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Abstract We prove that for graphs of order n, minimum degree δ ≥ 2 and girth g ≥
5 the domination number γ satisfies γ ≤

(
1
3

+ 2
3g

)
n. As a corollary this implies that

for cubic graphs of order n and girth g ≥ 5 the domination number γ satisfies γ ≤(
44
135

+ 82
135g

)
n which improves recent results due to Kostochka and Stodolsky (An upper

bound on the domination number of n-vertex connected cubic graphs, manuscript (2005))
and Kawarabayashi, Plummer and Saito (Domination in a graph with a 2-factor, J. Graph
Theory 52 (2006), 1-6) for large enough girth. Furthermore, it confirms a conjecture due
to Reed about connected cubic graphs (Paths, stars and the number three, Combin. Prob.
Comput. 5 (1996), 267-276) for girth at least 83.
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1 Introduction

The domination number γ(G) of a (finite, undirected and simple) graph G = (V, E) is the
minimum cardinality of a set D ⊆ V of vertices such that every vertex in V \ D has a
neighbour in D. This parameter is one of the most well-studied in graph theory and the
two volume monograph [4, 5] provides an impressive account of the research related to this
concept.

Fundamental results about the domination number γ(G) are upper bounds in terms of
the order n and the minimum degree δ of the graph G. Ore [10] proved that γ(G) ≤ n

2

provided δ ≥ 1. For δ ≥ 2 and all but 7 exceptional graphs Blank [1] and McCuaig and
Shepherd [9] proved γ(G) ≤ 2n

5
. Equality in these two bounds is attained for infinitely

many graphs which were characterized in [9, 11, 16].
In [13] Reed proved that γ(G) ≤ 3

8
n for every graph G of order n and minimum degree

at least 3 and he conjectured that this bound could be improved to
⌈

n
3

⌉
for connected

cubic graphs. While Reed’s conjecture was disproved by Kostochka and Stodolsky [7] who
constructed a sequence (Gk)k∈N of connected cubic graphs with

lim
k→∞

γ(Gk)

|V (Gk)|
≥ 1

3
+

1

69
,
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Kostochka and Stodolsky [8] proved γ(G) ≤ 4
11

n for every connected cubic graph G of
order n > 8 and

γ(G) ≤
(

1

3
+

8

3g2

)
n (1)

for every connected cubic graph G of order n > 8 and girth g where the girth is the length
of a shortest cycle in G. The last result improved a recent result due to Kawarabayashi,
Plummer and Saito [6] who proved that

γ(G) ≤
(

1

3
+

1

9k + 3

)
n (2)

for every 2-edge connected cubic graph G of order n and girth at least 3k for some k ∈ N.
The first to use the girth g of a graph G next to its order n and minimum degree δ to

bound the domination number γ were probably Brigham and Dutton [2] who proved

γ ≤
⌈n

2
− g

6

⌉
provided that δ ≥ 2 and g ≥ 5. In [14, 15] Volkmann determined finite set of graphs Gi for
i ∈ {1, 2} such that

γ ≤
⌈

n

2
− g

6
− 3i + 3

6

⌉
unless G is a cycle or G ∈ Gi. Motivated by these results Rautenbach [12] proved that for
every k ∈ N there is a finite set Gk of graphs such that if G is a graph of order n, minimum
degree δ ≥ 2, girth g ≥ 5 and domination number γ that is not a cycle and does not belong
to Gk, then

γ ≤ n

2
− g

6
− k.

In the present paper we prove a best-possible upper bound on the domination number of
graphs of minimum degree at least 2 and girth at least 5 which allows to improve (1) and
(2) for large enough girth. Furthermore, it confirms Reed’s conjecture [13] for cubic graphs
with girth at least 83.

2 Results

We immediately proceed to our main result.

Theorem 1 If G = (V, E) is a graph of order n, minimum degree δ ≥ 2, girth g ≥ 5 and
domination number γ, then

γ ≤

(
1

3
+

2

3
(
3
⌊

g+1
3

⌋
+ 1
))n.
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Proof: For contradiction, we assume that G = (V, E) is a counterexample of minimum sum
of order and size. Let n, g and γ be as in the statement of the theorem. Since n and γ
are linear with respect to the components of G and 2

3(3b g+1
3 c+1)

is non-decreasing in g, the

graph G is connected. Furthermore, the set of vertices of degree at least 3 is independent.
We prove several claims restricting the structure of G.

Claim 1. G has a vertex of degree at least 3.

Proof of Claim 1: For contradiction, we assume that G has no vertex of degree at least 3.
In this case G is a cycle of order at least g and γ =

⌈
n
3

⌉
.

If n = g, then

⌈n

3

⌉
=


n
3

<
(

1
3

+ 2
3(g+1)

)
n , if g ≡ 0 (mod 3),

n+2
3

=
(

1
3

+ 2
3g

)
n , if g ≡ 1 (mod 3) and

n+1
3

<
(

1
3

+ 2
3(g+2)

)
n , if g ≡ 2 (mod 3).

If n = g + 1, then

⌈n

3

⌉
=


n+2

3
=

(
1
3

+ 2
3(g+1)

)
n , if g ≡ 0 (mod 3),

n+1
3

<
(

1
3

+ 2
3g

)
n , if g ≡ 1 (mod 3) and

n
3

<
(

1
3

+ 2
3(g+2)

)
n , if g ≡ 2 (mod 3).

Finally, if n ≥ g + 2, then⌈n

3

⌉
≤ n + 2

3
≤
(

1

3
+

2

3(g + 2)

)
n.

Since

3

⌊
g + 1

3

⌋
+ 1 =


g + 1 , if g ≡ 0 (mod 3),
g , if g ≡ 1 (mod 3) and
g + 2 , if g ≡ 2 (mod 3),

we obtain in all cases the contradiction γ ≤
(

1
3

+ 2

3(3b g+1
3 c+1)

)
n and the proof of the claim

is complete. 2

A path P in G between vertices x and y of degree at least 3 whose internal vertices are all
of degree 2 will be called 2-path and we set pP (x) := y and pP (y) := x.

Claim 2. G has no two vertices u and v of degree at least 3 that are joined by a 2-path P
of length 1 (mod 3).

Proof of Claim 2: For contradiction, we assume that such vertices u and v and such a path
P exist.

3



If V ′ denotes the set of internal vertices of the path, then G[V ′] is a path of order

0 (mod 3) which has a dominating set D′ of cardinality |V ′|
3

. Since the graph G[V \ V ′]
satisfies the assumptions of the theorem, we obtain, by the choice of G, that G[V \V ′] has

a dominating set D′′ of cardinality at most

(
1
3

+ 2

3(3b g+1
3 c+1)

)
(n− |V ′|). Now, D′ ∪D′′ is

a dominating set of G and we obtain

γ ≤ |D′|+ |D′′|

≤ |V ′|
3

+

(
1

3
+

2

3
(
3
⌊

g+1
3

⌋
+ 1
)) (n− |V ′|)

<

(
1

3
+

2

3
(
3
⌊

g+1
3

⌋
+ 1
))n,

which implies a contradiction and the proof of the claim is complete. 2

Claim 3. G has no vertex u of degree at least 3 that lies on a cycle C of length 1 (mod 3)
whose vertices different from u are all of degree 2.

Proof of Claim 3: For contradiction, we assume that such a vertex u and such a cycle C
exist.

Let V ′ denote a minimal set of vertices containing a neighbour of u on the cycle C such
that G[V \ V ′] has no vertex of degree less than 2.

If u is of degree at least 4, then the graph G[V ′] is a path of order 0 (mod 3) and we
obtain the same contradiction as in Claim 2.

Hence we can assume that u is of degree 3. In this case the graph G[V ′] arises from C
by attaching a path to u. Since G[V ′] has a spanning subgraph which is a path, it has a

dominating set D′ of cardinality at most
⌈
|V ′|
3

⌉
.

As before, G[V \V ′] has a dominating set D′′ with |D′′| ≤
(

1
3

+ 2

3(3b g+1
3 c+1)

)
(n− |V ′|).

Now D′ ∪D′′ is a dominating set of G and using |V ′| ≥ g we obtain

γ ≤ |D′|+ |D′′|

≤
⌈
|V ′|
3

⌉
+

(
1

3
+

2

3
(
3
⌊

g+1
3

⌋
+ 1
)) (n− |V ′|)

=

(
1

3
+

2

3
(
3
⌊

g+1
3

⌋
+ 1
))n +

(⌈
|V ′|
3

⌉
−

(
1

3
+

2

3
(
3
⌊

g+1
3

⌋
+ 1
)) |V ′|

)
.

Considering the three cases |V ′| = g, |V ′| = g + 1 and |V ′| = g + 2 as in the proof of

Claim 1 implies the contradiction γ ≤
(

1
3

+ 2

3(3b g+1
3 c+1)

)
n and the proof of the claim is

complete. 2
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Claim 4. G has no vertex u of degree at least 3 that lies on two cycles C1 and C2 of lengths
2 (mod 3) whose vertices different from u are all of degree 2.

Proof of Claim 4: For contradiction, we assume that such a vertex u and such cycles C1

and C2 exist.
Let V ′ denote a minimal set of vertices containing a neighbour of u on the cycle C1 and

a neighbour of u on the cycle C2 such that G[V \ V ′] has no vertex of degree less than 2.
If u is of degree at least 6, then the graph G[V ′] consists of two disjoint paths of order

1 (mod 3) whose endvertices are adjacent to u. This easily implies that there is a set
D′ ⊆ {u} ∪ V ′ containing u such that every vertex in V ′ \ D′ has a neighbour in D′ and

|D′| =
⌈
|V ′|
3

⌉
. Since |V ′| ≥ g, we obtain a similar contradiction as in the proof of Claim 3.

Hence we can assume that u is of degree at most 5. In this case the graph G[V ′] consists
of C1 and C2 and possibly a path attached to u. Again, it is easy to see that G[V ′] has

a dominating set D′ of cardinality at most
⌈
|V ′|
3

⌉
. Since |V ′| ≥ g, we obtain a similar

contradiction as in the proof of Claim 3 and the proof of the claim is complete. 2

Claim 5. G has no two distinct vertices u and v of degree at least 3 such that u lies on a
cycle C of length 2 (mod 3) whose vertices different from u are all of degree 2, and u and
v are joined by a 2-path P of length 2 (mod 3).

Proof of Claim 5: For contradiction, we assume that such vertices u and v, such a cycle C
and such a path P exist.

Let V ′ denote a minimal set of vertices containing a neighbour of u on the cycle C and
a neighbour of u on the path P such that G[V \ V ′] has no vertex of degree less than 2.

If u is of degree at least 5, then the graph G[V ′] is the union of two paths of order
1 (mod 3) which both have an endvertex that is adjacent to u. Again, there is a set
D′ ⊆ {u} ∪ V ′ containing u such that every vertex in V ′ \ D′ has a neighbour in D′ and

|D′| =
⌈
|V ′|
3

⌉
. Since |V ′| ≥ g, we obtain a similar contradiction as in the proof of Claim 3.

Hence we can assume that u is of degree at most 4. Let P ′ denote the 2-path starting
at u that is internally disjoint from C and P . Let w denote the endvertex of P ′ different
from u, i.e. w = pP ′(u). If v 6= w or v = w and v is of degree at least 4, then the graph
G[V ′] arises from C, P and P ′ by deleting v and w. If v = w and v is of degree 3, then
let P ′′ denote the 2-path starting at v that is internally disjoint from P and P ′. Now the
graph G[V ′] arises from C, P , P ′ and P ′′ by deleting the endvertex of P ′′ different from
v. In both cases, by the parity conditions, the graph G[V ′] has a dominating set D′ of

cardinality at most
⌈
|V ′|
3

⌉
. Since |V ′| ≥ g, we obtain a similar contradiction as in the proof

of Claim 3 and the proof of the claim is complete. 2

Claim 6. G has no vertex u that is joined to three vertices v1, v2 and v3 of degree at least
3 by three distinct 2-paths of lengths 2 (mod 3).

Proof of Claim 6: For contradiction, we assume that such vertices u, v1, v2 and v3 and
such paths exist. Let P1, P2 and P3 denote the three 2-paths joining u to v1, v2 and v3,
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respectively. Let V ′
0 denote the set of internal vertices of the three paths and let V ′ denote

a minimal set of vertices containing V ′
0 such that G[V \V ′] has no vertex of degree less than

2. In order to complete the proof of Claim 6, we insert another claim about the structure
of G[V ′].

Claim 7. If u, v1, v2, v3, P1, P2, P3, V ′
0 and V ′ are as above, then

(i) either u 6∈ V ′ and G[V ′] is the union of three paths of order 1 (mod 3) each of which
has an endvertex that is adjacent to u,

(ii) or G[V ′] has a spanning subgraph which arises by identifying an endvertex in each
of three or four paths of which three are of order 2 (mod 3),

(iii) or |V ′| ≥ g and G[V ′] has a spanning subgraph which arises by identifying an end-
vertex in each of three or four paths of which two are of order 2 (mod 3),

(iv) or u 6∈ V ′, |V ′| ≥ g and G[V ′] has a spanning subgraph which is the union of three
paths each of which has an endvertex that is adjacent to u and two of these three
paths are of order 1 (mod 3).

Proof of Claim 7: If w is a vertex of degree at most 1 in G[V \ V ′
0 ], then let P (w) denote

the 2-path starting in w that is internally disjoint from V ′
0 . Note that P (w) has length 0

if w is an isolated vertex in G[V \ V ′
0 ].

First, we assume that |{v1, v2, v3}| = 3, i.e. the vertices v1, v2 and v3 are all distinct.
If u is of degree 3, then V ′ = {u} ∪ V ′

0 and (ii) holds.
If u is of degree at least 5, then V ′ = V ′

0 and (i) holds.
Hence we can assume that u is of degree 4.
If either pP (u)(u) 6∈ {v1, v2, v3} or pP (u)(u) ∈ {v1, v2, v3}, say p(u) = v1, and v1 is not of

degree 3, then (ii) holds.
Hence we can assume that p(u) = v1 is of degree 3. Let P ′ denote the 2-path starting

in v1 that is internally disjoint from V ′
0 and P (u).

If either pP ′(v1) 6∈ {v2, v3} or pP ′(v1) ∈ {v2, v3}, say pP ′(v1) = v2, and v2 is not of degree
3, then (ii) holds.

Hence we can assume that pP ′(v1) = v2 is of degree 3. Let P ′′ denote the 2-path starting
in v2 that is internally disjoint from V ′

0 and P ′.
If either pP ′′(v2) 6= v3 or pP ′′(v2) = v3 and v3 is not of degree 3, then (ii) holds.
Hence we can assume that pP ′′(v2) = v3 is of degree 3. Let P ′′′ denote the 2-path

starting in v3 that is internally disjoint from V ′
0 and P ′′. Clearly, pP ′′′(v3) 6∈ {u, v1, v2} and

(ii) holds. (Note that we can delete the edges incident to vi in Pi for 1 ≤ i ≤ 3 in order to
obtain the spanning subgraph mentioned in (ii).)

Next, we assume that |{v1, v2, v3}| = 1. Note that the 2-paths between u and v1 = v2 = v3

form cycles of length at least g.

6



If u and v1 are both of degree at least 5, then V ′ = V ′
0 and (i) holds.

If u is of degree at most 4 and v1 is of degree at least 5, then (ii) holds. (Note that if
v1 ∈ V ′, then we can delete the edges incident to v1 in Pi for 1 ≤ i ≤ 3 in order to obtain
the spanning subgraph mentioned in (ii).)

If u is of degree at least 5 and v1 is of degree at most 4, then (ii) holds. (Note that if
u ∈ V ′, then we can delete the edges incident to u in Pi for 1 ≤ i ≤ 3 in order to obtain
the spanning subgraph mentioned in (ii).)

If u and v1 are both of degree at most 4, then either P (u) = P (v1) and (ii) holds or
P (u) 6= P (v1) and (iii) holds. (Note that in the last case we can delete the edges incident
to v1 in P1 and P2 in order to obtain the spanning subgraph mentioned in (iii)).

Finally, we assume that |{v1, v2, v3}| = 2, say v1 = v3 6= v2. Note that the 2-paths P1 and
P3 between u and v1 = v3 form a cycle of length at least g.

If v1 is of degree at least 4, then we can argue similarly as in the case |{v1, v2, v3}| = 3.
Hence we can assume that v1 is of degree 3.
If u and v1 are joined by a 2-path Q different from P1 and P3, then (iii) or (iv) hold

depending on the degree of u. (Note that, if u is of degree four for instance, then we can
delete the edge incident to u in Q and the edge incident to v1 in P1 in order to obtain the
spanning subgraph mentioned in (iii)).

Hence we can assume that u and v1 are not joined by a 2-path different from P1 and
P3.

If u is of degree 4 and u and v2 are joined by a 2-path different from P2, then (iii) holds.
Hence we can assume that either u is of degree at least 5 or u and v2 are not joined by

a 2-path different from P2.
In the remaining cases (iii) or (iv) hold which completes the proof of the claim. 2

We return to the proof of Claim 6.
Note that in Cases (i) or (iv) of the Claim 7 there is a set D′ ⊆ {u} ∪ V ′ containing u

such that every vertex in V ′ \D′ has a neighbour in D′ and either |D′| ≤ |V ′|
3

(Case (i)) or

|D′| ≤
⌈
|V ′|
3

⌉
and |V ′| ≥ g (Case (iv)). Furthermore, by the parity conditions, in Cases (ii)

and (iii) of Claim 7, the graph G[V ′] has a dominating set D′ such that either |D′| ≤ |V ′|
3

(Case (ii)) or |D′| ≤
⌈
|V ′|
3

⌉
and |V ′| ≥ g (Case (iii)).

As before, G[V \V ′] has a dominating set D′′ with |D′′| ≤
(

1
3

+ 2

3(3b g+1
3 c+1)

)
(n− |V ′|)

and D′∪D′′ is a dominating set of G. If |D′| ≤ |V ′|
3

, then we obtain a similar contradiction

as in Claim 2 and if |D′| ≤
⌈
|V ′|
3

⌉
and |V ′| ≥ g, then we obtain a similar contradiction as

in Claim 3. This completes the proof of the claim. 2

We have by now analysed the structure of G far enough in order to describe a sufficiently
small dominating set leading to the final contradiction. Let V≥3 denote the set of vertices
of degree at least 3 and let n≥3 = |V≥3|. The graph G[V \ V≥3] is a collection of paths of
order either 1 (mod 3) or 2 (mod 3).

7



Let P1, P2, ..., Ps denote the set of vertices of the paths of order 1 (mod 3) and let
Q1, Q2, ..., Qt denote the set of vertices of the paths of order 2 (mod 3).

By the above claims,

s + t ≥ 3n≥3

2
and s ≤ n≥3

which implies

t ≥ n≥3

2
and

(
n≥3 −

s

3
− 2t

3

)
≤ n≥3

3
.

For 1 ≤ i ≤ s, the path G[Pi] without its one or two endvertices has a dominating set

DP
i of cardinality |Pi|−1

3
. For 1 ≤ j ≤ t, the path G[Qj] without its two endvertices has a

dominating set DQ
j of cardinality

|Qj |−2

3
.

Now the set

V≥3 ∪
s⋃

i=1

DP
i ∪

t⋃
j=1

DQ
j

is a dominating set of G and we obtain,

γ ≤ n≥3 +
s∑

i=1

∣∣DP
i

∣∣+ t∑
j=1

∣∣∣DQ
j

∣∣∣
= n≥3 +

s∑
i=1

|Pi| − 1

3
+

t∑
j=1

|Qj| − 2

3

=

(
n≥3 −

s

3
− 2t

3

)
+

s∑
i=1

|Pi|
3

+
t∑

j=1

|Qj|
3

≤ n≥3

3
+

s∑
i=1

|Pi|
3

+
t∑

j=1

|Qj|
3

≤ n

3
.

This final contradiction completes the proof. 2

Note that Theorem 1 is best possible for the union of cycles C3b g+1
3 c+1. We derive some

consequences of Theorem 1 for graphs of minimum degree at least 3.

Corollary 2 If G = (V, E) is a graph of order n, minimum degree δ ≥ 3, girth g ≥ 5 and
domination number γ, then

γ ≤

(
1

3
+

2

3
(
3
⌊

g+1
3

⌋
+ 1
)) (n− 4α

(
G4
))

+ α
(
G4
)

where α (G4) denotes the independence number of G4, i.e. the maximum cardinality of a
set I ⊆ V of vertices such that every two vertices in I are at distance at least 5.
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Proof: Let I ⊆ V be a set of vertices such that every two vertices in I are at distance at
least 5 and |I| = α (G4). If V ′ = I ∪NG(I), then |V ′| ≥ 4|I|.

We will prove that G[V \V ′] has minimum degree at least 2. Therefore, for contradiction,
we assume that there is a vertex u ∈ V \V ′ which has 2 neighbours v1 and v2 in V ′. Clearly,
v1 ∈ NG(w1) and v2 ∈ NG(w2) for some w1, w2 ∈ I. If w1 = w2, then uv1w1v2u is a cycle
of length 4 which is a contradiction. If w1 6= w2, then w1v1uv2w2 is a path of length 4
between two vertices of I which is a contradiction to the choice of I.

Therefore, G[V \ V ′] has minimum degree at least 2 and, by Theorem 1, it has a

dominating set D′′ with |D′′| ≤
(

1
3

+ 2

3(3b g+1
3 c+1)

)
(n− |V ′|). Now I ∪D′′ is a dominating

set of G and we obtain

γ(G) ≤ |I|+ |D′′|

≤ 1

4
|V ′|+

(
1

3
+

2

3
(
3
⌊

g+1
3

⌋
+ 1
)) (n− |V ′|)

≤ α
(
G4
)

+

(
1

3
+

2

3
(
3
⌊

g+1
3

⌋
+ 1
)) (n− 4α

(
G4
))

which completes the proof. 2

Since α(G) ≥ n
∆+1

for every graph G of order n and maximum degree ∆ and the maximum
degree of G4 is at most ∆2 (∆2 − 2∆ + 2), we obtain the following immediate corollaries.

Corollary 3 If G = (V, E) is a cubic graph of order n, girth g ≥ 5 and domination number
γ, then

γ ≤
(

44

135
+

82

135g

)
n.

Proof: If g ≤ 12, then 44
135

+ 82
135g

≥ 3
8

and Reed’s bound [13] implies the desired result. If

g ≥ 13, then G4 is neither complete nor an odd cycle and Brooks’ theorem [3] implies that
α (G4) ≥ n

∆(G4)
≥ n

45
and the result follows from Corollary 2. 2

Note that 44
135

+ 82
135g

< 1
3

for g ≥ 83 and hence Corollary 3 improves the bounds (1) and

(2) due to Kostochka and Stodolsky [8] and Kawarabayashi, Plummer and Saito [6] and
also confirms Reed’s conjecture [13] for large enough girth.

Corollary 4 For every ∆ ≥ δ ≥ 3 there are constants αδ,∆ < 1
3

and βδ,∆ such that if
G = (V, E) is a graph of order n, minimum degree δ, maximum degree ∆, girth g ≥ 5 and
domination number γ, then

γ ≤
(

αδ,∆ +
βδ,∆

g

)
n.

Instead of giving exact expressions for αδ,∆ and βδ,∆ in Corollary 4, we pose it as an open
problem to determine the best-possible values for these coefficients.

9



References

[1] M. Blank, An estimate of the external stability number of a graph without suspended
vertices, Prikl Math i Programmirovanie Vyp 10 (1973), 3-11.

[2] R.C. Brigham and R.D. Dutton, Bounds on the domination number of a graph, Q. J.
Math., Oxf. II. Ser. 41 (1990), 269-275.

[3] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37
(1941), 194-197.

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs,
Marcel Dekker, Inc., New York, 1998.

[5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in graphs advanced topics,
Marcel Dekker, Inc., New York, 1998.

[6] K. Kawarabayashi, M.D. Plummer and A. Saito. Domination in a graph with a 2-factor,
J. Graph Theory 52 (2006), 1-6.

[7] A.V. Kostochka and B.Y. Stodolsky, On domination in connected cubic graphs, Discrete
Math. 304 (2005), 45-50

[8] A.V. Kostochka and B.Y. Stodolsky, An upper bound on the domination number of
n-vertex connected cubic graphs, manuscript (2005).

[9] W. McCuaig and B. Shepherd, Domination in graphs with minimum degree two, J.
Graph Theory 13 (1989), 749-762.

[10] O. Ore, Theory of graphs, Amer. Math. Soc. Colloq. Publ. 38, 1962.

[11] B. Randerath and L. Volkmann, Characterization of graphs with equal domination
and covering number, Discrete Math. 191 (1998), 159-169.

[12] D. Rautenbach, A Note on domination, girth and minimum degree, to appear in
Discrete Math.

[13] B. Reed, Paths, stars and the number three, Combin. Prob. Comput. 5 (1996), 267-
276.

[14] L. Volkmann, Upper bounds on the domination number of a graph in terms of diameter
and girth, J. Combin. Math. Combin. Comput. 52 (2005), 131-141.

[15] L. Volkmann, An upper bound for the domination number of a graph in terms of order
and girth, manuscript (2004).

[16] B. Xu, E.J. Cockayne, T.H. Haynes, S.T. Hedetniemi and S. Zhou, Extremal graphs
for inequalities involving domination parameters, Discrete Math. 216 (2000), 1-10.

10




