

Preprint No. M 07/09

Domination in graphs of minimum degree at least two and large girth

Löwenstein, Christian; Rautenbach, Dieter

2007

Impressum: Hrsg.: Leiter des Instituts für Mathematik Weimarer Straße 25 98693 Ilmenau Tel.: +49 3677 69 3621 Fax: +49 3677 69 3270 http://www.tu-ilmenau.de/ifm/

ISSN xxxx-xxxx

Domination in Graphs of Minimum Degree at least Two and large Girth

Christian Löwenstein¹ and Dieter Rautenbach²

¹ Dr.-Arnoldi-Str. 6, D-56333 Winningen, Germany, email: christian@winningen.de

² Institut für Mathematik, TU Ilmenau, Postfach 100565, D-98684 Ilmenau, Germany, email: dieter.rautenbach@tu-ilmenau.de

Abstract We prove that for graphs of order n, minimum degree $\delta \geq 2$ and girth $g \geq 5$ the domination number γ satisfies $\gamma \leq \left(\frac{1}{3} + \frac{2}{3g}\right)n$. As a corollary this implies that for cubic graphs of order n and girth $g \geq 5$ the domination number γ satisfies $\gamma \leq \left(\frac{44}{135} + \frac{82}{135g}\right)n$ which improves recent results due to Kostochka and Stodolsky (An upper bound on the domination number of n-vertex connected cubic graphs, manuscript (2005)) and Kawarabayashi, Plummer and Saito (Domination in a graph with a 2-factor, J. Graph Theory **52** (2006), 1-6) for large enough girth. Furthermore, it confirms a conjecture due to Reed about connected cubic graphs (Paths, stars and the number three, Combin. Prob. Comput. **5** (1996), 267-276) for girth at least 83.

Keywords domination number; minimum degree; girth; cubic graph

1 Introduction

The domination number $\gamma(G)$ of a (finite, undirected and simple) graph G = (V, E) is the minimum cardinality of a set $D \subseteq V$ of vertices such that every vertex in $V \setminus D$ has a neighbour in D. This parameter is one of the most well-studied in graph theory and the two volume monograph [4, 5] provides an impressive account of the research related to this concept.

Fundamental results about the domination number $\gamma(G)$ are upper bounds in terms of the order n and the minimum degree δ of the graph G. Ore [10] proved that $\gamma(G) \leq \frac{n}{2}$ provided $\delta \geq 1$. For $\delta \geq 2$ and all but 7 exceptional graphs Blank [1] and McCuaig and Shepherd [9] proved $\gamma(G) \leq \frac{2n}{5}$. Equality in these two bounds is attained for infinitely many graphs which were characterized in [9, 11, 16].

In [13] Reed proved that $\gamma(G) \leq \frac{3}{8}n$ for every graph G of order n and minimum degree at least 3 and he conjectured that this bound could be improved to $\left\lceil \frac{n}{3} \right\rceil$ for connected cubic graphs. While Reed's conjecture was disproved by Kostochka and Stodolsky [7] who constructed a sequence $(G_k)_{k \in \mathbb{N}}$ of connected cubic graphs with

$$\lim_{k \to \infty} \frac{\gamma(G_k)}{|V(G_k)|} \ge \frac{1}{3} + \frac{1}{69},$$

Kostochka and Stodolsky [8] proved $\gamma(G) \leq \frac{4}{11}n$ for every connected cubic graph G of order n>8 and

$$\gamma(G) \leq \left(\frac{1}{3} + \frac{8}{3g^2}\right)n \tag{1}$$

for every connected cubic graph G of order n > 8 and girth g where the girth is the length of a shortest cycle in G. The last result improved a recent result due to Kawarabayashi, Plummer and Saito [6] who proved that

$$\gamma(G) \leq \left(\frac{1}{3} + \frac{1}{9k+3}\right)n \tag{2}$$

for every 2-edge connected cubic graph G of order n and girth at least 3k for some $k \in \mathbb{N}$.

The first to use the girth g of a graph G next to its order n and minimum degree δ to bound the domination number γ were probably Brigham and Dutton [2] who proved

$$\gamma \le \left\lceil \frac{n}{2} - \frac{g}{6} \right\rceil$$

provided that $\delta \geq 2$ and $g \geq 5$. In [14, 15] Volkmann determined finite set of graphs \mathcal{G}_i for $i \in \{1, 2\}$ such that

$$\gamma \le \left\lceil \frac{n}{2} - \frac{g}{6} - \frac{3i+3}{6} \right\rceil$$

unless G is a cycle or $G \in \mathcal{G}_i$. Motivated by these results Rautenbach [12] proved that for every $k \in \mathbb{N}$ there is a finite set \mathcal{G}_k of graphs such that if G is a graph of order n, minimum degree $\delta \geq 2$, girth $g \geq 5$ and domination number γ that is not a cycle and does not belong to \mathcal{G}_k , then

$$\gamma \le \frac{n}{2} - \frac{g}{6} - k.$$

In the present paper we prove a best-possible upper bound on the domination number of graphs of minimum degree at least 2 and girth at least 5 which allows to improve (1) and (2) for large enough girth. Furthermore, it confirms Reed's conjecture [13] for cubic graphs with girth at least 83.

2 Results

We immediately proceed to our main result.

Theorem 1 If G = (V, E) is a graph of order n, minimum degree $\delta \ge 2$, girth $g \ge 5$ and domination number γ , then

$$\gamma \leq \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor + 1\right)}\right)n.$$

Proof: For contradiction, we assume that G = (V, E) is a counterexample of minimum sum of order and size. Let n, g and γ be as in the statement of the theorem. Since n and γ are linear with respect to the components of G and $\frac{2}{3(3\lfloor \frac{g+1}{3} \rfloor + 1)}$ is non-decreasing in g, the graph G is connected. Furthermore, the set of vertices of degree at least 3 is independent. We prove several claims restricting the structure of G.

Claim 1. G has a vertex of degree at least 3.

Proof of Claim 1: For contradiction, we assume that G has no vertex of degree at least 3. In this case G is a cycle of order at least g and $\gamma = \left\lceil \frac{n}{3} \right\rceil$. If n = g, then

$$\begin{bmatrix} \frac{n}{3} \end{bmatrix} = \begin{cases} \frac{n}{3} < \left(\frac{1}{3} + \frac{2}{3(g+1)}\right)n &, \text{ if } g \equiv 0 \pmod{3}, \\ \frac{n+2}{3} &= \left(\frac{1}{3} + \frac{2}{3g}\right)n &, \text{ if } g \equiv 1 \pmod{3} \text{ and} \\ \frac{n+1}{3} < \left(\frac{1}{3} + \frac{2}{3(g+2)}\right)n &, \text{ if } g \equiv 2 \pmod{3}. \end{cases}$$

If n = g + 1, then

$$\left\lceil \frac{n}{3} \right\rceil = \begin{cases} \frac{n+2}{3} &= \left(\frac{1}{3} + \frac{2}{3(g+1)}\right)n &, \text{ if } g \equiv 0 \pmod{3}, \\ \frac{n+1}{3} &< \left(\frac{1}{3} + \frac{2}{3g}\right)n &, \text{ if } g \equiv 1 \pmod{3} \text{ and} \\ \frac{n}{3} &< \left(\frac{1}{3} + \frac{2}{3(g+2)}\right)n &, \text{ if } g \equiv 2 \pmod{3}. \end{cases}$$

Finally, if $n \ge g+2$, then

$$\left\lceil \frac{n}{3} \right\rceil \le \frac{n+2}{3} \le \left(\frac{1}{3} + \frac{2}{3(g+2)}\right)n.$$

Since

$$3\left\lfloor \frac{g+1}{3} \right\rfloor + 1 = \begin{cases} g+1 & \text{, if } g \equiv 0 \pmod{3}, \\ g & \text{, if } g \equiv 1 \pmod{3} \text{ and} \\ g+2 & \text{, if } g \equiv 2 \pmod{3}, \end{cases}$$

we obtain in all cases the contradiction $\gamma \leq \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor+1\right)}\right)n$ and the proof of the claim is complete. \Box

A path P in G between vertices x and y of degree at least 3 whose internal vertices are all of degree 2 will be called 2-path and we set $p_P(x) := y$ and $p_P(y) := x$.

Claim 2. G has no two vertices u and v of degree at least 3 that are joined by a 2-path P of length 1 (mod 3).

Proof of Claim 2: For contradiction, we assume that such vertices u and v and such a path P exist.

If V' denotes the set of internal vertices of the path, then G[V'] is a path of order 0 (mod 3) which has a dominating set D' of cardinality $\frac{|V'|}{3}$. Since the graph $G[V \setminus V']$ satisfies the assumptions of the theorem, we obtain, by the choice of G, that $G[V \setminus V']$ has a dominating set D" of cardinality at most $\left(\frac{1}{3} + \frac{2}{3(3\lfloor \frac{g+1}{3} \rfloor + 1)}\right)(n - |V'|)$. Now, $D' \cup D''$ is a dominating set of G and we obtain

$$\begin{split} \gamma &\leq |D'| + |D''| \\ &\leq \frac{|V'|}{3} + \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor + 1\right)}\right) (n - |V'|) \\ &< \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor + 1\right)}\right) n, \end{split}$$

which implies a contradiction and the proof of the claim is complete. \Box

Claim 3. G has no vertex u of degree at least 3 that lies on a cycle C of length 1 (mod 3) whose vertices different from u are all of degree 2.

Proof of Claim 3: For contradiction, we assume that such a vertex u and such a cycle C exist.

Let V' denote a minimal set of vertices containing a neighbour of u on the cycle C such that $G[V \setminus V']$ has no vertex of degree less than 2.

If u is of degree at least 4, then the graph G[V'] is a path of order 0 (mod 3) and we obtain the same contradiction as in Claim 2.

Hence we can assume that u is of degree 3. In this case the graph G[V'] arises from C by attaching a path to u. Since G[V'] has a spanning subgraph which is a path, it has a dominating set D' of cardinality at most $\left\lceil \frac{|V'|}{3} \right\rceil$.

As before, $G[V \setminus V']$ has a dominating set D'' with $|D''| \le \left(\frac{1}{3} + \frac{2}{3(3\lfloor \frac{g+1}{3} \rfloor + 1)}\right)(n - |V'|)$. Now $D' \cup D''$ is a dominating set of G and using $|V'| \ge g$ we obtain

$$\begin{split} \gamma &\leq |D'| + |D''| \\ &\leq \left\lceil \frac{|V'|}{3} \right\rceil + \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor + 1\right)}\right) (n - |V'|) \\ &= \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor + 1\right)}\right) n + \left(\left\lceil \frac{|V'|}{3} \right\rceil - \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor + 1\right)}\right) |V'|\right). \end{split}$$

Considering the three cases |V'| = g, |V'| = g + 1 and |V'| = g + 2 as in the proof of Claim 1 implies the contradiction $\gamma \leq \left(\frac{1}{3} + \frac{2}{3(3\lfloor \frac{g+1}{3} \rfloor + 1)}\right)n$ and the proof of the claim is complete. \Box

Claim 4. G has no vertex u of degree at least 3 that lies on two cycles C_1 and C_2 of lengths 2 (mod 3) whose vertices different from u are all of degree 2.

Proof of Claim 4: For contradiction, we assume that such a vertex u and such cycles C_1 and C_2 exist.

Let V' denote a minimal set of vertices containing a neighbour of u on the cycle C_1 and a neighbour of u on the cycle C_2 such that $G[V \setminus V']$ has no vertex of degree less than 2.

If u is of degree at least 6, then the graph G[V'] consists of two disjoint paths of order 1 (mod 3) whose endvertices are adjacent to u. This easily implies that there is a set $D' \subseteq \{u\} \cup V'$ containing u such that every vertex in $V' \setminus D'$ has a neighbour in D' and $|D'| = \left\lceil \frac{|V'|}{3} \right\rceil$. Since $|V'| \ge g$, we obtain a similar contradiction as in the proof of Claim 3.

Hence we can assume that u is of degree at most 5. In this case the graph G[V'] consists of C_1 and C_2 and possibly a path attached to u. Again, it is easy to see that G[V'] has a dominating set D' of cardinality at most $\left\lceil \frac{|V'|}{3} \right\rceil$. Since $|V'| \ge g$, we obtain a similar contradiction as in the proof of Claim 3 and the proof of the claim is complete. \Box

Claim 5. G has no two distinct vertices u and v of degree at least 3 such that u lies on a cycle C of length 2 (mod 3) whose vertices different from u are all of degree 2, and u and v are joined by a 2-path P of length 2 (mod 3).

Proof of Claim 5: For contradiction, we assume that such vertices u and v, such a cycle C and such a path P exist.

Let V' denote a minimal set of vertices containing a neighbour of u on the cycle C and a neighbour of u on the path P such that $G[V \setminus V']$ has no vertex of degree less than 2.

If u is of degree at least 5, then the graph G[V'] is the union of two paths of order 1 (mod 3) which both have an endvertex that is adjacent to u. Again, there is a set $D' \subseteq \{u\} \cup V'$ containing u such that every vertex in $V' \setminus D'$ has a neighbour in D' and $|D'| = \left\lceil \frac{|V'|}{3} \right\rceil$. Since $|V'| \ge g$, we obtain a similar contradiction as in the proof of Claim 3.

Hence we can assume that u is of degree at most 4. Let P' denote the 2-path starting at u that is internally disjoint from C and P. Let w denote the endvertex of P' different from u, i.e. $w = p_{P'}(u)$. If $v \neq w$ or v = w and v is of degree at least 4, then the graph G[V'] arises from C, P and P' by deleting v and w. If v = w and v is of degree 3, then let P'' denote the 2-path starting at v that is internally disjoint from P and P'. Now the graph G[V'] arises from C, P, P' and P'' by deleting the endvertex of P'' different from v. In both cases, by the parity conditions, the graph G[V'] has a dominating set D' of cardinality at most $\left\lceil \frac{|V'|}{3} \right\rceil$. Since $|V'| \geq g$, we obtain a similar contradiction as in the proof of Claim 3 and the proof of the claim is complete. \Box

Claim 6. G has no vertex u that is joined to three vertices v_1 , v_2 and v_3 of degree at least 3 by three distinct 2-paths of lengths 2 (mod 3).

Proof of Claim 6: For contradiction, we assume that such vertices u, v_1 , v_2 and v_3 and such paths exist. Let P_1 , P_2 and P_3 denote the three 2-paths joining u to v_1 , v_2 and v_3 ,

respectively. Let V'_0 denote the set of internal vertices of the three paths and let V' denote a minimal set of vertices containing V'_0 such that $G[V \setminus V']$ has no vertex of degree less than 2. In order to complete the proof of Claim 6, we insert another claim about the structure of G[V'].

Claim 7. If $u, v_1, v_2, v_3, P_1, P_2, P_3, V'_0$ and V' are as above, then

- (i) either $u \notin V'$ and G[V'] is the union of three paths of order 1 (mod 3) each of which has an endvertex that is adjacent to u,
- (ii) or G[V'] has a spanning subgraph which arises by identifying an endvertex in each of three or four paths of which three are of order 2 (mod 3),
- (iii) or $|V'| \ge g$ and G[V'] has a spanning subgraph which arises by identifying an endvertex in each of three or four paths of which two are of order 2 (mod 3),
- (iv) or $u \notin V'$, $|V'| \ge g$ and G[V'] has a spanning subgraph which is the union of three paths each of which has an endvertex that is adjacent to u and two of these three paths are of order 1 (mod 3).

Proof of Claim 7: If w is a vertex of degree at most 1 in $G[V \setminus V'_0]$, then let P(w) denote the 2-path starting in w that is internally disjoint from V'_0 . Note that P(w) has length 0 if w is an isolated vertex in $G[V \setminus V'_0]$.

First, we assume that $|\{v_1, v_2, v_3\}| = 3$, i.e. the vertices v_1, v_2 and v_3 are all distinct. If u is of degree 3, then $V' = \{u\} \cup V'_0$ and (ii) holds.

If u is of degree at least 5, then $V' = V'_0$ and (i) holds.

Hence we can assume that u is of degree 4.

If either $p_{P(u)}(u) \notin \{v_1, v_2, v_3\}$ or $p_{P(u)}(u) \in \{v_1, v_2, v_3\}$, say $p(u) = v_1$, and v_1 is not of degree 3, then (ii) holds.

Hence we can assume that $p(u) = v_1$ is of degree 3. Let P' denote the 2-path starting in v_1 that is internally disjoint from V'_0 and P(u).

If either $p_{P'}(v_1) \notin \{v_2, v_3\}$ or $p_{P'}(v_1) \in \{v_2, v_3\}$, say $p_{P'}(v_1) = v_2$, and v_2 is not of degree 3, then (ii) holds.

Hence we can assume that $p_{P'}(v_1) = v_2$ is of degree 3. Let P'' denote the 2-path starting in v_2 that is internally disjoint from V'_0 and P'.

If either $p_{P''}(v_2) \neq v_3$ or $p_{P''}(v_2) = v_3$ and v_3 is not of degree 3, then (ii) holds.

Hence we can assume that $p_{P''}(v_2) = v_3$ is of degree 3. Let P''' denote the 2-path starting in v_3 that is internally disjoint from V'_0 and P''. Clearly, $p_{P'''}(v_3) \notin \{u, v_1, v_2\}$ and (ii) holds. (Note that we can delete the edges incident to v_i in P_i for $1 \le i \le 3$ in order to obtain the spanning subgraph mentioned in (ii).)

Next, we assume that $|\{v_1, v_2, v_3\}| = 1$. Note that the 2-paths between u and $v_1 = v_2 = v_3$ form cycles of length at least g.

If u and v_1 are both of degree at least 5, then $V' = V'_0$ and (i) holds.

If u is of degree at most 4 and v_1 is of degree at least 5, then (ii) holds. (Note that if $v_1 \in V'$, then we can delete the edges incident to v_1 in P_i for $1 \le i \le 3$ in order to obtain the spanning subgraph mentioned in (ii).)

If u is of degree at least 5 and v_1 is of degree at most 4, then (ii) holds. (Note that if $u \in V'$, then we can delete the edges incident to u in P_i for $1 \le i \le 3$ in order to obtain the spanning subgraph mentioned in (ii).)

If u and v_1 are both of degree at most 4, then either $P(u) = P(v_1)$ and (ii) holds or $P(u) \neq P(v_1)$ and (iii) holds. (Note that in the last case we can delete the edges incident to v_1 in P_1 and P_2 in order to obtain the spanning subgraph mentioned in (iii)).

Finally, we assume that $|\{v_1, v_2, v_3\}| = 2$, say $v_1 = v_3 \neq v_2$. Note that the 2-paths P_1 and P_3 between u and $v_1 = v_3$ form a cycle of length at least g.

If v_1 is of degree at least 4, then we can argue similarly as in the case $|\{v_1, v_2, v_3\}| = 3$. Hence we can assume that v_1 is of degree 3.

If u and v_1 are joined by a 2-path Q different from P_1 and P_3 , then (iii) or (iv) hold depending on the degree of u. (Note that, if u is of degree four for instance, then we can delete the edge incident to u in Q and the edge incident to v_1 in P_1 in order to obtain the spanning subgraph mentioned in (iii)).

Hence we can assume that u and v_1 are not joined by a 2-path different from P_1 and P_3 .

If u is of degree 4 and u and v_2 are joined by a 2-path different from P_2 , then (iii) holds. Hence we can assume that either u is of degree at least 5 or u and v_2 are not joined by a 2-path different from P_2 .

In the remaining cases (iii) or (iv) hold which completes the proof of the claim. \Box

We return to the proof of Claim 6.

in Claim 3. This completes the proof of the claim. \Box

Note that in Cases (i) or (iv) of the Claim 7 there is a set $D' \subseteq \{u\} \cup V'$ containing u such that every vertex in $V' \setminus D'$ has a neighbour in D' and either $|D'| \leq \frac{|V'|}{3}$ (Case (i)) or $|D'| \leq \left\lceil \frac{|V'|}{3} \right\rceil$ and $|V'| \geq g$ (Case (iv)). Furthermore, by the parity conditions, in Cases (ii) and (iii) of Claim 7, the graph G[V'] has a dominating set D' such that either $|D'| \leq \frac{|V'|}{3}$ (Case (ii)) or $|D'| \leq \left\lceil \frac{|V'|}{3} \right\rceil$ and $|V'| \geq g$ (Case (iii)).

As before, $G[V \setminus V']$ has a dominating set D'' with $|D''| \leq \left(\frac{1}{3} + \frac{2}{3(3\lfloor \frac{g+1}{3} \rfloor + 1)}\right) (n - |V'|)$ and $D' \cup D''$ is a dominating set of G. If $|D'| \leq \frac{|V'|}{3}$, then we obtain a similar contradiction as in Claim 2 and if $|D'| \leq \left\lceil \frac{|V'|}{3} \right\rceil$ and $|V'| \geq g$, then we obtain a similar contradiction as

We have by now analysed the structure of G far enough in order to describe a sufficiently small dominating set leading to the final contradiction. Let $V_{\geq 3}$ denote the set of vertices of degree at least 3 and let $n_{\geq 3} = |V_{\geq 3}|$. The graph $G[V \setminus V_{\geq 3}]$ is a collection of paths of order either 1 (mod 3) or 2 (mod 3).

Let $P_1, P_2, ..., P_s$ denote the set of vertices of the paths of order 1 (mod 3) and let $Q_1, Q_2, ..., Q_t$ denote the set of vertices of the paths of order 2 (mod 3).

By the above claims,

$$s+t \geq \frac{3n_{\geq 3}}{2}$$
 and $s \leq n_{\geq 3}$

which implies

$$t \ge \frac{n_{\ge 3}}{2}$$
 and $\left(n_{\ge 3} - \frac{s}{3} - \frac{2t}{3}\right) \le \frac{n_{\ge 3}}{3}$

For $1 \leq i \leq s$, the path $G[P_i]$ without its one or two endvertices has a dominating set D_i^P of cardinality $\frac{|P_i|-1}{3}$. For $1 \le j \le t$, the path $G[Q_j]$ without its two endvertices has a dominating set D_j^Q of cardinality $\frac{|Q_j|-2}{3}$.

Now the set

$$V_{\geq 3} \cup \bigcup_{i=1}^{s} D_i^P \cup \bigcup_{j=1}^{t} D_j^Q$$

is a dominating set of G and we obtain,

$$\begin{split} \gamma &\leq n_{\geq 3} + \sum_{i=1}^{s} \left| D_{i}^{P} \right| + \sum_{j=1}^{t} \left| D_{j}^{Q} \right| \\ &= n_{\geq 3} + \sum_{i=1}^{s} \frac{|P_{i}| - 1}{3} + \sum_{j=1}^{t} \frac{|Q_{j}| - 2}{3} \\ &= \left(n_{\geq 3} - \frac{s}{3} - \frac{2t}{3} \right) + \sum_{i=1}^{s} \frac{|P_{i}|}{3} + \sum_{j=1}^{t} \frac{|Q_{j}|}{3} \\ &\leq \frac{n_{\geq 3}}{3} + \sum_{i=1}^{s} \frac{|P_{i}|}{3} + \sum_{j=1}^{t} \frac{|Q_{j}|}{3} \\ &\leq \frac{n}{3}. \end{split}$$

This final contradiction completes the proof. \Box

Note that Theorem 1 is best possible for the union of cycles $C_{3\left\lfloor\frac{g+1}{3}\right\rfloor+1}$. We derive some consequences of Theorem 1 for graphs of minimum degree at least 3.

Corollary 2 If G = (V, E) is a graph of order n, minimum degree $\delta \geq 3$, girth $g \geq 5$ and domination number γ , then

$$\gamma \le \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor + 1\right)}\right)\left(n - 4\alpha\left(G^{4}\right)\right) + \alpha\left(G^{4}\right)$$

where $\alpha(G^4)$ denotes the independence number of G^4 , i.e. the maximum cardinality of a set $I \subseteq V$ of vertices such that every two vertices in I are at distance at least 5.

Proof: Let $I \subseteq V$ be a set of vertices such that every two vertices in I are at distance at least 5 and $|I| = \alpha (G^4)$. If $V' = I \cup N_G(I)$, then $|V'| \ge 4|I|$.

We will prove that $G[V \setminus V']$ has minimum degree at least 2. Therefore, for contradiction, we assume that there is a vertex $u \in V \setminus V'$ which has 2 neighbours v_1 and v_2 in V'. Clearly, $v_1 \in N_G(w_1)$ and $v_2 \in N_G(w_2)$ for some $w_1, w_2 \in I$. If $w_1 = w_2$, then $uv_1w_1v_2u$ is a cycle of length 4 which is a contradiction. If $w_1 \neq w_2$, then $w_1v_1uv_2w_2$ is a path of length 4 between two vertices of I which is a contradiction to the choice of I.

Therefore, $G[V \setminus V']$ has minimum degree at least 2 and, by Theorem 1, it has a dominating set D'' with $|D''| \leq \left(\frac{1}{3} + \frac{2}{3(3\lfloor \frac{g+1}{3} \rfloor + 1)}\right) (n - |V'|)$. Now $I \cup D''$ is a dominating set of G and we obtain

$$\begin{aligned} \gamma(G) &\leq |I| + |D''| \\ &\leq \frac{1}{4} |V'| + \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor + 1\right)}\right) (n - |V'|) \\ &\leq \alpha \left(G^4\right) + \left(\frac{1}{3} + \frac{2}{3\left(3\left\lfloor\frac{g+1}{3}\right\rfloor + 1\right)}\right) \left(n - 4\alpha \left(G^4\right)\right) \end{aligned}$$

which completes the proof. \Box

Since $\alpha(G) \geq \frac{n}{\Delta+1}$ for every graph G of order n and maximum degree Δ and the maximum degree of G^4 is at most $\Delta^2 (\Delta^2 - 2\Delta + 2)$, we obtain the following immediate corollaries.

Corollary 3 If G = (V, E) is a cubic graph of order n, girth $g \ge 5$ and domination number γ , then

$$\gamma \le \left(\frac{44}{135} + \frac{82}{135g}\right)n.$$

Proof: If $g \leq 12$, then $\frac{44}{135} + \frac{82}{135g} \geq \frac{3}{8}$ and Reed's bound [13] implies the desired result. If $g \geq 13$, then G^4 is neither complete nor an odd cycle and Brooks' theorem [3] implies that $\alpha(G^4) \geq \frac{n}{\Delta(G^4)} \geq \frac{n}{45}$ and the result follows from Corollary 2. \Box

Note that $\frac{44}{135} + \frac{82}{135g} < \frac{1}{3}$ for $g \ge 83$ and hence Corollary 3 improves the bounds (1) and (2) due to Kostochka and Stodolsky [8] and Kawarabayashi, Plummer and Saito [6] and also confirms Reed's conjecture [13] for large enough girth.

Corollary 4 For every $\Delta \geq \delta \geq 3$ there are constants $\alpha_{\delta,\Delta} < \frac{1}{3}$ and $\beta_{\delta,\Delta}$ such that if G = (V, E) is a graph of order n, minimum degree δ , maximum degree Δ , girth $g \geq 5$ and domination number γ , then

$$\gamma \leq \left(\alpha_{\delta,\Delta} + \frac{\beta_{\delta,\Delta}}{g}\right) n.$$

Instead of giving exact expressions for $\alpha_{\delta,\Delta}$ and $\beta_{\delta,\Delta}$ in Corollary 4, we pose it as an open problem to determine the best-possible values for these coefficients.

References

- [1] M. Blank, An estimate of the external stability number of a graph without suspended vertices, *Prikl Math i Programmirovanie Vyp* **10** (1973), 3-11.
- [2] R.C. Brigham and R.D. Dutton, Bounds on the domination number of a graph, Q. J. Math., Oxf. II. Ser. 41 (1990), 269-275.
- [3] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941), 194-197.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs advanced topics, Marcel Dekker, Inc., New York, 1998.
- [6] K. Kawarabayashi, M.D. Plummer and A. Saito. Domination in a graph with a 2-factor, J. Graph Theory 52 (2006), 1-6.
- [7] A.V. Kostochka and B.Y. Stodolsky, On domination in connected cubic graphs, *Discrete Math.* **304** (2005), 45-50
- [8] A.V. Kostochka and B.Y. Stodolsky, An upper bound on the domination number of *n*-vertex connected cubic graphs, *manuscript* (2005).
- [9] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J. Graph Theory 13 (1989), 749-762.
- [10] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ. 38, 1962.
- [11] B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number, *Discrete Math.* **191** (1998), 159-169.
- [12] D. Rautenbach, A Note on domination, girth and minimum degree, to appear in *Discrete Math.*
- [13] B. Reed, Paths, stars and the number three, Combin. Prob. Comput. 5 (1996), 267-276.
- [14] L. Volkmann, Upper bounds on the domination number of a graph in terms of diameter and girth, J. Combin. Math. Combin. Comput. 52 (2005), 131-141.
- [15] L. Volkmann, An upper bound for the domination number of a graph in terms of order and girth, manuscript (2004).
- [16] B. Xu, E.J. Cockayne, T.H. Haynes, S.T. Hedetniemi and S. Zhou, Extremal graphs for inequalities involving domination parameters, *Discrete Math.* **216** (2000), 1-10.