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1. Introduction

A Steiner triple system of order v, STS(v), is a pair (V,B) where V is a set of cardinality
v of elements, or points, and B is a collection of triples, also called blocks, which has the
property that every pair of distinct elements of V occurs in precisely one triple. It is well
known that an STS(v) exists if and only if v ≡ 1 or 3 (mod 6). Such values are called
admissible.

For any two points a and b in an STS(v), (V,B), we define the cycle graph Ga,b as
follows. The vertex set of Ga,b is V \ {a, b, a ∗ b}, where we denote by x ∗ y the third point
in a block containing the pair {x, y}. The edge set of Ga,b is the set of pairs {x, y} such
that either {x, y, a} is a block or {x, y, b} is a block. Clearly, Ga,b is a set of disjoint cycles
{Cn1 , Cn2 , . . . , Cnr}, where n1 + n2 + . . . + nr = v − 3 and for i = 1, 2, . . . , r, ni is even
and ni ≥ 4.

A configuration in the context of a Steiner triple system is a set of triples, also called
blocks, which has the property that every pair of distinct elements occurs in at most one
triple. If C is a configuration, we denote by P (C) its set of points. Two configurations C and
D are said to be isomorphic, in symbols C ∼= D, if there exists a bijection φ : P (C) → P (D)
such that for each triple T ∈ C, φ(T ) is a triple in D. For a Steiner triple system (V,B),
the set B itself may be regarded as a configuration with P (B) = V . The degree of a point
in a configuration is the number of blocks of the configuration which contain that point.
We sometimes write blocks with set brackets and commas omitted, so that for example
{0, 1, 3} might be written as 013.

In this paper we will be concerned with configurations having n blocks and n+2 points.
Such configurations are of particular interest because of the following result proved in [4].
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Table 1. Configurations having n blocks and n + 2 points, 4 ≤ n ≤ 6.

n Name Blocks Comment
4 Pasch 012, 034, 135, 245
5 mitre 012, 034, 135, 236, 456
5 012, 034, 135, 245, 056 contains Pasch
6 6-cycle 012, 034, 135, 246, 257, 367
6 crown 012, 034, 135, 236, 147, 567
6 012, 034, 135, 236, 146, 057 contains Pasch
6 012, 034, 135, 236, 146, 247 contains Pasch
6 012, 034, 135, 236, 147, 257 contains mitre

Theorem 1. For every integer d ≥ 3 and for every integer n satisfying n ≥ dd
2
e there

exists v0(n, d) such that for all admissible v ≥ v0(n, d), every STS(v) contains a configu-
ration having n blocks and n + d points.

Here, the value of d is sharp. For d = 2, the theorem does not hold. Indeed, the case
d = 2 is the subject of a conjecture of Erdös [3]: For every integer k ≥ 4, there exists
v0(k) such that if v > v0(k) and if v is admissible, then there exists an STS(v) with the
property that it contains no configurations having n blocks and n + 2 points for any n
satisfying 4 ≤ n ≤ k. Such an STS(v) is said to be k-sparse. Clearly, a k-sparse system is
also k′-sparse for every k′ satisfying 4 ≤ k′ ≤ k.

Up to isomorphism, there is only one configuration having four blocks and six points,
namely the Pasch configuration, also known as a quadrilateral; this is shown in Table 1.
The existence of 4-sparse (better known as anti-Pasch) STS(v)s for all admissible v, except
v = 7 and 13, was established in [1], [8], [10] and [7].

There is, up to isomorphism, only one Pasch-free configuration having five blocks and
seven points, namely the mitre. This is also shown in Table 1. In [2], [9] and [5], culminating
in recent work by Fujiwara and Wolfe [6], [12], it is established that anti-mitre systems
exist for all admissible orders except v = 9. Systems which are 5-sparse, that is, both
anti-Pasch and anti-mitre, are known for v ≡ 1, 19 (mod 54), except possibly v = 109,
and for many other sporadic values [9], [6]. Also we are aware that there exists a 5-
sparse STS(109) [13]. Substantial further progress has recently been made by Wolfe in
[14], where it is shown that 5-sparse STS(v)s exist for almost all admissible v (meaning
arithmetic set density 1 in the set of all admissible orders), and in [15], where existence
for all v ≡ 3 (mod 6) with v ≥ 21 is established.

There are, up to isomorphism, two Pasch-free and mitre-free configurations having six
blocks and eight points, of which one is the 6-cycle. The other configuration is called the
crown, a word that is suggested by following diagram.
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Crown configuration

Thus a system is 6-sparse if and only if it contains no Pasch configurations, no mitres,
no 6-cycles and no crowns. In [4] we presented the first known non-trivial examples of
6-sparse Steiner triple systems. Our results depended on two basic theorems. The first of
these is the following.
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Theorem 2. Suppose that v is a prime congruent to 7 modulo 12 and that χ is a mul-
tiplicative character of GF(v) of order 6. Suppose also that α ∈ GF (v) has the property
that χ(α) 6= −1, 0, 1 and that χ(1− α)χ(α) = ±1. Let G denote the group comprising all
mappings on GF (v) having the form x → ax + b for a, b ∈ GF (v) with χ(a) = 1. Then
the orbit generated by the block {0, 1, α} under the action of G forms a block transitive
STS(v).

Using Theorem 2, we obtained 29 6-sparse systems with 27 different prime orders v ≡
7 (mod 12). Furthermore, by employing Weil’s theorem on bounding character sums [11,
page 43] we were able to show that our list of such systems is complete.

The other theorem from [4] asserts that the standard product construction preserves
6-sparseness under certain conditions.

Theorem 3. Suppose that S = (V,B) is a block transitive Steiner triple system of order
v, with α and χ as in Theorem 2 and V = GF (v). Suppose also that S∗ = (W,B∗) is
a Steiner triple system of order w. For each block of B∗, arbitrarily fix the order of the
points, so that B∗ may be regarded as a set of ordered triples (i, j, k). Put V ′ = V × W
and let

B′ = {{ai, bi, ci} : {a, b, c} ∈ B, i ∈ W}
∪ {{xi, yj, (xβ + yγ)k} : x, y ∈ GF (v), (i, j, k) ∈ B∗},

where β, γ 6= 0 are fixed parameters in GF (v). Then S ′ = (V ′,B′) is a Steiner triple
system of order vw. Furthermore, if both S and S∗ are 6-sparse, if

α2 6∈ {α− 1, 1− α, α + 1, 3α− 1}, (1)

and if χ(β), χ(γ), χ(β/γ) 6= ±1, then S ′ is also 6-sparse.

Having shown that (1) holds for each of our original 29 block transitive systems, we can
repeatedly apply Theorem 3, choosing, for example, β = α and γ = 1/α, to establish that
there are infinitely many 6-sparse Steiner triple systems.

In this paper we prove a theorem analogous to Theorem 2 for the case v = 3p, where p
is prime and p ≡ 3 (mod 4). Using this theorem we are able to construct 6-sparse Steiner
triple systems of order 3p for all sufficiently large primes p ≡ 3 (mod 4).

2. Steiner triple systems with v ≡ 9 (mod 12)

For the remainder of the paper, p will always denote a prime congruent to 3 modulo 4,
and θ will denote the quadratic character modulo p. Thus if x 6≡ 0 (mod p), θ(x) = (x/p),
the Legendre symbol, and if x ≡ 0 (mod p), θ(x) = 0.

Theorem 4. Let p = 2s + 1 ≥ 7 be a prime such that p ≡ 3 (mod 4) and let v = 3p. Let
τ be an integer modulo v such that τ 6≡ 0 (mod 3) and τ is a primitive root modulo p. Let
ω = τ 2 mod v. Choose α modulo v such that either (i) α ≡ 0 (mod 3) and θ(α− 1) = 1,
or (ii) α ≡ 1 (mod 3) and θ(−α) = 1. Then, with all arithmetic modulo v,

{{m, m + ωi, m + αωi} : i = 0, 1, . . . , s− 1, m = 0, 1, . . . , v − 1}
∪ {{n, n + 1

3
v, n + 2

3
v} : n = 0, 1, . . . , 1

3
v − 1}
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is the set of blocks of an STS(v), defined on {0, 1, . . . , v−1}, which is generated by {0, 1, α}
and {0, v/3, 2v/3} under the action of the group of mappings

G = {x 7→ ωi x + m mod v, i = 0, 1, . . . , s− 1, m = 0, 1, . . . , v − 1}.

Proof. In this proof and the remarks which follow we shall tacitly assume that unless
otherwise specified all arithmetic is performed modulo v.

Clearly, the orbit of the starter block {0, p, 2p} under the action of G is {{n, n+ p, n+
2p} : n = 0, 1, . . . , p− 1}. Let

Ω(x) = {x ωi mod v : i = 0, 1, . . . , s− 1}

and observe that for any x modulo v, we have

θ(xω) = θ(x), xω ≡ x (mod 3)

and

Ω(x) = {y mod v : θ(y) = θ(x) and y ≡ x (mod 3)} .

Therefore we can prove the theorem by showing that the six differences ±1, ±α and
±(1 − α) generated by the triple {0, 1, α} have distinct combinations of quadratic char-
acter modulo p and residue class modulo 3. Since θ(−1) = −1, this is possible if and only
if α satisfies (i) or (ii) in the statement of the theorem.

The choice of τ is immaterial, subject to τ 6≡ 0 (mod 3) and τ being a primitive root
modulo p. To see this, suppose τ ′ 6≡ 0 (mod 3) is also a primitive root modulo p and let
ω′ = (τ ′)2. Then τ ′ ≡ τ t (mod p) for some t with (t, p− 1) = 1 and it is plain that for any
x,

Ω(x) = {x (ω′)i mod v : i = 0, 1, . . . , s− 1}.

If α ≡ 0 (mod 3), the four STS(v)s generated by the blocks {0, 1, δ} and {0, v/3, 2v/3}
for δ ∈ {α, 1−α, 1/(1−α), 1− 1/(1−α)} are isomorphic under the mappings x 7→ 1−x,
x 7→ (x − 1)/(α − 1) and x 7→ (α − x)/(α − 1). If α ≡ 1 (mod 3), the four STS(v)s
generated by the blocks {0, 1, δ} and {0, v/3, 2v/3} for δ ∈ {α, 1 − α, 1/α, 1 − 1/α} are
isomorphic under the mappings x 7→ 1− x, x 7→ x/α and x 7→ 1− x/α.

The above observations may be used to reduce the size of a search for 6-sparse systems
obtained from Theorem 4. A complete list, up to isomorphism, of such 6-sparse Steiner
triple systems for v < 10000 is given in Table 2. Systems with the same value of v are
pairwise non-isomorphic, as can be seen by examining the structure of the cycle graphs
G0,1, G0,α, G1,α and G0,v/3. We refer to a system created by Theorem 4 as a two-generator
system with parameters v and α.

The special mitres and Pasch configurations that are shown in [4] to be unavoidable in
all systems with sufficiently large order obtained from Theorem 2 do not form in the two-
generator systems of Theorem 4. We now prove that there is no such blocking mechanism
to prevent the formation of 6-sparse two-generator systems of arbitrarily large orders.

Theorem 5. For all sufficiently large v with v = 3p, p prime and p ≡ 3 (mod 4), there
exists α such that the two-generator system of Theorem 4 with parameters v and α is
6-sparse.
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Table 2. 6-sparse systems with v ≡ 9 (mod 12)
v α v α v α v α v α v α v α

489 135 3837 880 5277 1377 6429 129 7977 1960 8637 919 9357 18
501 160 3849 1263 5277 1486 6429 1462 7977 2404 8637 1393 9357 390

1077 75 3909 544 5277 2074 6429 2097 7977 2944 8637 2046 9357 403
1101 379 3909 1063 5349 15 6537 915 7989 402 8637 2077 9357 1033
1149 328 3981 1627 5361 835 6537 1068 7989 657 8637 4141 9357 1516
1329 309 4101 265 5361 1075 6609 31 7989 2298 8661 490 9357 2152
1437 12 4101 427 5361 1377 6609 810 7989 3429 8661 1011 9357 2403
1461 13 4101 561 5469 84 6717 954 8013 348 8661 1254 9357 2643
1461 42 4281 204 5469 415 6753 1551 8013 496 8661 1918 9489 1048
1509 490 4317 201 5469 1114 6753 2184 8013 549 8661 2901 9489 1191
1569 232 4317 432 5469 1516 6861 385 8013 793 8709 42 9489 1809
1641 223 4317 658 5493 430 6861 604 8013 1009 8709 99 9489 4314
1689 276 4317 693 5493 1576 6933 933 8013 2353 8709 250 9501 168
1857 141 4317 744 5541 1104 6933 3030 8049 570 8709 705 9501 471
1857 328 4317 993 5541 1707 7017 81 8049 1173 8709 1296 9501 486
1929 502 4353 660 5541 2344 7017 240 8061 3 8709 1395 9501 1605
1929 508 4353 1057 5601 1065 7017 1117 8061 18 8709 1695 9501 2514
1941 3 4377 58 5613 1470 7041 351 8061 57 8709 2010 9501 3609
1941 736 4377 184 5613 1900 7041 1009 8061 439 8709 3925 9561 148
1977 519 4377 409 5613 2218 7041 1305 8061 576 8781 366 9561 4164
2157 36 4449 94 5613 2343 7041 1392 8061 1270 8781 498 9561 4273
2157 186 4497 430 5637 880 7053 520 8061 1333 8781 685 9573 54
2181 9 4569 370 5721 1594 7053 985 8061 1531 8781 979 9573 162
2217 193 4569 1402 5853 376 7053 1650 8097 666 8781 2251 9573 391
2229 880 4569 1837 5853 435 7053 2227 8121 307 8781 3706 9573 687
2361 979 4593 117 5853 1677 7113 2404 8121 1231 8817 571 9573 1093
2433 594 4593 1210 5853 2064 7149 714 8121 1347 8817 1552 9573 1350
2589 684 4629 366 5937 1365 7197 966 8133 292 8817 1969 9573 2085
2649 421 4629 1699 5937 1606 7197 1138 8133 1386 8817 2991 9573 2202
2649 609 4677 12 5961 358 7233 1794 8133 2764 8913 694 9609 306
2721 534 4677 78 5961 1540 7269 85 8133 3225 8913 1725 9609 721
2733 24 4677 99 5997 643 7341 1390 8157 2062 8913 3289 9609 1191
2733 240 4677 126 5997 1372 7341 1597 8193 160 8997 150 9609 1260
2733 585 4677 583 6009 360 7377 891 8193 1153 8997 351 9609 1731
2733 682 4677 1240 6009 900 7377 2287 8301 700 8997 367 9609 1783
2841 447 4701 76 6009 1167 7401 87 8301 835 8997 753 9609 2994
2949 711 4701 337 6033 126 7401 3546 8301 871 8997 955 9609 3166
2949 906 4701 430 6033 792 7509 907 8301 994 8997 1227 9753 2193
2949 919 4701 499 6033 2251 7509 1293 8301 1011 8997 2253 9753 3313
2973 288 4749 418 6081 457 7509 1762 8301 2398 8997 2857 9753 3454
2973 309 4749 1239 6081 1360 7593 103 8373 537 8997 3295 9777 364
3057 954 4749 1294 6117 604 7593 219 8373 1657 8997 3606 9777 903
3093 445 4821 43 6117 2373 7593 1108 8373 2697 9033 273 9813 1743
3093 610 4821 565 6117 2490 7617 85 8373 2913 9033 1582 9813 3049
3117 345 4821 826 6189 63 7617 223 8409 630 9033 3421 9897 1206
3117 579 4821 1240 6189 1429 7617 231 8409 1927 9057 397 9921 96
3189 318 4821 1587 6189 2224 7617 816 8409 2554 9057 720 9921 910
3261 9 4857 163 6249 69 7617 864 8457 685 9057 1308 9921 3514
3261 409 4857 1057 6249 561 7629 141 8529 57 9057 2643 9921 3865
3261 735 4881 942 6249 2653 7629 876 8529 471 9069 2761 9957 99
3309 390 4881 1761 6261 907 7653 162 8529 507 9201 486 9957 144
3309 940 4989 336 6261 1200 7653 366 8529 3192 9201 595 9957 2194
3453 802 5001 919 6261 1219 7653 498 8553 444 9201 946 9957 4138
3513 223 5001 1530 6261 1422 7653 1440 8553 568 9201 1327 9969 619
3513 598 5001 1608 6297 286 7653 1612 8553 1189 9201 2146 9969 2410
3561 313 5097 70 6297 1278 7737 1192 8553 1738 9201 2365 9969 2565
3669 87 5097 633 6297 1983 7773 1327 8553 2931 9237 648 9993 2443
3669 231 5097 1227 6333 135 7773 2185 8637 52 9237 693
3669 520 5097 1747 6333 648 7773 2239 8637 232 9237 2287
3693 102 5169 915 6333 810 7773 3270 8637 432 9249 556
3693 544 5241 538 6333 2242 7941 1864 8637 523 9249 3069
3693 838 5241 2160 6429 72 7977 1107 8637 744 9249 3339
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The proof of this theorem makes use of the following lemmas, the last of which relies
on extensive computations.

Lemma 1. Let n be a positive integer, let p be a prime, let

a1,1 x1 + a1,2 x2 + . . . + a1,n xn ≡ c1 (mod p)
a2,1 x1 + a2,2 x2 + . . . + a2,n xn ≡ c2 (mod p)

. . .
an,1 x1 + an,2 x2 + . . . + an,n xn ≡ cn (mod p)

(2)

be a set of linear congruences modulo p and let A = [ai,j] be the corresponding matrix
of coefficients. Suppose |A| 6≡ 0 (mod p). Then there exists a unique solution of (2) in
GF(p). Furthermore, the solution is formally the same as that obtained by solving (2) over
the rationals.

Proof. This is well known.

Lemma 2. Let S = (V,B) be a two-generator Steiner triple system with parameters v and
α containing one of the configurations Pasch, mitre, 6-cycle, crown. Let V = {0, 1, . . . , v−
1} and let Γ = {G1,G2, . . . ,G13}, where

G1 = {{0, 1, α}, {0, x1, x2}, {1, x2, x3}, {α, x1, x3}},
G2 = {{0, 1, α}, {0, x1, x2}, {0, x3, x4}, {1, x1, x3}, {α, x2, x4}},
G3 = {{0, 1, α}, {1, x1, x2}, {1, x3, x4}, {0, x1, x3}, {α, x2, x4}},
G4 = {{0, 1, α}, {α, x1, x2}, {α, x3, x4}, {0, x1, x3}, {1, x2, x4}},
G5 = {{0, 1, α}, {0, x1, x2}, {0, x3, x4}, {x5, 1, x1}, {x5, α, x3}, {x5, x2, x4}},
G6 = {{0, 1, α}, {1, x1, x2}, {1, x3, x4}, {x5, 0, x1}, {x5, α, x3}, {x5, x2, x4}},
G7 = {{0, 1, α}, {α, x1, x2}, {α, x3, x4}, {x5, 0, x1}, {x5, 1, x3}, {x5, x2, x4}},
G8 = {{0, 1, α}, {0, x1, x2}, {0, x3, x5}, {1, x1, x4}, {α, x1, x5}, {x2, x3, x4}},
G9 = {{0, 1, α}, {0, x1, x2}, {0, x3, x5}, {α, x1, x4}, {1, x1, x5}, {x2, x3, x4}},
G10 = {{0, 1, α}, {1, x1, x2}, {1, x3, x5}, {0, x1, x4}, {α, x1, x5}, {x2, x3, x4}},
G11 = {{0, 1, α}, {1, x1, x2}, {1, x3, x5}, {α, x1, x4}, {0, x1, x5}, {x2, x3, x4}},
G12 = {{0, 1, α}, {α, x1, x2}, {α, x3, x5}, {0, x1, x4}, {1, x1, x5}, {x2, x3, x4}},
G13 = {{0, 1, α}, {α, x1, x2}, {α, x3, x5}, {1, x1, x4}, {0, x1, x5}, {x2, x3, x4}}.

Then there is a G ∈ Γ such that G ⊂ B for some x1, x2, . . . , xn ∈ V , where n = |G| − 1.

Proof. By Theorem 4, v = 3p, p prime, p ≡ 3 (mod 4), and S is generated by blocks
{0, 1, α} and {0, p, 2p}. Let X be one of the configurations Pasch, mitre, 6-cycle, crown.
Suppose X ⊂ B.

Observe that G1 is a Pasch configuration, G2, G3 and G4 are mitres, G5, G6 and G7 are
6-cycles, G8, G9, . . . , G13 are crowns and the block of G ∈ Γ labelled {0, 1, α} is one of two
intersecting blocks which map to each other under an automorphism of G. Since X cannot
contain two intersecting blocks belonging to the orbit of {0, p, 2p}, it is straightforward
to verify (perhaps by drawing diagrams) that there exists an automorphism of S which
maps X to some G ∈ Γ for some x1, x2, . . . , x|G|−1 ∈ V .

Lemma 3. Let p be prime and suppose that the polynomial f(x) is not a constant multiple
of a square over GF (p). Then ∣∣∣∣∣∣

∑
x∈GF (p)

θ(f(x))

∣∣∣∣∣∣ = O(
√

p).
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Proof. This is a special case of the theorem on page 43 of [11].

In the next lemma we introduce a set of polynomials, Λ. In Lemma 5 we investigate
certain sets of linear congruences. The coefficients of these congruences involve a param-
eter, α. We wish to show that there exists an α such that either the congruences have
no solution, or the solution satisfies certain conditions that can be expressed in the form
θ(ρ(α)) = 1 for certain rational functions ρ(x). We then find that there is a set of poly-
nomials Λ with the property that if θ(λ(α)) = 1 for all λ(x) ∈ Λ, then θ(ρ(α)) = −1
for at least one of the functions ρ(x). Actually, to deal with questions of existence and
uniqueness of solutions, slightly more than this is required, and the key property of Λ is
that given in Lemma 4. The set Λ given in this lemma was obtained by considering the
numerators and denominators of the functions ρ(x). It is not feasible to explain why each
individual polynomial is included in Λ. However, we give below, following the proof of
Lemma 5, several examples to illustrate the method. In particular, Example 1 explains
why −x3 + 5x2 − 6x + 3 ∈ Λ.

Lemma 4. Let

Λ = {x, x− 1, x + 1,−2x + 1, 2x− 3,−x + 3, x2 + 1,−x2 − 2,

−x2 − x + 1, x2 − x + 1,−x2 + x + 1,−x2 + 2x− 2,

−x2 + 3x− 3,−2x2 + 3x− 2, 3x2 − 4x + 2, 2x2 − 4x + 3,

−2x2 + 3x− 3, 3x2 − 5x + 3, x2 − 2x + 3, x2 − 3x + 1,

−x3 + x2 − 1,−x3 + 2x2 − x− 1,−x3 + 3x2 − 2x + 1,

x3 − 2x2 + 3x− 3, x3 − 3x2 + 6x− 3, x3 − 3x + 3,

−x3 + 5x2 − 6x + 3,−x3 + 3x2 − 4x + 1}.

Given any positive number N , for all sufficiently large prime p, there exist at least N
numbers α, distinct modulo p, such that θ(λ(α)) = 1 for all λ(x) ∈ Λ.

Proof. Let

π(x) =
∏

λ(x)∈Λ

(1 + θ(λ(x)))

and
∆ =

∑
x∈GF(p)

π(x).

Then
∆ = p +

∑
f(x)

∑
x∈GF(p)

θ(f(x)),

where f(x) in the outer sum runs through all 2|Λ|− 1 non-empty products of polynomials
λ(x) ∈ Λ. It is easily checked that over the rationals the polynomial

∏
λ(x)∈Λ λ(x) has non-

zero discriminant. Hence, assuming that p is sufficiently large, f(x) is never a constant
multiple of a square over GF(p). So by Lemma 3 we have ∆ = p−O(

√
p).

Since both π(x) and the number of factors of π(x) which are equal to 1 are bounded as
p →∞, it follows that for each fixed N and for p sufficiently large, there exist N distinct
values of α modulo p such that θ(λ(α)) = 1 for all λ(x) ∈ Λ.



Further 6-sparse Steiner triple systems 9

Lemma 5. Let v = 3p, p prime, p ≡ 3 (mod 4). Let Λ be the set of polynomials in
Lemma 4. Then there exists a polynomial Q(x) such that if α ≡ 0 (mod 3), if θ(λ(α)) = 1
for all λ(x) ∈ Λ and if Q(α) 6≡ 0 (mod p), then there exists a 6-sparse two-generator
Steiner triple system with parameters v and α.

Proof. Let v = 3p, p prime, p ≡ 3 (mod 4) and suppose α satisfies the conditions of the
lemma with Q(x) to be chosen later. Observe that x − 1 ∈ Λ; therefore θ(α − 1) = 1,
as required by Theorem 4, and hence there exists a two-generator Steiner triple system
S = (V,B) with parameters v and α. We show that with a suitable choice of Q(x) S is
6-sparse.

Let Γ = {G1,G2, . . . ,G13} be the set of configurations in Lemma 2. Let G ∈ Γ and let
G have n+1 blocks. For d = 1, 2, . . . , n, let (ad, bd, cd) be the dth block of G \{{0, 1, α}} in
some ordering. Then if G ⊂ B, we have the following set of 3n linear congruences modulo
3p in variables x1, x2, . . . , xn, m1, m2, . . . ,mn and the variables ωd for those d where the
corresponding congruences have the first alternative on the right:

(a1, b1, c1) ≡
{

(m1, m1 + ω1, m1 + αω1)
or (m1, m1 + p, m1 + 2p),

(a2, b2, c2) ≡
{

(m2, m2 + ω2, m2 + αω2)
or (m2, m2 + p, m2 + 2p),

. . . ,

(an, bn, cn) ≡
{

(mn, mn + ωn, mn + αωn)
or (mn, mn + p, mn + 2p).

On eliminating the md we have 2n congruences modulo 3p:

(bi − ai, ci − ai) ≡ (ωi, αωi) or (p, 2p), i = 1, 2, . . . , n. (3)

Since there are six permutations of (ai, bi, ci) and two possible congruences for each,
there are 12n possible sets of congruences represented by (3). (Although this number
can be reduced somewhat, we prefer, for simplicity, to present the results of our original
computations, which do not exploit additional symmetries in (3).) Thus by Lemma 2, if
S contains a Pasch, mitre, 6-cycle or crown configuration, there exists a G ∈ Γ and a
corresponding set of congruences (3) which has, for some orderings of the blocks of G and
some choice of the alternatives on the right of (3), a solution modulo 3 in which all the
ωd present satisfy ωd ≡ 1 (mod 3) and a solution modulo p in which all the ωd present
satisfy θ(ωd) = 1. To show that this cannot happen, we examine each of the 12n possible
sets of congruences (3) for each configuration G ∈ Γ . Denote this collection of congruence
sets by Φ0. Thus |Φ0| = 123 + 3 · 124 + 9 · 125 = 2303424.

As an immediate first step, we eliminate from Φ0 all sets where there are two inter-
secting blocks in the orbit of {0, p, 2p}, for such configurations cannot occur in S. This
leaves a collection Φ1 of 584064 sets: 864 for G1, 7776 each for G2,G3 and G4, 62208 each
for G5,G6, . . . ,G13. For example, take the crown configuration G8. Denote the blocks other
than {0, 1, α}, by A, B, C, D and E, where {A, B} and {C, D} are pairs of parallel blocks.
Then we have the following possibilities for blocks in the orbit of {0, p, 2p}: none, 65; block
E, 65; one or both of {A, B}, 2 · 65 + 65; one or both of {C, D}, 2 · 65 + 65. So the total
number of legitimate congruence sets that arise from G8 is 8 · 65 = 62208.
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Next, we eliminate from Φ1 all cases where (3) has no solution modulo 3. We assume
that α = 0 and that ωd = 1 for all multipliers ωd present. We also assume that p = 1.
For if a set of congruences (3) has a solution modulo 3 with p = 2 and includes the pairs
{bj − aj ≡ p, cj − aj ≡ 2p} for those j ∈ {1, 2, . . . , n} where the block {aj, bj, cj} is in the
orbit of {0, p, 2p}, then the set of congruences obtained by interchanging bj and cj has the
same solution with p = 1, and, of course, both sets of congruences are identical modulo p.
After performing the computations we are left with the collection Φ2 of 3320 congruence
sets, partitioned as follows: G1, 32; G2,G3,G4, 168 each; G5,G6,G7, 384 each; G8,G13, 344
each; G9,G12, 224 each; G10,G11, 248 each. In all cases the solution modulo 3 is unique.

We deal with Φ2 by examining each congruence set modulo p. For a given congruence
set, let t be the number of blocks in the orbit of {0, p, 2p} and note that 0 ≤ t ≤ 2. Recall
that the configuration has n + 1 blocks. So there are 2n congruences, n point variables,
x1, x2, ..., xn, and n− t multiplier variables, ωd. We select 2n− t congruences by excluding
t (possibly none) of the 2t congruences that involve p.

Suppose t = 0. With the congruences (3) written in matrix form Dx = e, we find that
in every case |D| is a polynomial in α, d(α), say, which is not identically zero. Assuming
that p is sufficiently large and α is chosen such that d(α) 6≡ 0 (mod p), we can obtain the
unique solution x = D−1e (modulo p), where x = (x1, x2, . . . , xn, ω1, ω2, . . . , ωn) and the
elements of D−1e are rational functions of α. Next we attempt to compute the quadratic
characters of the multipliers ωj and the ratios ωj/ωk on the assumption that θ(λ(α)) = 1
for each λ(x) ∈ Λ. In all except four cases we find that at least one multiplier or ratio of
multipliers is not a quadratic residue modulo p, and hence G cannot occur in S. Example 1
illustrates this point. The remaining four cases correspond to a Pasch configuration and
three 6-cycles, where in the solution of the congruences (3) the xi are such that every block
is of the form {a, b, c} with (a, b, c) ≡ (0, 1, α) (mod p) and the ωi are all ≡ 1 (mod p).
Since each ωi is also congruent to 1 modulo 3, it follows that each ωi is equal to 1. This
in turn implies that the configuration contains repeated blocks. See Example 2 below.

Now suppose t > 0. We find that it is always possible to choose 2n − t congruences
from (3) such that when they are written in matrix form Dx = e, |D| = d(α) is not
identically zero. So if α is chosen such that d(α) 6≡ 0 (mod p), then we get a unique
solution for the 2n − t variables, x = D−1e. The excluded t = 1 or 2 congruences have
the form bi−ai ≡ 0 (mod p) or ci−ai ≡ 0 (mod p) for some i. So suppose for these i that
the solution x = D−1e gives ai = ai(α), bi = bi(α) and ci = ci(α) for rational functions
ai(α), bi(α) and ci(α). We either have: (i) for all t excluded congruences, bi(α)− ai(α) or
ci(α)− ai(α) is identically zero for all α; or (ii) for one of the excluded congruences there
exists α such that bi(α)− ai(α) 6≡ 0 (mod p) or ci(α)− ai(α) 6≡ 0 (mod p).

In case (i), the excluded congruences may be ignored and we proceed as for t = 0,
where it turns out always that, assuming θ(λ(α)) = 1 for all λ(x) ∈ Λ, either θ(ωj) = −1
for some multiplier ωj or θ(ωj/ωk) = −1 for some ratio ωj/ωk of multipliers. Hence G
does not occur in S. Example 3 illustrates this case.

In case (ii), by clearing the denominator we obtain an additional constraint, which
takes the form q(α) ≡ 0 (mod p) for some polynomial q(x). Then if α is chosen such that
q(α) 6≡ 0 (mod p), the congruences (3) will be inconsistent and hence G will not occur in
S. See Example 4.

To complete the proof we set Q(x) equal to the least common multiple of all the deter-
minant polynomials d(x) and constraint polynomials q(x) encountered in the preceding
analysis. Observe that if p is sufficiently large, none of the functions d(x) and q(x) depend
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on p, and hence Q(x) is independent of p.

Whilst it is not feasible within the space limitations of this paper to give details of all
the cases that occur in the proof of Lemma 5, the main features of the method can be
illustrated by a few examples.

Example 1.

Let G be the 6-cycle configuration G5 with the blocks ordered as written:

{{0, 1, α}, {0, x1, x2}, {x5, α, x3}, {x3, 0, x4}, {x1, x5, 1}, {x4, x2, x5}}.

Suppose all these blocks belong to the orbit of {0, 1, α}. The congruences to be solved
modulo 3p are

(0, x1, x2) ≡ (m1, m1 + ω1, m1 + αω1),

(x5, α, x3) ≡ (m2, m2 + ω2, m2 + αω2),

(x3, 0, x4) ≡ (m3, m3 + ω3, m3 + αω3),

(x1, x5, 1) ≡ (m4, m4 + ω4, m4 + αω4),

(x4, x2, x5) ≡ (m5, m5 + ω5, m5 + αω5),

or, after eliminating m1, m2, m3, m4, m5,

(x1, x2) ≡ (ω1, αω1),
(α− x5, x3 − x5) ≡ (ω2, αω2),

(−x3, x4 − x3) ≡ (ω3, αω3),
(x5 − x1, 1− x1) ≡ (ω4, αω4),

(x2 − x4, x5 − x4) ≡ (ω5, αω5).

(4)

Setting α = 0 and ω1 = ω2 = ω3 = ω4 = ω5 = 1, we solve this set of congruences modulo
3 to obtain the unique solution:

x1 = 1, x2 = 0, x3 = x4 = x5 = 2.

Therefore we consider the congruences (4) modulo p, and for this purpose we put them
into matrix form:

−1 0 0 0 0 1 0 0 0 0
0 −1 0 0 0 α 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 −1 0 1 0 α 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 1 −1 0 0 0 α 0 0
1 0 0 0 −1 0 0 0 1 0
1 0 0 0 0 0 0 0 α 0
0 −1 0 1 0 0 0 0 0 1
0 0 0 1 −1 0 0 0 0 α





x1

x2

x3

x4

x5

ω1

ω2

ω3

ω4

ω5



≡



0
0
α
0
0
0
0
1
0
0



(mod p).

There are ten congruences and ten variables, the determinant of the system is −α(α3 −
5α2 + 6α− 3), and we assume that x(x3 − 5x2 + 6x− 3) is a factor of Q(x). Hence there
is a unique solution modulo p :

x1 =
α4 − 2α3 + 3α− 3

α3 − 5α2 + 6α− 3
, x2 =

α5 − 2α4 + 3α2 − 3α

α3 − 5α2 + 6α− 3
, x3 =

−α4 + 2α2 − 2α

α3 − 5α2 + 6α− 3
,
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x4 =
α5 − α4 − 2α3 + 4α2 − 2α

α3 − 5α2 + 6α− 3
, x5 =

α4 − 3α3 + 3α2 − 2α

α3 − 5α2 + 6α− 3
,

ω1 =
α4 − 2α3 + 3α− 3

α3 − 5α2 + 6α− 3
, ω2 =

−2α3 + 3α2 − α

α3 − 5α2 + 6α− 3
, ω3 =

α4 − 2α2 + 2α

α3 − 5α2 + 6α− 3
,

ω4 =
−α3 + 3α2 − 5α + 3

α3 − 5α2 + 6α− 3
, ω5 =

−α4 + 2α3 − α2 − α

α3 − 5α2 + 6α− 3
.

Since x, x− 1, 1− 2x and −x3 + 5x2 − 6x + 3 are in Λ, we can assume that

θ(α) = θ(α− 1) = θ(1− 2α) = θ(−α3 + 5α2 − 6α + 3) = 1.

Hence we can compute the quadratic character of ω2,

θ(ω2) = θ

(
−2α3 + 3α2 − α

α3 − 5α2 + 6α− 3

)
= θ

(
α(α− 1)(1− 2α)

α3 − 5α2 + 6α− 3

)
= −1,

and deduce that the configuration does not occur in S.

Example 2.

Let G be the Pasch configuration G1 with the blocks ordered as written:

{{0, 1, α}, {0, x1, x2}, {x3, 1, x2}, {x3, x1, α}}.

Suppose all these blocks belong to the orbit of {0, 1, α}. The congruences to be solved
modulo 3p are

(0, x1, x2) ≡ (m1, m1 + ω1, m1 + αω1),

(x3, 1, x2) ≡ (m2, m2 + ω2, m2 + αω2),

(x3, x1, α) ≡ (m3, m3 + ω3, m3 + αω3),

or, after eliminating m1, m2, m3,

(x1, x2) ≡ (ω1, αω1),
(1− x3, x2 − x3) ≡ (ω2, αω2),
(x1 − x3, α− x3) ≡ (ω3, αω3).

(5)

Setting α = 0 and ω1 = ω2 = ω3 = 1, we solve this set of congruences modulo 3 to
obtain the unique solution x1 = 1, x2 = x3 = 0. Therefore we consider the congruences
(5) modulo p, and for this purpose we put them into matrix form:

−1 0 0 1 0 0
0 −1 0 α 0 0
0 0 1 0 1 0
0 −1 1 0 α 0

−1 0 1 0 0 1
0 0 1 0 0 α





x1

x2

x3

ω1

ω2

ω3


≡



0
0
1
0
0
α


(mod p).

The determinant of the system is 2α(α−1), and we assume that x(x−1) is a factor of Q(x).
Hence there is a unique solution modulo p : x1 = 1, x2 = α, x3 = 0, ω1 = ω2 = ω3 = 1.
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In fact, this is one of the four configurations where the system of congruences (3) has a
legitimate solution and, as previously explained, it does not exist in S.

The other three configurations where the congruences have legitimate solutions modulo
3p are the 6-cycles G5, G6 and G7, with the blocks, all in the orbit of {0, 1, α}, ordered as
written:

G5 : {{0, 1, α}, {0, x3, x4}, {x5, 1, x1}, {x5, x2, x4}, {0, x2, x1}, {x5, x3, α}},
G6 : {{0, 1, α}, {0, x5, x1}, {x2, x5, x4}, {x3, 1, x4}, {x2, 1, x1}, {x3, x5, α}},
G7 : {{0, 1, α}, {0, x1, x5}, {x2, x4, x5}, {x3, x4, α}, {x2, x1, α}, {x3, 1, x5}}.

Example 3.

Let G be the mitre configuration G2 with the blocks ordered as written:

{{0, 1, α}, {0, x1, x2}, {x1, x3, 1}, {x2, x4, α}, {0, x4, x3}}.

Suppose the second, third and fourth blocks belong to the orbit of {0, 1, α} and the fifth
belongs to the orbit of {0, p, 2p}. The congruences to be solved modulo 3p are

(0, x1, x2) ≡ (m1, m1 + ω1, m1 + αω1),

(x1, x3, 1) ≡ (m2, m2 + ω2, m2 + αω2),

(x2, x4, α) ≡ (m3, m3 + ω3, m3 + αω3),

(0, x4, x3) ≡ (m4, m4 + p, m4 + 2p),

or, after eliminating m1, m2, m3, m4,

(x1, x2) ≡ (ω1, αω1),
(x3 − x1, 1− x1) ≡ (ω2, αω2),
(x4 − x2, α− x2) ≡ (ω3, αω3),

(x4, x3) ≡ (p, 2p).

(6)

Setting α = 0 and ω1 = ω2 = ω3 = p = 1, we solve this set of congruences modulo 3 to
obtain this unique solution:

x1 = 1, x2 = 0, x3 = 2, x4 = 1.

Therefore we consider the congruences (6) modulo p, and for this purpose we put them
into matrix form: 

−1 0 0 0 1 0 0
0 −1 0 0 α 0 0
1 0 −1 0 0 1 0
1 0 0 0 0 α 0
0 1 0 −1 0 0 1
0 1 0 0 0 0 α
0 0 0 −1 0 0 0
0 0 −1 0 0 0 0





x1

x2

x3

x4

ω1

ω2

ω3


≡



0
0
0
1
0
α
0
0


(mod p).

There are eight congruences but only seven variables. So we exclude the last congruence
and work with just the first seven. The determinant of the reduced system is α2(α − 1),
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and we assume that x(x− 1) is a factor of Q(x). Hence there is a unique solution modulo
p :

x1 =
1

1− α
, x2 =

α

1− α
, x3 = x4 = 0, ω1 =

1

1− α
, ω2 =

1

α− 1
, ω3 =

α

α− 1

and, furthermore, this solution is consistent with the excluded congruence, x3 ≡ 0 (mod p).
However, we can compute the quadratic character of ω1:

θ(ω1) = θ(1− α) = −1,

since x− 1 ∈ Λ, and therefore deduce that this configuration does not occur in S.

Example 4.

Let G be the crown configuration G8 with the blocks ordered as written:

{{0, 1, α}, {1, x1, x4}, {x2, x3, x4}, {x1, α, x5}, {x3, 0, x5}, {0, x2, x1}},

and suppose only the last block belongs to the orbit of {0, p, 2p}. The congruences to be
solved modulo 3p are

(1, x1, x4) ≡ (m1, m1 + ω1, m1 + αω1),

(x2, x3, x4) ≡ (m2, m2 + ω2, m2 + αω2),

(x1, α, x5) ≡ (m3, m3 + ω3, m3 + αω3),

(x3, 0, x5) ≡ (m4, m4 + ω4, m4 + αω4),

(0, x2, x1) ≡ (m5, m5 + p, m5 + 2p),

or, after eliminating m1, m2, m3, m4, m5,

(x1 − 1, x4 − 1) ≡ (ω1, αω1),
(x3 − x2, x4 − x2) ≡ (ω2, αω2),
(α− x1, x5 − x1) ≡ (ω3, αω3),

(−x3, x5 − x3) ≡ (ω4, αω4),
(x2, x1) ≡ (p, 2p).

(7)

Setting α = 0 and ω1 = ω2 = ω3 = ω4 = p = 1, this set of congruences has a unique
solution modulo 3:

x1 = x3 = x5 = 2, x2 = x4 = 1.

For solving modulo p, we put (7) in matrix form:

−1 0 0 0 0 1 0 0 0
0 0 0 −1 0 α 0 0 0
0 1 −1 0 0 0 1 0 0
0 1 0 −1 0 0 α 0 0
1 0 0 0 0 0 0 1 0
1 0 0 0 −1 0 0 α 0
0 0 1 0 0 0 0 0 1
0 0 1 0 −1 0 0 0 α
0 −1 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 0





x1

x2

x3

x4

x5

ω1

ω2

ω3

ω4


≡



−1
−1

0
0
α
0
0
0
0
0



(mod p).
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There are ten congruences but only nine variables. We temporarily remove the last con-
gruence and consider only the first nine. However, the determinant of this reduced system
is identically zero. So we take instead the first eight and the tenth congruences, omitting
the ninth. This system has determinant d(α) = (α − 1)2, which is not zero modulo p
provided x− 1 is a factor of Q(x). The unique solution modulo p of this system is then

x1 = 0, x2 =
1− 2α + α2 − α3

(α− 1)2
, x3 =

−α2

α− 1
, x4 = 1− α, x5 = α2,

ω1 = −1, ω2 =
2α− 1

(α− 1)2
, ω3 = α, ω4 =

α2

α− 1
,

which is inconsistent with the omitted congruence, x2 ≡ 0 (mod p), unless q(α) ≡
0 (mod p), where q(x) = 1 − 2x + x2 − x3. Since we can assume that x − 1 and q(x)
are factors of Q(x), this configuration does not occur in S.

Proof of Theorem 5. The result follows from Lemma 4 and Lemma 5. Choose N greater
than the degree of Q(x). Take p so large that it does not divide any of the coefficients of
Q(x) and is sufficiently large for Lemma 4 to apply. Then by Lemma 4 we select an α
which is not a root of Q(x) modulo p and is such that θ(λ(α)) = 1 for all λ(x) ∈ Λ. If
necessary we add a multiple of p to α to obtain a value that is congruent to 0 modulo 3.
Now apply Lemma 5.

Finally, we briefly address a question which naturally arises. Can Theorem 4 be used
to create 7-sparse Steiner triple systems? We suspect not. In our research we have been
unable to find any 6-sparse system which avoids the 7-block, 9-point configuration {012,
034, 135, 246, 257, 168, 078}, obtained by adding a diagonal to the ‘window frame’.
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