theorem, clique, complete subgraph, degeneracy, graph minor, planar graph, K_{5}-minor, $K_{3,3}$-minor

1. Introduction

The typical question of extremal graph theory asks for the maximum number of edges in a graph in a certain family; see the surveys [2, 38, 39, 40]. For example, a celebrated theorem of Turán [47] states that the maximum number of edges in a graph with n vertices and no $(k+1)$-clique is $\frac{1}{2}\left(1-\frac{1}{k}\right) n^{2}$. Here a clique is a (possibly empty) set of pairwise adjacent vertices in a graph. For $k \geq 0$, a k-clique is a clique of cardinality k. Since an edge is nothing but a 2 -clique, it is natural to consider the maximum number of ℓ-cliques in a graph. The following generalisation of Turán's Theorem, first proved by Zykov [52], has been rediscovered and itself generalised by several authors [8, 10, 15, 16, 17, 20, 27, 31, 33, 36].

Theorem 1. ([52]) For all integers $k \geq \ell \geq 0$, the maximum number of ℓ-cliques in a graph with n vertices and no $(k+1)$-clique is $\binom{k}{\ell}\left(\frac{n}{k}\right)^{\ell}$.

A simple inductive proof of Theorem [1 is included in Appendix A. In this paper we determine the maximum number of cliques in a graph in each of the following classes:

- graphs with n vertices and m edges (Section 3),
- graphs with n vertices, m edges, and maximum degree Δ (Section (4),
- d-degenerate graphs with n vertices and m edges (Section 5),
- planar graphs with n vertices and m edges (Section 6), and

[^0]- graphs with n vertices and no K_{5}-minor or no $K_{3,3}$-minor (Section 7).

We now review some related work from the literature. Eckhoff [5, 6] determined the maximum number of cliques in a graph with m edges and no $(k+1)$-clique. Lower bounds on the number of cliques in a graph have also been obtained [4, 13, 14, 22, 23, 24, 25]. The number of cliques in a random graph has been studied [3, 29, 37]. Bounds on the number of cliques in a graph have recently been applied in the analysis of an algorithm for finding small separators [32] and in the enumeration of minor-closed families [28].

2. Preliminaries

Every graph G that we consider is undirected, finite, and simple. Let $V(G)$ and $E(G)$ be the vertex and edge sets of G. Let $\Delta(G)$ be the maximum degree of G. We say G is a $(|V(G)|,|E(G)|)$-graph or a $(|V(G)|,|E(G)|, \Delta(G))$-graph.

Let $C(G)$ be the set of cliques in G. Let $c(G):=|C(G)|$. Let $C_{k}(G)$ be the set of k-cliques in G. Let $c_{k}(G):=\left|C_{k}(G)\right|$. Our aim is to prove bounds on $c(G)$ and $c_{k}(G)$.

A clique is not necessarily maxima $\sqrt{1}$. In particular, \emptyset is a clique of every graph, $\{v\}$ is a clique for each vertex v, and each edge is a clique. Thus every graph G satisfies

$$
\begin{equation*}
c(G) \geq c_{0}(G)+c_{1}(G)+c_{2}(G)=1+|V(G)|+|E(G)| \tag{1}
\end{equation*}
$$

A triangle is a 3-clique. Equation (1) implies that

$$
\begin{equation*}
c(G)=1+|V(G)|+|E(G)| \text { if and only if } G \text { is triangle-free. } \tag{2}
\end{equation*}
$$

Triangle-free graphs have the fewest cliques. Obviously the complete graph K_{n} has the most cliques for a graph on n vertices. In particular, $c\left(K_{n}\right)=2^{n}$ since every set of vertices in K_{n} is a clique.

Say v is a vertex of a graph G. Let G_{v} be the subgraph of G induced by the neighbours of v. Observe that X is a clique of G containing v if and only if $X=Y \cup\{v\}$ for some clique Y of G_{v}. Thus the number of cliques of G that contain v is exactly $c\left(G_{v}\right)$. Every clique of G either contains v or is a clique of $G \backslash v$. Thus $C(G)=C(G \backslash v) \cup\left\{Y \cup\{v\}: Y \in C\left(G_{v}\right)\right\}$ and

$$
\begin{equation*}
c(G)=c(G \backslash v)+c\left(G_{v}\right) \leq c(G \backslash v)+2^{\operatorname{deg}(v)} \tag{3}
\end{equation*}
$$

Let G be a graph with induced subgraphs G_{1}, G_{2} and S such that $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2}=S$. Then G is obtained by pasting G_{1} and G_{2} on S. Observe that $C(G)=$ $C\left(G_{1}\right) \cup C\left(G_{2}\right)$ and $C\left(G_{1}\right) \cap C\left(G_{2}\right)=C(S)$. Thus

$$
\begin{equation*}
c(G)=c\left(G_{1}\right)+c\left(G_{2}\right)-c(S) . \tag{4}
\end{equation*}
$$

Lemma 1. Let G be an (n, m)-graph that is obtained by pasting G_{1} and G_{2} on S. Say G_{i} has n_{i} vertices and m_{i} edges. Say S has n_{S} vertices and m_{S} edges. If $c\left(G_{i}\right) \leq x n_{i}+y m_{i}+z$ and $c(S) \geq x n_{s}+y m_{S}+z$, then $c(G) \leq x n+y m+z$.

[^1]Proof. By Equation (4),

$$
\begin{aligned}
c(G) & =c\left(G_{1}\right)+c\left(G_{2}\right)-c(S) \\
& \leq\left(x n_{1}+y m_{1}+z\right)+\left(x n_{2}+y m_{2}+z\right)-\left(x n_{s}+y m_{s}+z\right) \\
& =x\left(n_{1}+n_{2}-n_{S}\right)+y\left(m_{1}+m_{2}-m_{S}\right)+z \\
& =x n+y m+z .
\end{aligned}
$$

The following special case of Lemma 1 will be useful.
Corollary 1. Let G be an (n, m)-graph that is obtained by pasting G_{1} and G_{2} on a k clique. Say G_{i} has n_{i} vertices and m_{i} edges. Assume that $c\left(G_{i}\right) \leq x n_{i}+y m_{i}+z$ and that $x k+y\binom{k}{2}+z \leq 2^{k}$. Then $c(G) \leq x n+y m+z$.

3. General Graphs

We now determine the maximum number of cliques in an (n, m)-graph.
Theorem 2. Let n and m be non-negative integers such that $m \leq\binom{ n}{2}$. Let d and ℓ be the unique integers such that $m=\binom{d}{2}+\ell$ where $d \geq 1$ and $0 \leq \ell \leq d-1$. Then the maximum number of cliques in an (n, m)-graph equals $2^{d}+2^{\ell}+n-d-1$.

Proof. First we prove the lower bound. Let $V(G):=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E(G):=\left\{v_{i} v_{j}\right.$: $1 \leq i<j \leq d\} \cup\left\{v_{i} v_{d+1}: 1 \leq i \leq \ell\right\}$, as illustrated in Figure 1. Then G has $\binom{d}{2}+\ell$ edges. Now $\left\{v_{1}, v_{2}, \ldots, v_{d}\right\}$ is a clique, which contains 2^{d} cliques (including \emptyset). The neighbourhood of v_{d+1} is an ℓ-clique with 2^{ℓ} cliques. Thus there are 2^{ℓ} cliques that contain v_{d+1}. Finally $v_{d+2}, v_{d+3}, \ldots, v_{n}$ are isolated vertices, which contribute $n-d-1$ cliques to G. In total, G has $2^{d}+2^{\ell}+n-d-1$ cliques.

Fig. 1. A (14,31)-graph with 269 cliques ($d=8$ and $\ell=3$).

Now we prove the upper bound. That is, every (n, m)-graph G has at most $2^{d}+2^{\ell}+$ $n-d-1$ cliques. We proceed by induction on $n+m$. For the base case, suppose that $m=0$. Then $d=1, \ell=0$, and $c(G)=n+1=2^{d}+2^{\ell}+n-d-1$. Now assume that $m \geq 1$. Let v be a vertex of minimum degree in G. Then $\operatorname{deg}(v) \leq d-1$, as otherwise every vertex has degree at least d, implying $m \geq \frac{d n}{2} \geq \frac{d(d+1)}{2}=\binom{d+1}{2}$, which contradicts the definition of d. By Equation (3),$c(G) \leq c(G \backslash v)+2^{\operatorname{deg}(v)}$. To apply induction to $G \backslash v$ (which has $n-1$ vertices and $m-\operatorname{deg}(v)$ edges) we distinguish two cases.

First suppose that $\operatorname{deg}(v) \leq \ell$. Thus $m-\operatorname{deg}(v)=\binom{d}{2}+\ell-\operatorname{deg}(v)$. By induction, $c(G) \leq 2^{d}+2^{\ell-\operatorname{deg}(v)}+n-1-d-1+2^{\operatorname{deg}(v)}$. Hence the result follows if $2^{d}+2^{\ell-\operatorname{deg}(v)}+$
$n-1-d-1+2^{\operatorname{deg}(v)} \leq 2^{d}+2^{\ell}+n-d-1$. That is, $2^{\ell-\operatorname{deg}(v)}-1 \leq\left(2^{\ell-\operatorname{deg}(v)}-1\right) 2^{\operatorname{deg}(v)}$, which is true since $0 \leq \operatorname{deg}(v) \leq \ell$.

Otherwise $\ell+1 \leq \operatorname{deg}(v) \leq d-1$. Thus $m-\operatorname{deg}(v)=\binom{d-1}{2}+d-1+\ell-\operatorname{deg}(v)$. By induction, $c(G) \leq 2^{d-1}+2^{d-1+\ell-\operatorname{deg}(v)}+n-1-d+2^{\operatorname{deg}(v)}$. Hence the result follows if $2^{d-1}+2^{d-1+\ell-\operatorname{deg}(v)}+n-1-d+2^{\operatorname{deg}(v)} \leq 2^{d}+2^{\ell}+n-d-1$. That is, $2^{\ell}\left(2^{\operatorname{deg}(v)-\ell}-1\right) \leq$ $2^{d-1-\operatorname{deg}(v)+\ell}\left(2^{\operatorname{deg}(v)-\ell}-1\right)$. Since $\operatorname{deg}(v) \geq \ell+1$, we need $2^{\ell} \leq 2^{d-1-\operatorname{deg}(v)+\ell}$, which is true since $\operatorname{deg}(v) \leq d-1$.

4. Bounded Degree Graphs

We now determine the maximum number of cliques in an (n, m, Δ)-graph. West [49] proved a related result.

Theorem 3. The number of cliques in an (n, m, Δ)-graph G is at most

$$
1+n+\left(\frac{2^{\Delta+1}-\Delta-2}{\binom{\Delta+1}{2}}\right) m \leq 1+\left(\frac{2^{\Delta+1}-1}{\Delta+1}\right) n
$$

Proof. G has one 0 -clique and n 1-cliques. For $k \geq 2$, each edge is in at most $\binom{\Delta-1}{k-2} k$ cliques, and each k-clique contains $\binom{k}{2}$ edges. Thus G has at most $m\binom{\Delta-1}{k-2} /\binom{k}{2} k$-cliques. Thus the number of cliques (not counting 0 - and 1 -cliques) is at most

$$
\begin{aligned}
\sum_{k=2}^{\Delta+1} \frac{m\binom{\Delta-1}{k-2}}{\binom{k}{2}} & =m \sum_{k=2}^{\Delta+1} \frac{2}{k(k-1)} \cdot \frac{(\Delta-1)!}{(k-2)!(\Delta-1-k+2)!} \\
& =\frac{m}{\binom{\Delta+1}{2}} \sum_{k \geq 2}^{\Delta+1} \frac{2(\Delta-1)!\binom{\Delta+1}{2}}{k!(\Delta+1-k)!} \\
& =\frac{m}{\binom{\Delta+1}{2}} \sum_{k=2}^{\Delta+1} \frac{(\Delta+1)!}{k!(\Delta+1-k)!} \\
& =\frac{m}{\binom{\Delta+1}{2}}\left(\left(\sum_{k=0}^{\Delta+1}\binom{\Delta+1}{k}\right)-\frac{(\Delta+1)!}{1!(\Delta+1-1)!}-\frac{(\Delta+1)!}{0!(\Delta+1-0)!}\right) \\
& =\frac{m}{\binom{\Delta+1}{2}}\left(2^{\Delta+1}-\Delta-2\right) .
\end{aligned}
$$

The result follows since $m \leq \frac{\Delta n}{2}$.
The bound in Theorem 3 is tight for many values of m.
Proposition 1. For all n and m such that $m \leq \frac{\Delta n}{2}$ and $m \equiv 0\left(\bmod \binom{\Delta+1}{2}\right)$, there is an (n, m, Δ)-graph G with

$$
c(G)=1+n+\left(\frac{2^{\Delta+1}-\Delta-2}{\binom{\Delta+1}{2}}\right) m
$$

Proof. Let $p:=m /\binom{\Delta+1}{2}$. Let G consist of p copies of $K_{\Delta+1}$, plus $n-p(\Delta+1)$ isolated vertices. Then G is an (n, m, Δ)-graph. Each copy of $K_{\Delta+1}$ contributes $2^{\Delta+1}-\Delta-2$ cliques with at least two vertices. Thus G has $1+n+\left(2^{\Delta+1}-\Delta-2\right) p$ cliques.

5. Degenerate Graphs

A graph G is d-degenerate if every subgraph of G has a vertex with degree at most d. The following simple result is well known; see [7, 32] for example.

Proposition 2. Every d-degenerate graph G with $n \geq d$ vertices has at most $2^{d}(n-d+1)$ cliques.

Proof. We proceed by induction on n. If $n=d$ then $c(G) \leq 2^{d}=2^{d}(n-d+1)$. Now assume that $n \geq d+1$. Let v be a vertex of G with $\operatorname{deg}(v) \leq d$. By Equation (3), $c(G) \leq c(G \backslash v)+2^{\operatorname{deg}(v)}$. Now $G \backslash v$ is d-degenerate since it is a subgraph of G. Moreover, $G \backslash v$ has at least d vertices. By induction, $c(G \backslash v) \leq 2^{d}(n-1-d+1)$. Thus $c(G) \leq$ $2^{d}(n-1-d+1)+2^{d}=2^{d}(n-d+1)$.

The bound in Proposition 2 is tight.
Proposition 3. For all $n \geq d$, there is a d-degenerate graph G_{n} with n vertices and exactly $2^{d}(n-d+1)$ cliques (and with a d-clique).

Proof. Let G_{d} be the complete graph K_{d}. Then G_{d} has the desired properties. For $n \geq$ $d+1$, let G_{n} be the graph obtained by adding one new vertex v adjacent to every vertex in some d-clique in G_{n-1}. Then G_{n} is d-degenerate and contains a d-clique. $\left(G_{n}\right.$ is a chordal graph called a d-tree; see [1].) By Equation (3), $c\left(G_{n}\right)=c\left(G_{n-1}\right)+2^{\operatorname{deg}(v)}=$ $2^{d}(n-1-d+1)+2^{d}=2^{d}(n-d+1)$.

Proposition 2 can be made sensitive to the number of edges as follows.
Theorem 4. For all $d \geq 1$, every d-degenerate graph G with n vertices and $m \geq\binom{ d}{2}$ edges has at most

$$
n+\frac{\left(2^{d}-1\right) m}{d}-\frac{(d-3) 2^{d}+d+1}{2}
$$

cliques.
Proof. We proceed by induction on $n+m$. For the base case, suppose that $m=\binom{d}{2}+\ell$ where $d \geq 1$ and $0 \leq \ell \leq d-1$. Thus $c(G) \leq 2^{d}+2^{\ell}+n-d-1$ by Theorem 2, and the result follows if

$$
2^{d}+2^{\ell}+n-d-1 \leq n+\frac{\left(2^{d}-1\right) m}{d}-\frac{(d-3) 2^{d}+d+1}{2} .
$$

That is, $d\left(2^{\ell}-1\right) \leq \ell\left(2^{d}-1\right)$, which we prove in Lemma 2 below.
Now assume that $m \geq\binom{ d+1}{2}$. Now G has a vertex v with $\operatorname{deg}(v) \leq d$. By Equation (3), $c(G) \leq c(G \backslash v)+2^{\operatorname{deg}(v)}$. The graph $G \backslash v$ has $m-\operatorname{deg}(v) \geq\binom{ d}{2}$ edges, and is d-degenerate since it is a subgraph of G. By induction,

$$
c(G \backslash v) \leq n-1+\frac{\left(2^{d}-1\right)(m-\operatorname{deg}(v))}{d}-\frac{(d-3) 2^{d}+d+1}{2}
$$

Thus the result follows if

$$
-1+\frac{\left(2^{d}-1\right)(m-\operatorname{deg}(v))}{d}+2^{\operatorname{deg}(v)} \leq \frac{\left(2^{d}-1\right) m}{d}
$$

That is, $d\left(2^{\operatorname{deg}(v)}-1\right) \leq\left(2^{d}-1\right) \operatorname{deg}(v)$, which holds by Lemma 2 below.

Lemma 2. $d\left(2^{\ell}-1\right) \leq \ell\left(2^{d}-1\right)$ for all integers $d \geq \ell \geq 0$.
Proof. The case $\ell=0$ is trivial. Now assume that $\ell \geq 1$. We proceed by induction on d. The base case $d=\ell$ is trivial. Assume that $d \geq \ell+1 \geq 2$ and by induction,

$$
\begin{equation*}
(d-1)\left(2^{\ell}-1\right) \leq \ell\left(2^{d-1}-1\right) \tag{5}
\end{equation*}
$$

Since $d \geq 2$,

$$
\begin{equation*}
\frac{d}{d-1} \leq 2<2+\frac{1}{2^{d-1}-1}=\frac{2^{d}-1}{2^{d-1}-1 .} \tag{6}
\end{equation*}
$$

Equations (5) and (6) imply that

$$
(d-1)\left(2^{\ell}-1\right) \cdot \frac{d}{d-1}<\ell\left(2^{d-1}-1\right) \cdot \frac{2^{d}-1}{2^{d-1}-1}
$$

That is, $d\left(2^{\ell}-1\right)<\ell\left(2^{d}-1\right)$, as desired.
Note that a d-degenerate n-vertex graph has at most $d n-\binom{d+1}{2}$ edges, and Theorem 4 with $m=d n-\binom{d+1}{2}$ is equivalent to Proposition 2.

The bound in Theorem 4 is tight for many values of m.
Proposition 4. Let $d \geq 1$. For all n and m such that $\binom{d}{2} \leq m \leq d n-\binom{d+1}{2}$ and

$$
m \bmod d= \begin{cases}0 & \text { if } d \text { is odd } \\ \frac{d}{2} & \text { if } d \text { is even }\end{cases}
$$

there is a d-degenerate (n, m)-graph G with

$$
c(G)=n+\frac{\left(2^{d}-1\right) m}{d}-\frac{(d-3) 2^{d}+d+1}{2} .
$$

Proof. Let $n^{\prime}:=\frac{m}{d}+\frac{1}{2}(d+1)$. Then n^{\prime} is an integer and $d \leq n^{\prime} \leq n$. Let G consist of a d-degenerate n^{\prime}-vertex graph with $2^{d}\left(n^{\prime}-d+1\right)$ cliques (from Proposition 3), plus $n-n^{\prime}$ isolated vertices. Then G has m edges and $c(G)=2^{d}\left(n^{\prime}-d+1\right)+n-n^{\prime}=$ $n+\left(2^{d}-1\right) \frac{m}{d}-\frac{1}{2}\left((d-3) 2^{d}+d+1\right)$.

A graph is 1-degenerate if and only if it is a forest. Thus Theorem 4 with $d=1$ implies that every forest has at most $n+m-1$ cliques, which also follows from Equation (2). In particular, $c(T)=2 n$ for every n-vertex tree T.

Theorem 4 with $d=2$ implies that every 2-degenerate graph has at most $n+\frac{1}{2}(3 m+1)$ cliques. Outerplanar graphs are 2-degenerate. The construction in Propositions 3 and 44 can produce outerplanar graphs. (Add each new vertex adjacent to two consecutive vertices on the outerface.) Thus this bound is tight for outerplanar graphs.

6. Planar Graphs

Papadimitriou and Yannakakis [30] and Storch [44] proved that every n-vertex planar graph has $\mathcal{O}(n)$ cliques; see [7] for a more general result. The proof is based on the corollary of Euler's Formula that planar graphs are 5-degenerate. By Theorem 4 if G is a planar (n, m)-graph with $m \geq 10$, then $c(G)<n+\frac{31}{5} m<\frac{98}{5} n$. We now prove that the bound for 3-degenerate graphs in Theorem 4 also holds for planar graphs.

Theorem 5. Every planar (n,m)-graph G with $m \geq 3$ has at most $n+\frac{7}{3} m-2$ cliques.
Proof. We proceed by induction on $n+m$. The result is easily verified if $m=3$.
Suppose that G has a separating triangle T. Thus G is obtained by pasting two induced subgraphs G_{1} and G_{2} on T. Say G_{i} has n_{i} vertices and m_{i} edges. Then $m_{i} \geq 3$ since $T \subset G_{i}$. By induction, $c\left(G_{i}\right) \leq n_{i}+\frac{7}{3} m_{i}-2$. By Corollary 1 with $k=3, x=1, y=\frac{7}{3}$ and $z=-2$, we have $c(G) \leq n+\frac{7}{3} m-2$ (since $1 \cdot 3+\frac{7}{3}\binom{3}{2}-2=2^{3}$). Now assume that G has no separating triangle.

Let v be a vertex of G. We have $c(G)=c(G \backslash v)+c\left(G_{v}\right)$ by Equation (3). The graph $G \backslash v$ has $m-\operatorname{deg}(v)$ edges. Suppose that $m-\operatorname{deg}(v) \leq 2$. (Then we cannot apply induction to $G \backslash v$.) Then G has no 4 -clique and at most two triangles. If G has at most one triangle, then $c(G) \leq 1+n+m+1 \leq n+\frac{7}{3} m-2$ since $m \geq 3$. Otherwise G has two triangles, and $c(G) \leq 1+n+m+2<n+\frac{7}{3} m-2$ since $m \geq 5$.

Now assume that $m-\operatorname{deg}(v) \geq 3$. By (3), applying induction to $G \backslash v$,

$$
c(G)=c(G \backslash v)+c\left(G_{v}\right) \leq(n-1)+\frac{7}{3}(m-\operatorname{deg}(v))-2+c\left(G_{v}\right)
$$

Fix a plane embedding of G. If $u w$ is an edge of G_{v}, then the edges $v u$ and $v w$ are consecutive in the circular ordering of edges incident to v defined by the embedding (as otherwise G would contain a separating triangle). Thus $\Delta\left(G_{v}\right) \leq 2$ and $c\left(G_{v}\right) \leq$ $1+\frac{7}{3} \operatorname{deg}(v)$ by Theorem 3. Hence

$$
c(G) \leq(n-1)+\left(\frac{7}{3}(m-\operatorname{deg}(v))-2\right)+\left(1+\frac{7}{3} \operatorname{deg}(v)\right)=n+\frac{7}{3} m-2 .
$$

If $n \geq 3$ in Theorem 5 then $m \leq 3(n-2)$ by Euler's Formula. Thus we have the following corollary.

Corollary 2. Every planar graph with $n \geq 3$ vertices has at most $8(n-2)$ cliques.
We now prove bounds on the number of 3 - and 4 -cliques in a planar graph.
Proposition 5. For every planar graph G with $n \geq 3$ vertices, $c_{3}(G) \leq 3 n-8$ and $c_{4}(G) \leq n-3$.

Proof. We proceed by induction on n. The result is trivial if $n \leq 4$. Now assume that $n \geq 5$. First suppose that G has no separating triangle. Then $c_{4}(G)=0$, and every triangle of G is a face. By Euler's Formula, $c_{3}(G) \leq 2 n-4<3 n-8$ faces. Now suppose that G has a separating triangle T. Thus G is obtained by pasting two induced subgraphs G_{1} and G_{2} on T. Say G_{i} has n_{i} vertices. Then $n_{i} \geq 3$ since $T \subset G_{i}$. By induction, $c_{3}\left(G_{i}\right) \leq 3 n_{i}-8$ and $c_{4}\left(G_{i}\right) \leq n_{i}-3$. Every clique of G is a clique of G_{1} or G_{2}. Thus $c_{4}(G)=c_{4}\left(G_{1}\right)+c_{4}\left(G_{2}\right) \leq n_{1}-3+n_{2}-3=n-3$. Moreover, T is a triangle in both G_{1} and G_{2}. Thus $c_{3}(G) \leq\left(3 n_{1}-8\right)+\left(3 n_{2}-8\right)-1=3\left(n_{1}+n_{2}\right)-17=3(n+3)-17=3 n-8$.

Note that Proposition 5 and Euler's Formula (which implies $c_{2}(G) \leq 3 n-6$) reprove Corollary 2, since $1+n+3(n-2)+(3 n-8)+(n-3)=8(n-2)$.

We now show that all our bounds for planar graphs are tight.
Proposition 6. For all $n \geq 3$ there is a maximal planar n-vertex graph G_{n} with $c_{2}\left(G_{n}\right)=$ $3(n-2), c_{3}\left(G_{n}\right)=3 n-8, c_{4}\left(G_{n}\right)=n-3$, and $c\left(G_{n}\right)=8(n-2)$.

Proof. Let $G_{3}:=K_{3}$. Then $c_{2}\left(G_{3}\right)=3, c_{3}\left(G_{3}\right)=1, c_{4}\left(G_{3}\right)=0$, and $c\left(G_{3}\right)=8$. Say G_{n-1} is a maximal planar $(n-1)$-vertex graph with $c_{2}\left(G_{n-1}\right)=3(n-3), c_{3}\left(G_{n-1}\right)=3 n-11$, $c_{4}\left(G_{n-1}\right)=n-4$, and $c\left(G_{n}\right)=8(n-3)$. Let G_{n} be the maximal planar n-vertex graph obtained by adding one new vertex v adjacent to each vertex of some face of G_{n-1}, as illustrated in Figure 2. Then $c_{2}\left(G_{n}\right)=c_{2}\left(G_{n-1}\right)+3=3(n-2), c_{3}\left(G_{n}\right)=c_{3}\left(G_{n-1}\right)+3=$ $3 n-8, c_{4}\left(G_{n}\right)=c_{4}\left(G_{n-1}\right)+1=n-3$, and $c\left(G_{n}\right)=c\left(G_{n-1}\right)+c\left(G_{n}(v)\right)=8(n-3)+8=$ $8(n-2)$. (Note that G_{n} is also an example of a 3-degenerate graph with the maximum number of cliques; see Proposition 3.)

Fig. 2. A planar graph with 124 vertices, 366 edges, 364 triangles, 1214 -cliques, and 976 cliques. It is obtained by repeatedly adding one degree-3 vertex inside each internal face (starting from K_{3}).

Proposition 7. For all $n \geq 3$ and $m \in\{3,6, \ldots, 3 n-6\}$, there is a planar (n, m)-graph G with $c(G)=n+\frac{7}{3} m-2$.

Proof. Let $n^{\prime}:=\frac{m}{3}+2$. Let G consist of a maximal planar graph on n^{\prime} vertices with $8\left(n^{\prime}-2\right)$ cliques (from Proposition (6), plus $n-n^{\prime}$ isolated vertices. Then G has n vertices and m edges, and $c(G)=8\left(n^{\prime}-2\right)+n-n^{\prime}=n+7 n^{\prime}-16=n+7\left(\frac{m}{3}+2\right)-16=n+\frac{7}{3} m-2$.

7. Graphs with no K_{5}-Minor

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. The graphs with no K_{3}-minor are the forests, which have at most $2 n$ cliques, and this bound is tight. The graphs with no K_{4}-minor (called series-parallel) are 2-degenerate, and thus have at most $4(n-1)$ cliques, and this bound is tight. The Kuratowski-Wagner Theorem characterises planar graphs as those with no K_{5}-minor and no $K_{3,3}$-minor. We now extend Corollary 2 for graphs with no K_{5}-minor (but possibly a $K_{3,3}$-minor).

Theorem 6. Every graph G with $n \geq 3$ vertices and no K_{5}-minor has at most $8(n-2)$ cliques.

Proof. Let V_{8} be the graph obtained from the 8 -cycle by adding an edge between each pair of antipodal vertices; see Figure 3, Let G be a minimum counterexample to the theorem. We can assume that G is edge-maximal with no K_{5}-minor. Wagner [48] proved that (a) G is a maximal planar graph, (b) $G=V_{8}$, or (c) G is obtained by pasting two smaller graphs (that are thus not counterexamples), each with no K_{5}-minor, on an edge or a triangle T. In case (a) the result is Corollary 2. In case (b), since V_{8} is triangle-free, $c\left(V_{8}\right)=1+\left|V\left(V_{8}\right)\right|+\left|E\left(V_{8}\right)\right|=21<8\left(\left|V\left(V_{8}\right)\right|-2\right)$ by Equation (2). In case (c), if T is an edge, we have $c(G) \leq 8(n-2)$ by Corollary 1 with $k=2, x=8, y=0$ and $z=-16$ (since $8 \cdot 2+0-16<2^{2}$). In case (c), if T is a triangle, we have $c(G) \leq 8(n-2)$ by Corollary 1 with $k=3, x=8, y=0$ and $z=-16$ (since $8 \cdot 3+0-16=2^{3}$).

Fig. 3. The graph V_{8}.

A similar result is obtained for graphs with no $K_{3,3}$-minor.
Theorem 7. Every graph G with $n \geq 3$ vertices and no $K_{3,3}$-minor has at most $\frac{4}{3}(7 n-11)$ cliques. Conversely, for all $n \equiv 2(\bmod 3)$ with $n \geq 5$ there is an n-vertex graph with no $K_{3,3}$-minor and $c(G)=\frac{4}{3}(7 n-11)$.

Proof. Let G be a minimum counterexample. We can assume that G is edge-maximal with no $K_{3,3}$-minor. Wagner [48] proved that (a) G is a maximal planar graph, (b) $G=K_{5}$, or (c) G is obtained by pasting two smaller graphs (that are thus not counterexamples), each with no $K_{3,3}$-minor, on an edge. In case (a) the result follows from Corollary 2 since
$8 n-16<\frac{4}{3}(7 n-11)$. In case (b), $c\left(K_{5}\right)=32=\frac{4}{3}(7 \cdot 5-11)$. In case (c), we have $c(G) \leq \frac{4}{3}(7 n-11)$ by Corollary 1 with $k=2, x=\frac{28}{3}, y=0$ and $z=-\frac{44}{3}$ (since $\frac{28}{3} \cdot 2+0-\frac{44}{3}=2^{2}$). By the same analysis, the graph obtained from K_{5} by repeatedly pasting copies of K_{5} on an edge has no $K_{3,3}$-minor and $\frac{4}{3}(7 n-11)$ cliques.

We finish with an open problem: What is the maximum number of cliques in an n vertex graph G with no K_{t}-minor? Kostochka [21] and Thomason [45] independently proved that G is $\mathcal{O}(t \sqrt{\log t})$-degenerat ${ }^{2}$. Thus Proposition 2 implies that G has at most $2^{\mathcal{O}(t \sqrt{\log t})} n$ cliques; similar bounds can be found in [28, 32]. It is unknown whether this bound can be improved to $c^{t} n$ for some constant c (possibly for sufficiently large n).

We have proved that $c(G) \leq 2^{t-2}(n-t+3)$ whenever $t \leq 5$. Moreover, the graph G in Proposition 3 (with $t=d+2$) has no K_{t}-minor and $c(G)=2^{t-2}(n-t+3)$. However, for large values of t this upper bound does not hold for the complete k-partite graph $K_{2,2, \ldots, 2}$. By Theorem 8 in Appendix B, the maximum order of a clique minor in $K_{2,2, \ldots, 2}$ is $\left\lfloor\frac{3}{2} k\right\rfloor$. But by Proposition 10, $c\left(K_{2,2, \ldots, 2}\right)=3^{k}>2^{\lfloor 3 k / 2\rfloor-1}\left(2 k-\left\lfloor\frac{3}{2} k\right\rfloor+2\right)$ for all $k \geq 42$.

Acknowledgements. Thanks to a referee for pointing out reference [13].

References

1. Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci., 209(1-2):1-45, 1998.
2. Béla Bollobás. Extremal graph theory. In Handbook of combinatorics, Vol. 1, 2, pp. 1231-1292. Elsevier, 1995.
3. Béla Bollobás and Paul Erdős. Cliques in random graphs. Math. Proc. Cambridge Philos. Soc., 80(3):419-427, 1976.
4. Béla Bollobás, Paul Erdős, and Endre Szemerédi. On complete subgraphs of r-chromatic graphs. Discrete Math., 13(2):97-107, 1975.
5. Jürgen Eckhoff. The maximum number of triangles in a K_{4}-free graph. Discrete Math., 194(1-3):95-106, 1999.
6. Jürgen Eckhoff. A new Turán-type theorem for cliques in graphs. Discrete Math., 282(1-3):113-122, 2004.
7. David Eppstein. Connectivity, graph minors, and subgraph multiplicity. J. Graph Theory, 17(3):409-416, 1993.
8. Paul Erdős. On the number of complete subgraphs contained in certain graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl., 7:459-464, 1962.
9. Paul Erdős. On cliques in graphs. Israel J. Math., 4:233-234, 1966.
10. Paul Erdős. On the number of complete subgraphs and circuits contained in graphs. Časopis Pěst. Mat., 94:290-296, 1969.
11. Cong Fan and Jiuqiang Liu. On cliques of graphs. In Graph theory, Combinatorics, Algorithms, and Applications, pp. 140-150. SIAM, 1991.
12. Martin Farber, Mihály Hujter, and Zsolt Tuza. An upper bound on the number of cliques in a graph. Networks, 23(3):207-210, 1993.
13. David C. Fisher. Lower bounds on the number of triangles in a graph. J. Graph Theory, 13(4):505-512, 1989.

[^2]14. David C. Fisher and Jason M. Nonis. Bounds on the "growth factor" of a graph. In Proc. 21st Southeastern Conf. on Combinatorics, Graph Theory, and Computing, vol. 77 of Congr. Numer., pp. 113-119. Utilitas Math., 1990.
15. David C. Fisher and Jennifer Ryan. Bounds on the number of complete subgraphs. Discrete Math., 103(3):313-320, 1992.
16. Nikolă̌ G. Hadžívanov. Maximum of a multilinear form of integer variables, and its application in the theory of extremal graphs. C. R. Acad. Bulgare Sci., 30(10):1373-1376, 1977.
17. Nikolă̌ G. Hadžívanov and Nedyalko D. Nenov. p-sequences of graphs and some extremal properties of Turán graphs. C. R. Acad. Bulgare Sci., 30(4):475-478, 1977.
18. Frank Harary and Abraham Lempel. On clique-extremal (p, q)-graphs. Networks, 4:371-378, 1974.
19. Min-Jen Jou and Gerard J. Chang. The number of maximum independent sets in graphs. Taiwanese J. Math., 4(4):685-695, 2000.
20. Nikolă̆ Khadzhiivanov and Nedyalko Nenov. Sharp estimates of the highest number of cliques of a graph. Annuaire Univ. Sofia Fac. Math. Méc., 70:23-26, 1975/76.
21. Alexandr V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices. Metody Diskret. Analiz., 38:37-58, 1982.
22. David G. Larman. On the number of complete subgraphs and circuits in a graph. Proc. Roy. Soc. Ser. A, 308:327-342, 1969.
23. László Lovász and Miklós Simonovits. On the number of complete subgraphs of a graph. In Proc. of 5th British Combinatorial Conference, vol. XV of Congr. Numer., pp. 431-441. Utilitas Math., 1976.
24. László Lovász and Miklós Simonovits. On the number of complete subgraphs of a graph. II. In Studies in pure mathematics, pp. 459-495. Birkhäuser, 1983.
25. John W. Moon. On the number of complete subgraphs of a graph. Canad. Math. Bull., 8:831-834, 1965.
26. John W. Moon and Leo Moser. On cliques in graphs. Israel J. Math., 3:23-28, 1965.
27. Nedyalko Nenov and Nikolă̆ Khadzhiivanov. A new proof of a theorem about the maximum number of p-cliques of graphs. Annuaire Univ. Sofia Fac. Math. Méc., 70:93-98, 1975/76.
28. Serguei Norine, Paul Seymour, Robin Thomas, and Paul Wollan. Proper minor-closed families are small. J. Combin. Theory Ser. B, 96(5):754-757, 2006.
29. Daniel Olejár and Eduard Toman. On the order and the number of cliques in a random graph. Math. Slovaca, 47(5):499-510, 1997.
30. Christos H. Papadimitriou and Mihalis Yannakakis. The clique problem for planar graphs. Inform. Process. Lett., 13(4-5):131-133, 1981.
31. Louis Petingi and Jose Rodriguez. A new proof of the Fisher-Ryan bounds for the number of cliques of a graph. In Proc. 31st Southeastern International Conf. on Combinatorics, Graph Theory and Computing, vol. 146 of Congr. Numer., pp. 143-146. 2000.
32. Bruce Reed and David R. Wood. Fast separation in a graph with an excluded minor. In Proc. European Conf. on Combinatorics, Graph Theory and Applications (EuroComb '05), vol. AE of Discrete Math. Theor. Comput. Sci. Proceedings, pp.

45-50. 2005.
33. Steven Roman. The maximum number of q-cliques in a graph with no p-clique. Discrete Math., 14(4):365-371, 1976.
34. Bruce E. Sagan and Vincent R. Vatter. Maximal and maximum independent sets in graphs with at most r cycles. J. Graph Theory, 53(4):283-314, 2006.
35. Iwao Sato. Clique graphs of packed graphs. Discrete Math., 62(1):107-109, 1986.
36. Norbert Sauer. A generalization of a theorem of Turán. J. Combinatorial Theory Ser. B, 10:109-112, 1971.
37. Klaus Schürger. Limit theorems for complete subgraphs of random graphs. Period. Math. Hungar., 10(1):47-53, 1979.
38. Miklós Simonovits. Extremal graph theory. In Selected topics in graph theory, 2, pp. 161-200. Academic Press, 1983.
39. Miklós Simonovits. Paul Erdős' influence on extremal graph theory. In The mathematics of Paul Erdős, II, vol. 14 of Algorithms Combin., pp. 148-192. Springer, 1997.
40. Miklós Simonovits and Vera T. Sós. Ramsey-Turán theory. Discrete Math., 229(1-3):293-340, 2001.
41. David Sitton. Maximum matchings in complete multipartite graphs. Furman University Electronic J. Undergraduate Math., 2:6-16, 1996.
42. Joel H. Spencer. On cliques in graphs. Israel J. Math., 9:419-421, 1971.
43. Michael Stiebitz. On Hadwiger's number - a problem of the Nordhaus-Gaddum type. Discrete Math., 101(1-3):307-317, 1992.
44. Tobias Storch. How randomized search heuristics find maximum cliques in planar graphs. In Proc. of 8th Annual Conf. on Genetic and Evolutionary Computation (GECCO '06), pp. 567-574. ACM Press, 2006.
45. Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261-265, 1984.
46. Andrew Thomason. The extremal function for complete minors. J. Combin. Theory Ser. B, 81(2):318-338, 2001.
47. Paul Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok, 48:436-452, 1941.
48. Klaus Wagner. Über eine Eigenschaft der ebene Komplexe. Math. Ann., 114:570590, 1937.
49. Douglas B. West. The number of complete subgraphs in graphs with nonmajorizable degree sequences. In Progress in graph theory, pp. 509-521. Academic Press, 1984.
50. Herbert S. Wilf. The number of maximal independent sets in a tree. SIAM J. Algebraic Discrete Methods, 7(1):125-130, 1986.
51. Goh Chee Ying, Koh Khee Meng, Bruce E. Sagan, and Vincent R. Vatter. Maximal independent sets in graphs with at most r cycles. J. Graph Theory, 53(4):270-282, 2006.
52. Alexander A. Zykov. On some properties of linear complexes. Mat. Sbornik N.S., 24(66):163-188, 1949.

A. Graphs with Bounded Cliques

In this appendix we give a simple inductive proof of Theorem 1 .

Proposition 8. For all integers $k \geq \ell \geq 0$, every graph G with $n \geq \ell$ vertices and no $(k+1)$-clique has at most $\binom{k}{\ell}\left(\frac{n}{k}\right)^{\ell} \ell$-cliques.

Proof. We proceed by induction on n. For the base case, suppose that $n \leq k$. Trivially $c_{\ell}(G) \leq\binom{ n}{\ell}$, which is at most $\binom{k}{\ell}\left(\frac{n}{k}\right)^{\ell}$ by Lemma 3 below. Now assume that the result holds for graphs with less than n vertices, and $n>k$. Let G be a graph with n vertices, no $(k+1)$-clique, and with $c_{\ell}(G)$ maximum. We can add edges to G until it contains a k-clique X. Every ℓ-clique of G is the union of some i-clique of $G \backslash X$ and some $(\ell-i)$ clique of $G[X]$, for some $0 \leq i \leq \ell$. Moreover, the vertices in each i-clique of $G \backslash X$ have at most $k-i$ common neighbours in X (since X is a clique and G has no ($k+1$)-clique). Thus from each i-clique of $G \backslash X$, we obtain at most $\binom{k-i}{\ell-i} \ell$-cliques of G. By induction, $c_{i}(G \backslash X) \leq\binom{ k}{i}\left(\frac{n-k}{k}\right)^{i}$. Thus

$$
c_{\ell}(G) \leq \sum_{i=0}^{\ell}\binom{k}{i}\left(\frac{n-k}{k}\right)^{i}\binom{k-i}{\ell-i}=\binom{k}{\ell} \sum_{i=0}^{\ell}\binom{\ell}{i}\left(\frac{n}{k}-1\right)^{i}=\binom{k}{\ell}\left(\frac{n}{k}\right)^{\ell}
$$

by the binomial theorem ${ }^{3}$.
Lemma 3. $\binom{n}{\ell} k^{\ell} \leq\binom{ k}{\ell} n^{\ell}$ for all integers $k \geq n \geq \ell \geq 0$.
Proof. We proceed by induction on ℓ. The claim is trivial with $\ell=0$. Now assume that $\ell \geq 1$. Thus $k-n \leq \ell(k-n)$, implying $k n+k-n \leq k n+\ell(k-n)$. That is, $k(n-\ell+1) \leq n(k-\ell+1)$. By induction,

$$
\binom{n}{\ell-1} k^{\ell-1} \cdot k(n-\ell+1) \leq\binom{ k}{\ell-1} n^{\ell-1} \cdot n(k-\ell+1) .
$$

That is,

$$
\frac{n!k^{\ell}(n-\ell+1)}{(n-\ell+1)!(\ell-1)!} \leq \frac{k!n^{\ell}(k-\ell+1)}{(k-\ell+1)!(\ell-1)!} .
$$

Hence

$$
\frac{n!k^{\ell}}{(n-\ell)!\ell!} \leq \frac{k!n^{\ell}}{(k-\ell)!\ell!}
$$

as desired.
Proposition 9. Every graph G with n vertices and no $(k+1)$-clique has at most $\left(\frac{n}{k}+1\right)^{k}$ cliques.

Proof. By Proposition 8 and the binomial theorem,

$$
c(G) \leq \sum_{\ell=0}^{k}\binom{k}{\ell}\left(\frac{n}{k}\right)^{\ell}=\left(\frac{n}{k}+1\right)^{k}
$$

We now prove that Propositions 8 and 9 are tight.
${ }^{3}$ Twice we use that $x^{t}=\sum_{j=0}^{t}\binom{t}{j}(x-1)^{j}$ for all real x.

Proposition 10. For every complete k-partite graph $G=K_{n_{1}, n_{2}, \ldots, n_{k}}$,

$$
c(G)=\prod_{i=1}^{k}\left(n_{i}+1\right)
$$

In particular, if every $n_{i}=\frac{n}{k}$ then $c(G)=\left(\frac{n}{k}+1\right)^{k}$ and $c_{\ell}(G)=\binom{k}{\ell}\left(\frac{n}{k}\right)^{\ell}$ whenever $0 \leq \ell \leq k$.

Proof. Every clique consists of at most one vertex from each of the k colour classes. There are $n_{i}+1$ ways to choose at most one vertex from the i-th colour class. Thus $c(G)=\prod_{i}\left(n_{i}+1\right)$. (This result can also be proved using Equation (3).) Now assume that every $n_{i}=\frac{n}{k}$. Every ℓ-clique consists of exactly one vertex from each of ℓ colour classes. There are $\binom{k}{\ell}$ ways to choose ℓ colour classes and $\frac{n}{k}$ ways to choose exactly one vertex from each colour class. Each combination gives a distinct ℓ-clique. The result follows.

It is interesting to note that the extremal examples in Proposition 1 for graphs of bounded degree (disjoint copies of cliques) are the complements of the extremal examples in Proposition 10 for graphs with bounded cliques (complete multipartite graphs).

B. Clique Minors in a Complete Multipartite Graph

The Hadwiger number of a graph G, denoted by $\eta(G)$, is the maximum order of a clique minor in G. Stiebitz [43] proved that $\eta(G) \leq \frac{1}{2}(n+k)$ for every n-vertex graph G with no $(k+1)$-clique. We now prove that this bound is tight for every complete k-partite graph if the largest colour class is not too large.

Theorem 8. Let G be a complete k-partite graph on n vertices with n^{\prime} vertices in the largest colour class. Then $\eta(G)=\min \left\{\frac{1}{2}(n+k), n-n^{\prime}+1\right\}$.

The proof of Theorem 8 is based on the following lemma.
Lemma 4. Let G be the complete k-partite graph $K_{n_{1}, n_{2}, \ldots, n_{k}}$ with each $n_{i} \geq 1$. Then $\eta(G)$ equals k plus the size of the largest matching in $G^{\prime}:=K_{n_{1}-1, n_{2}-1, \ldots, n_{k}-1}$.

Proof. Consider G^{\prime} to be a subgraph of G, so that $S:=V(G) \backslash V\left(G^{\prime}\right)$ is a k-clique of G. Let M be a matching of G^{\prime}. If v is a vertex and e is an edge of G^{\prime}, then v is adjacent to at least one endpoint of e. Thus every vertex in S is adjacent to at least one endpoint of every edge in M, and for all edges e and f in M, at least one endpoint of e is adjacent to at least one endpoint of f. Thus by contracting each edge of M within G, we obtain a $K_{k+|M|}{ }^{-}$-minor in G.

Now suppose that K_{t} is a minor of G with t maximum. Then G has disjoint vertex sets $X_{1}, X_{2}, \ldots, X_{t}$, such that each X_{i} induces a connected subgraph of G, and for all $i \neq j$, some vertex in X_{i} is adjacent to some vertex in X_{j}.

Suppose that some X_{i} contains two vertices v and w in the same colour class of G. Since v and w have the same neighbourhood, we can delete w from X_{i} and still have a K_{t}-minor. Now assume that the vertices in each set X_{i} are from distinct colour classes.

Suppose that some X_{i} contains at least three vertices u, v, w. Since the neighbourhood of u is contained in the union of the neighbourhoods of v and w, we can delete u from X_{i} and still have a K_{t}-minor. Now assume that each set X_{i} has cardinality 1 or 2 .

Suppose that for some colour class ℓ, no set X_{i} contains a vertex coloured ℓ. Then X_{1}, \ldots, X_{t} along with a set consisting of one vertex coloured ℓ forms a K_{t+1}-minor, which is a contradiction. Now assume that for every colour class ℓ, there is some set X_{i} that contains a vertex coloured ℓ.

Suppose that for some colour class ℓ, every set X_{i} that contains some vertex coloured ℓ has cardinality 2. Let $X_{i}=\{v, w\}$ be such a set, where v is coloured ℓ. Thus v is adjacent to some vertex in every set X_{j}. Thus we can delete w from X_{i} and still have a K_{t}-minor. Now assume that for each colour class ℓ, some set X_{i} consists of one vertex coloured ℓ. No two singleton sets X_{i} and X_{j} contain vertices of the same colour. Thus there are k singleton sets X_{i}, one for each colour class. The remaining sets X_{i} thus form a matching in G^{\prime}.

Proof of Theorem 88. Sitton [41] proved that the size of the largest matching in a complete multipartite graph on n vertices with n^{\prime} vertices in the largest colour class is $\min \left\{\left\lfloor\frac{n}{2}\right\rfloor, n-n^{\prime}\right\}$. Applying this result to the graph G^{\prime} in Lemma 4 ,

$$
\eta(G)=k+\min \left\{\frac{1}{2}(n-k),(n-k)-\left(n^{\prime}-1\right)\right\}=\min \left\{\frac{1}{2}(n+k), n-n^{\prime}+1\right\} .
$$

Received: June 23, 2006

[^0]: * Research supported by a Marie Curie Fellowship of the European Community under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat 2001SGR00224.

[^1]: ${ }^{1}$ Moon and Moser [26] proved that the maximum number of maximal cliques in a graph with n vertices is approximately $3^{n / 3}$; see $\left.9,11,12,18,19,34,35,42,50,51\right]$ for related results.

[^2]: ${ }^{2}$ Moreover, this bound is best possible; Thomason [46] even determined the asymptotic constant.

