The four-in-a-tree problem in triangle-free graphs

Nicolas Derhy, Christophe Picouleau ${ }^{\dagger}$, Nicolas Trotignon ${ }^{\ddagger}$

March 10, 2009

Abstract

The three-in-a-tree algorithm of Chudnovsky and Seymour decides in time $O\left(n^{4}\right)$ whether three given vertices of a graph belong to an induced tree. Here, we study four-in-a-tree for triangle-free graphs. We give a structural answer to the following question: what does a triangle-free graph look like if no induced tree covers four given vertices ? Our main result says that any such graph must have the "same structure", in a sense to be defined precisely, as a square or a cube.

We provide an $O(n m)$-time algorithm that given a triangle-free graph G together with four vertices outputs either an induced tree that contains them or a partition of $V(G)$ certifying that no such tree exists. We prove that the problem of deciding whether there exists a tree T covering the four vertices such that at most one vertex of T has degree at least 3 is NP-complete.

AMS Mathematics Subject Classification: 05C75, 05C85, 05C05, 68R10, 90C35
Key words: tree, algorithm, three-in-a-tree, four-in-a-tree, triangle-free graphs, induced subgraph.

1 Introduction

Many interesting classes of graphs are defined by forbidding induced subgraphs, see [2] for a survey. This is why the detection of several kinds of induced subgraphs is interesting, see [6] for a survey. In particular, the problem of deciding whether a graph G contains as an induced subgraph some graph obtained after possibly subdividing prescribed edges of a prescribed graph H has been studied. It turned out that this problem can be polynomial or NP-complete according to H and to the set of edges that can be subdivided. Details, examples and open problems are given in [6]. The most general tool for solving this kind of problems (when they are polynomial) seems to be the three-in-a-tree algorithm of Chudnovsky and Seymour:

Theorem 1.1 (see [3]) Let G be a connected graph and x_{1}, x_{2}, x_{3} be three distinct vertices of G. Then deciding if there exists an induced tree of G that contains x_{1}, x_{2}, x_{3} can be done in time $O\left(n^{4}\right)$.

[^0]

Figure 1: no tree covers $x_{1}, x_{2}, x_{3}, x_{4}$, first example

Figure 2: no tree covers $x_{1}, x_{2}, x_{3}, x_{4}$, second example

How to use three－in－a－tree is discussed in［3］and further evidences of its generality are given in［6］．Because of the power and deepness of three－in－a－tree，it would be interesting to generalise it．Here we study four－in－a－tree：the problem whose instance is a graph G together with four of its vertices，and whose question is＂Does G contain an induced tree covering the four vertices ？＂．Since this problem seems complicated to us，we restrict ourselves to triangle－ free graphs．Our approach is similar to that of Chudnovsky and Seymour for three－in－a－tree． We give a structural answer to the following question：what does a triangle－free graph look like if no induced tree covers four given vertices $x_{1}, x_{2}, x_{3}, x_{4}$ ？On Fig．$⿴ 囗 十$ and 2，two examples of such graphs are represented．Our main result，Theorem［2．3，says that any triangle－free graph that does not contain a tree covering four vertices $x_{1}, x_{2}, x_{3}, x_{4}$ must have the＂same structure＂，in a sense to be defined later，as one of the two examples．The details of the statement are given in Section 2，

Our result is algorithmic：we provide an $O(n m)$－time algorithm that given a graph G together with four vertices $x_{1}, x_{2}, x_{3}, x_{4}$ outputs either an induced tree that contains $x_{1}, x_{2}, x_{3}, x_{4}$ or a partition of $V(G)$ certifying that no such tree exists．Note that apart from very basic subroutines such as Breadth First Search，our algorithm is self－contained．In particular it does no rely on three－in－a－tree．Our proofs will use the following result of Derhy and Picouleau：

Theorem 1.2 （see［4］）Let G be a triangle－free connected graph and x_{1}, x_{2}, x_{3} be three dis－ tinct vertices of G ．Then there is an induced tree of G that contains x_{1}, x_{2}, x_{3} ．Moreover such a tree of minimum size can be done in time $O(m)$ ．

Another generalisation of three－in－a－tree would be interesting．Let us call centered tree any tree that contains at most one vertex of degree greater than two．Note that any minimal tree covering three vertices of a graph is centered．Hence，three－in－a－tree and three－in－a－ centered－tree are in fact the same problem．So four－in－a－centered－tree is also an interesting generalisation of three－in－a－tree．But we will prove in Section 5 that it is NP－complete，even when restricted to several classes of graphs，including triangle－free graphs．

We leave open the following problems：four－in－a－tree for general graphs，k－in－a－tree for triangle－free graphs．

Notation

All our graphs are simple and finite．We say that a graph G contains a graph H if G contains an induced subgraph isomorphic to H ．We say that G is H－free if it does not contain H ． If $Z \subseteq V(G)$ then $G[Z]$ denotes the subgraph of G induced by Z ．When we describe the complexity of an algorithm whose input is a graph，n stands for the number of its vertices and m stands for the number of its edges．

We call path any connected graph with at least one vertex of degree 1 and no vertex of degree greater than 2．A path has at most two vertices of degree 1，which are the ends of the path．If a, b are the ends of a path P we say that P is from a to b ．The other vertices are the interior vertices of the path．We denote by $v_{1}-\cdots-v_{n}$ the path whose edge set is $\left\{v_{1} v_{2}, \ldots, v_{n-1} v_{n}\right\}$ ．When P is a path，we say that P is a path of G if P is an induced subgraph of G ．If P is a path and if a, b are two vertices of P then we denote by $a-P-b$ the only induced subgraph of P that is path from a to b ．

Note that by path of a graph, we mean induced path. Also, by tree of a graph, we mean an induced subgraph that is a tree.

The union of two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is the graph $G \cup G^{\prime}=\left(V \cup V^{\prime}, E \cup\right.$ $\left.E^{\prime}\right)$. A set $X \subseteq V(G)$ is complete to a set $Y \subseteq V(G)$ if there are all possible edges between X and Y. A set $X \subseteq V(G)$ is anticomplete to a set $Y \subseteq V(G)$ if there are no edges between X and Y.

When G is a graph and v a vertex, $N(v)$ denotes the set of all the neighbors of v. If $A \subseteq V(G)$ then $N(A)$ denotes the set of these vertices of G that are not in A but that have neighbors in A. If $Z \subseteq V(G)$, then $N_{Z}(A)$ denotes $N(A) \cap Z$. If H is an induced subgraph of G, then we write $N_{H}(A)$ instead of $N_{V(H)}(A)$.

When we define k sets A_{1}, \ldots, A_{k}, we usually denote their union by A. We use this with no explicit mention : if we define sets S_{1}, \ldots, S_{8} then S will denote their union, and so on.

2 Main results

A terminal of a graph is a vertex of degree one. Given a graph G and vertices y_{1}, \ldots, y_{k}, let us consider the graph G^{\prime} obtained from G by adding for each y_{i} a new terminal x_{i} adjacent to y_{i}. It is easily seen that there exists an induced tree of G covering y_{1}, \ldots, y_{k} if and only if there exists an induced tree of G^{\prime} covering x_{1}, \ldots, x_{k}. So, four-terminals-in-a-tree and four-in-a-tree are essentially the same problems, from an algorithmic point of view and from a structural point of view. Hence, for convenience, we may restrict ourselves to the problem four-in-a-tree where the four vertices to be covered are terminals.

As mentioned in the introduction, our main result states that a graph that does not contain a tree covering four given terminals $x_{1}, x_{2}, x_{3}, x_{4}$ must have the "same structure" as one of the graphs represented on Fig. 10 or 2, Let us now define this precisely.

A graph that has the same structure as the graph represented on Fig \square is what we call a cubic structure: a graph G is said to be a cubic structure with respect to a 4 -tuple of distinct terminals $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ if there exist sets $A_{1}, \ldots A_{4}, B_{1}, \ldots B_{4}, S_{1}, \ldots, S_{8}$ and R such that:

1. $A \cup B \cup S \cup R=V(G)$;
2. $A_{1}, \ldots, A_{4}, B_{1}, \ldots, B_{4}, S_{1}, \ldots, S_{8}, R$ are pairwise disjoint;
3. $x_{i} \in A_{i}, i=1, \ldots, 4$;
4. S_{i} is a stable set, $i=1, \ldots, 8$;
5. S_{i} is non-empty, $i=1, \ldots, 4$;
6. at most one of $S_{5}, S_{6}, S_{7}, S_{8}$ is empty;
7. S_{i} is complete to $\left(S_{5} \cup S_{6} \cup S_{7} \cup S_{8}\right) \backslash S_{i+4}, i=1,2,3,4$;
8. S_{i} is anticomplete to $S_{i+4}, i=1,2,3,4$;
9. S_{i} is anticomplete to $S_{j}, 1 \leq i<j \leq 4$;
10. S_{i} is anticomplete to $S_{j}, 5 \leq i<j \leq 8$;

Figure 3: Two examples of cubic structure
11. $N\left(A_{i}\right)=S_{i}, i=1,2,3,4$;
12. $N\left(B_{i}\right) \subseteq S_{i} \cup N_{S}\left(S_{i}\right), i=1,2,3,4$;
13. $N(R) \subseteq S_{5} \cup S_{6} \cup S_{7} \cup S_{8}$;
14. $G\left[A_{i}\right]$ is connected, $i=1,2,3,4$.

A 17 -tuple ($A_{1}, \ldots A_{4}, B_{1}, \ldots B_{4}, S_{1}, \ldots, S_{8}, R$) of sets like in the definition above is a split of the cubic structure. On Fig. 3, two cubic structures are represented. A cubic structure of a graph G is a subset Z of $V(G)$ such that $G[Z]$ is a cubic structure. The following lemma, to be proved in Section 4, shows that if a cubic structure is discovered in a triangle-free graph, then one can repeatedly add vertices to it, unless at some step a tree covering $x_{1}, x_{2}, x_{3}, x_{4}$ is found:

Lemma 2.1 There is an algorithm with the following specification:
Input: a triangle-free graph G, four terminals $x_{1}, x_{2}, x_{3}, x_{4}$, a split of a cubic structure Z of G, and a vertex $v \notin Z$.

OUTPUT: a tree of $G[Z \cup\{v\}]$ that covers $x_{1}, x_{2}, x_{3}, x_{4}$ or a split of the cubic structure $G[Z \cup\{v\}]$.

Complexity: $O(m)$.
Let us now turn our attention to our second kind of structure. A graph that has the same structure as the graph represented on Fig 2 is what we call a square structure: a graph G is said to be a square structure with respect to a 4 -tuple ($x_{1}, x_{2}, x_{3}, x_{4}$) of distinct terminals if there are sets $A_{1}, A_{2}, A_{3}, A_{4}, S_{1}, S_{2}, S_{3}, S_{4}, R$ such that:

1. $A \cup S \cup R=V(G)$;

Figure 4: The smallest square structure
2. $A_{1}, A_{2}, A_{3}, A_{4}, S_{1}, S_{2}, S_{3}, S_{4}, R$ are pairwise disjoint;
3. $x_{i} \in A_{i}, i=1, \ldots, 4$;
4. S_{i} is a stable set, $i=1, \ldots, 4$;
5. $S_{1}, S_{2}, S_{3}, S_{4} \neq \emptyset$;
6. S_{i} is complete to S_{i+1}, where the addition of subscripts is taken modulo $4, i=1,2,3,4$;
7. S_{i} is anticomplete to $S_{i+2}, i=1,2$;
8. $N\left(A_{i}\right)=S_{i}, i=1,2,3,4$;
9. $N(R) \subseteq S_{1} \cup S_{2} \cup S_{3} \cup S_{4}$;
10. $G\left[A_{i}\right]$ is connected, $i=1, \ldots, 4$.

A 9-tuple $\left(A_{1}, \ldots A_{4}, S_{1}, \ldots, S_{4}, R\right)$ of sets like in the definition above is a split of the square structure. On Fig. (4, the smallest square structure is represented. A square structure of a graph G is a subset Z of $V(G)$ such that $G[Z]$ is a square structure. The following lemma, to be proved in Section 3, shows that if a square structure is discovered in a trianglefree graph, then one can repeatedly add vertices to it, unless at some step a cubic structure or a tree covering $x_{1}, x_{2}, x_{3}, x_{4}$ is found:

Lemma 2.2 There is an algorithm with the following specification:
Input: a triangle-free graph G, four terminals $x_{1}, x_{2}, x_{3}, x_{4}$, a split of a square structure Z of G, and a vertex $v \notin Z$.

Output: a tree of $G[Z \cup\{v\}]$ that covers $x_{1}, x_{2}, x_{3}, x_{4}$ or a split of some cubic structure of G or a split of the square structure $G[Z \cup\{v\}]$.

Complexity: $O(m)$.

From the two lemmas above the main theorem follows:
Theorem 2.3 Let G be a connected graph and $x_{1}, x_{2}, x_{3}, x_{4}$ be four distincts terminals of G. Then either:
(1) G is a cubic or a square structure with respect to $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$;
(2) G contains a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$.

Moreover, exactly one of these two statements (1) and (2) holds. This result is algorithmic in the sense that there exists an $O(n m)$-time algorithm whose input is a graph and four terminals $x_{1}, x_{2}, x_{3}, x_{4}$ and whose output is either a partition of $V(G)$ showing that G is a cubic or a square structure with respect to $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, or a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$.

Proof - Let us first check that at most one of (1), (2) holds. This means that a square or cubic structure with respect to a 4 -tuple $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ of terminals cannot contain a tree covering $x_{1}, x_{2}, x_{3}, x_{4}$. For suppose that such a tree T exists in a square structure G with a split $\left(A_{1}, \ldots, A_{4}, S_{1}, \ldots, S_{4}, R\right)$. By the definition of square structures T must contain a vertex in every $S_{i}, i=1,2,3,4$. So, T contains a square, a contradiction.

Suppose now that such a tree T exists in a cubic structure G with a split $\left(A_{1}, \ldots, A_{4}, B_{1}, \ldots, B_{4}, S_{1}, \ldots, S_{8}, R\right)$. By the definition of cubic structures T must contain a vertex in every $S_{i}, i=1,2,3,4$. Since T contains no cycle, T has vertices in at most one of $S_{5}, S_{6}, S_{7}, S_{8}$, say in S_{5} up to symmetry. So, T contains no vertex of $S_{6} \cup S_{7} \cup S_{8}$. So x_{1}, x_{2} lie in two different components of T, a contradiction.

The fact that at least one of (1), (2) holds follows directly from the algorithm announced in the theorem. A description of this algorithm will complete the proof. So let us suppose that G and four terminals $x_{1}, x_{2}, x_{3}, x_{4}$ are given. The algorithm goes through three steps:
First step: by Theorem 1.2 we find in time $O(m)$ a minimal tree T that covers x_{1}, x_{2}, x_{3}. Note that since x_{1}, x_{2}, x_{3} are of degree one, T contains a vertex c of degree 3 and is the union of three paths $P_{1}=c-\cdots-x_{1}, P_{2}=c-\cdots-x_{2}, P_{3}=c-\cdots-x_{3}$.

Then we use BFS (short name for Breadth First Search, see [5) to find a path $Q=$ $x_{4}-\cdots-w$ such that w has neighbors in T, and minimal with respect to this property. If w has a neighbor in P_{i} then we let u_{i} be the neighbor of w closest to x_{i} along P_{i}.

If w has neighbors in P_{1}, P_{2}, P_{3} then note that when $1 \leq i<j \leq 3, u_{i} u_{j} \notin E(G)$ because else, G contains a triangle. So $V\left(Q \cup\left(u_{1}-P_{1}-x_{1}\right) \cup\left(u_{2}-P_{2}-x_{2}\right) \cup\left(u_{3}-P_{3}-x_{3}\right)\right)$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$, so we stop the algorithm and output this tree. Note that from here on, $w c \notin E(G)$.

If w has neighbors in exactly one of P_{1}, P_{2}, P_{3}, say in P_{1} up to symmetry, then we compute by Theorem 1.2 a tree T^{\prime} of $G\left[P_{1} \cup\{w\}\right]$ that minimally covers w, c, x_{1}. We see that $V(Q \cup$ $T^{\prime} \cup P_{2} \cup P_{3}$) induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$, so we stop the algorithm and output this tree.

So, we are left with the case where w has neighbors in two paths among P_{1}, P_{2}, P_{3}, say in P_{1}, P_{3} up to symmetry. Then there are two cases. First case: one of $u_{1} c, u_{3} c$ is not in $E(G)$. Up to symmetry we suppose $u_{1} c \notin E(G)$. We compute by Theorem 1.2 a tree $T^{\prime \prime}$ of $G\left[P_{3} \cup\{w\}\right]$ that minimally covers w, c, x_{3}. We see that $V\left(Q \cup\left(x_{1}-P_{1}-u_{1}\right) \cup T^{\prime \prime} \cup P_{2}\right)$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$, so we stop the algorithm and output this tree. Second case:
$u_{1} c, u_{3} c$ are both in $E(G)$. Then we observe that $V\left(P_{1} \cup P_{2} \cup P_{3} \cup Q\right)$ is a square structure of G. A split can be done by putting $A_{1}=V\left(x_{1}-P_{1}-u_{1}\right) \backslash\left\{u_{1}\right\}, A_{2}=V\left(P_{2}\right) \backslash\{c\}$, $A_{3}=V\left(x_{3}-P_{3}-u_{3}\right) \backslash\left\{u_{3}\right\} ; A_{4}=V(Q) \backslash\{w\}, S_{1}=\left\{u_{1}\right\}, S_{2}=\{c\}, S_{3}=\left\{u_{3}\right\}, S_{4}=\{w\}$ and $R=\emptyset$. We keep this square structure Z and go the next step.

Second step: while there exists a vertex v not in Z, we use the algorithm of Lemma 2.2 to add v to Z, keeping a square structure. If we manage to put every vertex of G in Z then we have found that G is a square structure that we output. Else, Lemma 2.2 says that at some step we have found either a tree covering $x_{1}, x_{2}, x_{3}, x_{4}$ that we output, or a cubic structure Z^{\prime}, together with a split for it. In this last case, we go to the next step.

Third step: while there exists a vertex v not in Z^{\prime}, we use the algorithm of Lemma 2.1 to add v to Z^{\prime}, keeping a cubic structure. If we manage to put every vertex of G in Z^{\prime} then we have found that G is a cubic structure that we output. Else, Lemma 2.1 says that at some step we have found a tree covering $x_{1}, x_{2}, x_{3}, x_{4}$ that we output.
Complexity analysis: we run at most $O(n)$ times $O(m)$ algorithms. So the overall complexity is $O(n m)$.

3 Proof of Lemma 2.2

Let $Z \subseteq V(G)$ be a square structure of G with respect to $x_{1}, x_{2}, x_{3}, x_{4}$ together with a split like in the definition and let v be in $V(G) \backslash Z$. Note that Z, the split of Z and v are given by assumption.

Here below, we give a proof of the existence of the objects that the algorithm of our Lemma must output, namely a tree, a cubic structure or an augmented square structure. But this proof is in fact the description of an $O(m)$-time algorithm. To see this, it suffices to notice that all the proof relies on a several run of BFS or of the algorithm of Theorem 1.2, and on checks of neighborhoods of several vertices. At the end, we give more information on how to transform our proof into an algorithm.

When $s_{i} \in S_{i} \cup A_{i}$, we define the path $P_{s_{i}}$ to be a path from s_{i} to x_{i}, whose interior is in $A_{i}, i=1,2,3,4$. Note that $P_{s_{i}}$ exists since by Item [10 of the definition of square structures, $G\left[A_{i}\right]$ is connected and by Item 8 every vertex of S_{i} has a neighbor in $A_{i}, i=1,2,3,4$.

If v has no neighbor in A then v can be put in R and we obtain a split of the square structure $Z \cup\{v\}$. So we may assume that v has a neighbor in A, say $a_{1} \in A_{1}$. We choose a_{1} subject to the minimality of $P_{a_{1}}$.

Claim 3.1 Suppose that there exists a path $Q=v-\cdots-w$ where $Q \backslash v \subseteq R$ and such that w has neighbors in $\left(A \backslash A_{1}\right) \cup\left(S \backslash S_{1}\right)$. Suppose Q minimal with respect to these properties. Then either:

1. there exists a tree of $G[Z \cup\{v\}]$ that covers $x_{1}, x_{2}, x_{3}, x_{4}$;
2. $N_{S}(w)=S_{2} \cup S_{4}$ and $N_{A}(w) \subseteq A_{1}$;
3. $G[Z \cup\{v\}]$ contains a cubic structure.

Proof - Note that possibly $Q=v=w$. Note also that by the definition of R, w have neighbors in A only when $w=v$.
(1)If w has a neighbor in $A_{2} \cup A_{4}$ there exists a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$.

Up to symmetry w has a neighbor $a_{2} \in A_{2}$. We choose a_{2} subject to the minimality of $P_{a_{2}}$. Note that here $Q=v=w$.

If v has also a neighbor $a_{3} \in S_{3} \cup A_{3}$ and a neighbor $a_{4} \in S_{4} \cup A_{4}$ (note that G being triangle-free $a_{3} \in S_{3}$ and $a_{4} \in S_{4}$ cannot happen) then we choose a_{3}, a_{4} subject to the minimality of respectively $P_{a_{3}}, P_{a_{4}}$. So, $V\left(P_{a_{1}} \cup Q \cup P_{a_{2}} \cup P_{a_{3}} \cup P_{a_{4}}\right)$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. Hence we may assume that v has no neighbor in $S_{4} \cup A_{4}$.

If v has a neighbor $a_{3} \in S_{3} \cup A_{3}$ then we pick $s_{3} \in S_{3}$ (if $a_{3} \in S_{3}$, we choose $s_{3}=a_{3}$). We let T_{3} be a tree of $G\left[A_{3} \cup\left\{v, s_{3}\right\}\right]$ that covers v, s_{3}, x_{3}. Note that T_{3} exists by Theorem 1.2 because $G\left[A_{3} \cup\left\{v, s_{3}\right\}\right]$ is connected. So, $V\left(P_{a_{1}} \cup Q \cup P_{a_{2}} \cup T_{3} \cup P_{s_{4}}\right)$ where $s_{4} \in S_{4}$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. Hence we may assume that v has no neighbor in $S_{3} \cup A_{3}$.

Now, we pick $s_{1} \in S_{1}$ and we let T_{1} be a tree of $G\left[A_{1} \cup\left\{v, s_{1}\right\}\right]$ that covers v, s_{1}, x_{1}. Note that T_{1} exists by Theorem 1.2 because $G\left[A_{1} \cup\left\{v, s_{1}\right\}\right]$ is connected. So, $V\left(T_{1} \cup P_{a_{2}} \cup P_{s_{3}} \cup P_{s_{4}}\right)$ where $s_{3} \in S_{3}, s_{4} \in S_{4}$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. This proves (1).

So, we may assume that w has no neighbor in $A_{2} \cup A_{4}$.
(2)If w has a neighbor in S_{3} there exists a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$.

Let s_{3} be a neighbor of w in S_{3}. Note that G being triangle-free, w has no neighbor in $S_{2} \cup S_{4}$. We let T_{3} be a tree of $G\left[A_{3} \cup\left\{w, s_{3}\right\}\right]$ that covers w, s_{3}, x_{3}. Note that in fact T_{3} is a path either from s_{3} to x_{3} or from w to x_{3}. So, $V\left(P_{a_{1}} \cup Q \cup P_{s_{2}} \cup T_{3} \cup P_{s_{4}}\right)$ where $s_{2} \in S_{2}, s_{4} \in S_{4}$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. This proves (2).

So, we may assume that w has no neighbor in S_{3}.
(3) If w has no neighbor in $S_{2} \cup S_{4}$ there exists a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$.

If w has no neighbor in $S_{2} \cup S_{4}$, by the definition of Q, w must have a neighbor $a_{3} \in A_{3}$.
We pick $s_{3} \in S_{3}$. We let T_{3} be a tree of $G\left[A_{3} \cup\left\{w, s_{3}\right\}\right]$ that covers w, s_{3}, x_{3}. So, $V\left(P_{a_{1}} \cup Q \cup P_{s_{2}} \cup T_{3} \cup P_{s_{4}}\right)$ where $s_{2} \in S_{2}, s_{4} \in S_{4}$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. This proves (3).

So, we may assume that w has a neighbor in $S_{2} \cup S_{4}$ (say $s_{2} \in S_{2}$ up to symmetry).
(4) If w has no neighbor in A_{3} then either there exists a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$ or $N_{S}(w)=S_{2} \cup S_{4}$ and $N_{A}(w) \subseteq A_{1}$.
If $s_{4} \in S_{4}$ is a non-neighbor of w, then $V\left(P_{a_{1}} \cup Q \cup P_{s_{2}} \cup P_{s_{3}} \cup P_{s_{4}}\right)$, where $s_{3} \in S_{3}$ is a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. So, we may assume that w is complete to S_{4}. By the same way we may also assume that w is complete to S_{2}. Hence $N_{S}(w)=S_{2} \cup S_{4}$ and $N_{A}(w) \subseteq A_{1}$. This proves (4).

Note that if $N_{S}(w)=S_{2} \cup S_{4}$ and $N_{A}(w) \subseteq A_{1}$ then the second output of our Claim 3.1 holds. So, from the definition of Q we may assume that w has a neighbor a_{3} in A_{3}. This implies $v=w$. We choose a_{3} subject to the minimality of $P_{a_{3}}$.
(5) If v has a neighbor in S_{4} there exists a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$

Let $s_{4} \in S_{4}$ be such that $v s_{4} \in E(G)$. Then $V\left(P_{a_{1}} \cup v \cup P_{s_{2}} \cup P_{a_{3}} \cup P_{s_{4}}\right)$ is a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. This proves (5).

So, we may assume that v has a non-neighbor $s_{4} \in S_{4}$.
Let us finish the proof of our claim. We pick $s_{1} \in S_{1}$ and $s_{3} \in S_{3}$. Note that $v s_{1} \notin E(G)$ since G is triangle-free. If $a_{1} s_{1} \notin E(G)$ then $V\left(P_{a_{1}} \cup P_{s_{2}} \cup P_{a_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{1}, v\right\}$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. So we may assume $s_{1} a_{1} \in E(G)$. Symmetrically, we may assume $s_{3} a_{3} \in E(G)$.

We observe that $V\left(P_{a_{1}} \cup P_{s_{2}} \cup P_{a_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{1}, s_{3}, v\right\}$ is a cubic structure. A split is given by : $A_{1}=V\left(P_{a_{1}} \backslash a_{1}\right), A_{2}=V\left(P_{s_{2}} \backslash s_{2}\right), A_{3}=V\left(P_{a_{3}} \backslash a_{3}\right), A_{4}=V\left(P_{s_{4}} \backslash s_{4}\right), S_{1}=\left\{a_{1}\right\}$ $S_{2}=\left\{s_{2}\right\}, S_{3}=\left\{a_{3}\right\}, S_{4}=\left\{s_{4}\right\}, S_{5}=\left\{s_{3}\right\}, S_{6}=\emptyset, S_{7}=\left\{s_{1}\right\}, S_{8}=\{v\}, B=\emptyset, R=\emptyset$.

Now, let C be the set of the $\left(S_{2} \cup S_{4}\right)$-complete vertices of $R \cup\{v\}$. Let Y be the set of those vertices w of $R \cup\{v\}$ such that there exists a path from v to w whose interior is in R. Let Y_{1} be the set of those vertices w of $Y \backslash C$ such that there exists a path from v to w whose interior is in $R \backslash C$. Let Y_{2} be the set of those vertices w of $Y \cap C$ such that there exists a path from v to w whose interior is in $R \backslash C$. Let Y_{3} be $Y \backslash\left(Y_{1} \cup Y_{2}\right)$. Note that $Y=Y_{1} \cup Y_{2} \cup Y_{3}$.

Note that we may assume that the only possible output of Claim 3.1 is $N_{S}(w)=S_{2} \cup S_{4}$ and $N_{A}(w) \subseteq A_{1}$. Also no vertex of Y has a neighbor in $A_{2} \cup A_{3} \cup A_{4}$ (for v this follows from Claim 3.1, for the rest of Y this follows from the definition of R). Note that $v \notin Y_{3}$. But $v \in Y_{2}$ is possible since v can be complete to $S_{2} \cup S_{4}$. So $N_{Z \cup\{v\}}\left(Y_{3}\right) \subseteq Y_{2} \cup S$ from the definition of R. Also $N_{Z \cup\{v\}}\left(Y_{2}\right) \subseteq Y_{1} \cup Y_{3} \cup A_{1} \cup S_{2} \cup S_{4}$. And from Claim [3.1, $N_{Z \cup\{v\}}\left(Y_{1}\right) \subseteq Y_{2} \cup A_{1} \cup S_{1}$.

Hence, we can put all the vertices of Y_{1} in A_{1}, all the vertices of Y_{2} in S_{1} and leave all the vertices of Y_{3} in R. More formally we let:

- $A_{1}^{\prime}=A_{1} \cup Y_{1}$;
- $A_{i}^{\prime}=A_{i}, i=2,3,4$;
- $S_{1}^{\prime}=S_{1} \cup Y_{2}$;
- $S_{i}^{\prime}=S_{i}, i=2,3,4$;
- $R^{\prime}=R \backslash\left(Y_{1} \cup Y_{2}\right)$.

We see that $\left(A_{1}^{\prime}, \ldots, A_{4}^{\prime}, S_{1}^{\prime}, \ldots, S_{4}^{\prime}, R^{\prime}\right)$ is a square structure of $Z \cup\{v\}$.
Here is how to transform the proof above into an algorithm. We first compute C. After, we use BFS to compute Y. The output of BFS is a rooted tree whose root is v. Similarly, we compute Y_{1}, Y_{2}, Y_{3}. We check whether $N_{Z \cup\{v\}}\left(Y_{1}\right) \subseteq Y_{2} \cup A_{1} \cup S_{1}$. If this is true, the paragraph above shows how to output an augmented square structure. Else there is a vertex $w \in Y_{1}$ such that w has neighbors in $\left(A \backslash A_{1}\right) \cup\left(S \backslash S_{1}\right)$. Hence by backtracking the BFS tree from w, we find a path $Q=v-\cdots-w$ where $Q \backslash v \subseteq R$ and such that w has neighbors in $\left(A \backslash A_{1}\right) \cup\left(S \backslash S_{1}\right)$. Moreover, the condition $N_{S}(w)=S_{2} \cup S_{4}$ and $N_{A}(w) \subseteq A_{1}$ fails since $w \notin C$. So the proof of Claim 3.1 is a description of how, by just checking several neighborhoods, we can find either:

- a tree of $G[Z \cup\{v\}]$ that covers $x_{1}, x_{2}, x_{3}, x_{4}$ or
- a split of the a cubic structure of $G[Z \cup\{v\}]$,

This completes the proof of Lemma 2.2.

4 Proof of Lemma 2.1

Let $Z \subseteq V(G)$ be a cubic structure of G with respect to $x_{1}, x_{2}, x_{3}, x_{4}$ together with a split like in the definition and let v be in $V(G) \backslash Z$. Note that Z, the split of Z and v are given by assumption.

Here below, we give a proof of the existence of the objects that the algorithm of our Lemma must output, namely a tree or an augmented cubic structure. But like in the proof of Lemma 2.2, this proof is in fact the description of an $O(m)$-time algorithm. We omit the details of how to tranform the proof into an algorithm, since they are similar to those of the proof of Lemma 2.2.

When $s_{i} \in S_{i} \cup A_{i}$, we define the path $P_{s_{i}}$ to be a path from s_{i} to x_{i}, whose interior is in $A_{i}, i=1,2,3,4$. Note that $P_{s_{i}}$ exists since by Item 14 of the definition of cubic structures, $G\left[A_{i}\right]$ is connected and by Item 11 every vertex of S_{i} has a neighbor in $A_{i}, i=1,2,3,4$.

Claim 4.1 The lemma holds when v has neighbors in A.
Proof - For suppose that v has a neighbor in A, say $a_{1} \in A_{1}$ (the cases with a neighbor in A_{2}, A_{3}, A_{4} are symmetric). We chooose a_{1} subject to the minimality of $P_{a_{1}}$.
(1) If there exists a path $Q=v-\cdots-w$ where $Q \backslash v \subseteq B \cup R$ and such that w has neighbors in $A_{2} \cup A_{3} \cup A_{4} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}$ then there exists a tree of $G[Z \cup\{v\}]$ that covers x_{1}, x_{2}, x_{3}, x_{4}.
Let Q be such a path, minimal with respect to its properties. Note that possibly $v=w$.
If w is adjacent to $a_{2} \in S_{2} \cup A_{2}, a_{3} \in S_{3} \cup A_{3}$ and $a_{4} \in S_{4} \cup A_{4}$ then we choose a_{2}, a_{3}, a_{4} subject to the minimality of $P_{a_{2}}, P_{a_{3}}, P_{a_{4}}$. So, $V\left(P_{a_{1}} \cup Q \cup P_{a_{2}} \cup P_{a_{3}} \cup P_{a_{4}}\right)$ induces a tree of G that covers $x_{1}, x_{2}, x_{3}, x_{4}$. Hence, by symmetry, we may assume that w has no neighbor in $S_{4} \cup A_{4}$.

If w is adjacent to $a_{2} \in S_{2} \cup A_{2}, a_{3} \in S_{3} \cup A_{3}$ then $v=w$ because no vertex in $B \cup R$ can have neighbors in both $S_{2} \cup A_{2}, S_{3} \cup A_{3}$ by Items (12, (13) We suppose that a_{2}, a_{3} are chosen subject to the minimality of $P_{a_{2}}, P_{a_{3}}$. Let T_{2} be a tree of $G\left[A_{2} \cup\left\{v, s_{2}\right\}\right]$ that covers x_{2}, v, s_{2} where s_{2} is some vertex of S_{2} (if $a_{2} \in S_{2}$ we choose $s_{2}=a_{2}$). Note that T_{2} exists by Theorem 1.2 because $G\left[A_{2} \cup\left\{v, s_{2}\right\}\right]$ is connected. One of S_{6}, S_{7} is non-empty by Item 6 of the definition, and we may assume $S_{7} \neq \emptyset$ because of the symmmetry between S_{2}, S_{7} and S_{3}, S_{6}. So, $V\left(P_{a_{1}} \cup T_{2} \cup P_{a_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{7}\right\}$ where $s_{4} \in S_{4}, s_{7} \in S_{7}$ is a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$, except when $v s_{7} \in E(G)$. But then, $V\left(P_{a_{1}} \cup Q \cup P_{a_{2}} \cup P_{a_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{7}\right\}$ is tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$, because $a_{2} \in S_{2}$ would entail the triangle $a_{2} s_{7} w$. Hence, by symmetry, we may assume that w has no neighbor in $S_{3} \cup A_{3}$.

If w is adjacent to $a_{2} \in S_{2} \cup A_{2}$ then chose a_{2} subject to the minimality of $P_{a_{2}}$. Suppose first that some vertex of Q has a neighbor $s_{6} \in S_{6}$. Then $G\left[A_{1} \cup Q \cup S_{2} \cup A_{2} \cup\left\{s_{6}\right\}\right]$ is connected, so it contains a tree T_{6} that covers x_{1}, x_{2}, s_{6}. We observe that $V\left(T_{6} \cup P_{s_{3}} \cup P_{s_{4}}\right)$ where $s_{3} \in S_{3}, s_{4} \in S_{4}$ is a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. Hence we assume from here on that no vertex of Q has a neighbor in S_{6}. Let T_{2} be a tree of $G\left[A_{2} \cup\left\{s_{2}, w\right\}\right]$ that covers
x_{2}, w, s_{2} where s_{2} is some vertex of S_{2} (if $a_{2} \in S_{2}$ we choose $s_{2}=a_{2}$). Suppose now that $S_{5} \neq \emptyset$. We observe that $V\left(P_{a_{1}} \cup Q \cup T_{2} \cup P_{s_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{5}\right\}$ where $s_{3} \in S_{3}, s_{4} \in S_{4}, s_{5} \in S_{5}$, is a tree of G that covers $x_{1}, x_{2}, x_{3}, x_{4}$ except when $w s_{5} \in E(G)$. But in this case we observe that $V\left(P_{a_{1}} \cup Q \cup P_{a_{2}} \cup P_{s_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{5}\right\}$ is a tree of G that covers $x_{1}, x_{2}, x_{3}, x_{4}$. Hence, we may assume that $S_{5}=\emptyset$ and by Item 6 of the definition we have $S_{6}, S_{7}, S_{8} \neq \emptyset$. If no vertex of Q has a neighbor in $S_{7} \cup S_{8}$ then $V\left(P_{a_{1}} \cup Q \cup T_{2} \cup P_{s_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{7}, s_{8}\right\}$ where $s_{7} \in S_{7}$, $s_{8} \in S_{8}$, is a tree of G that covers $x_{1}, x_{2}, x_{3}, x_{4}$. So we may assume that some vertex of Q has a neighbor in $S_{7} \cup S_{8}$ and we let u be the vertex of Q closest to v that has one neighbor in $S_{7} \cup S_{8}$, say $s_{7} \in S_{7}$ (the case with one neighbor in S_{8} is similar because of the symmetry between S_{7}, S_{4} and $\left.S_{8}, S_{3}\right)$. Let $s_{2} \in S_{2}$. So $V\left(P_{a_{1}} \cup(v-Q-u) \cup P_{s_{2}} \cup P_{s_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{6}, s_{7}\right\}$ is a tree of G that covers $x_{1}, x_{2}, x_{3}, x_{4}$ except when some vertex of $v-Q-u$ has a neighbor in $P_{s_{2}}$. But then, by the minimality of Q, we must have $u=w$. Now since G is triangle-free, $a_{2} \notin S_{2}$. So, $V\left(P_{a_{1}} \cup Q \cup P_{a_{2}} \cup P_{s_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{6}, s_{7}\right\}$ is a tree of G that covers $x_{1}, x_{2}, x_{3}, x_{4}$. Hence we may assume that w has no neighbor in $S_{2} \cup A_{2}$.

Now w has no neighbors in $S_{2} \cup S_{3} \cup S_{4} \cup A_{2} \cup A_{3} \cup A_{4}$. So w must have a neighbor $s_{5} \in S_{5}$. Hence, $V\left(P_{a_{1}} \cup Q \cup P_{s_{2}} \cup P_{s_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{5}\right\}$ where $s_{2} \in S_{2}, s_{3} \in S_{3}, s_{4} \in S_{4}$ is a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. This proves (1).
(2) If there exists a path $Q=v-\cdots-w$ whose interior is in $B \cup R$ and such that w has neighbors in $S_{6} \cup S_{7} \cup S_{8}$ then either Q contains a vertex that is complete to $S_{6} \cup S_{7} \cup S_{8}$ or there exists a tree of $G[Z \cup\{v\}]$ that covers $x_{1}, x_{2}, x_{3}, x_{4}$.
Let Q be such a minimal path. It suffices to prove that w is complete to $S_{6} \cup S_{7} \cup S_{8}$ or that a tree covering $x_{1}, x_{2}, x_{3}, x_{4}$ exists. By (11), we may assume that no vertex of Q has a neighbor in $A_{2} \cup A_{3} \cup A_{4} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}$. So up to the symmetry between S_{6}, S_{7}, S_{8}, we may assume that w has a non-neighbor $s_{6} \in S_{6}$ and a neighbor $s_{7} \in S_{7}$ for otherwise our claim is proved. Hence $V\left(P_{a_{1}} \cup Q \cup P_{s_{2}} \cup P_{s_{3}} \cup P_{s_{4}}\right) \cup\left\{s_{6}, s_{7}\right\}$ is a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. This proves (2).

Now, let C be the set of the $\left(S_{6} \cup S_{7} \cup S_{8}\right)$-complete vertices of $Z \cup\{v\}$. Let Y be the set of these vertice w of $B \cup R \cup\{v\}$ such that there exists a path from v to w whose interior is in $B \cup R$. Let Y_{1} be the set of these vertices w of $Y \backslash C$ such that there exists a path from v to w whose interior is in $(B \cup R) \backslash C$. Let Y_{2} be the set of these vertices w of $Y \cap C$ such that there exists a path from v to w whose interior is in $(B \cup R) \backslash C$. Let Y_{3} be $Y \backslash\left(Y_{1} \cup Y_{2}\right)$. Note that $Y=Y_{1} \cup Y_{2} \cup Y_{3}$.

By (11), we may assume that no vertex of Y has a neighbor in $A_{2} \cup A_{3} \cup A_{4} \cup S_{2} \cup S_{3} \cup S_{4} \cup S_{5}$. Note that $v \notin Y_{3}$. But $v \in Y_{2}$ is possible since v can be complete to $\left(S_{6} \cup S_{7} \cup S_{8}\right)$. So by (2), $N_{Z \cup\{v\}}\left(Y_{3}\right) \subseteq Y_{2} \cup S_{1}$. Also by (2) , $N_{Z \cup\{v\}}\left(Y_{2}\right) \subseteq Y_{1} \cup Y_{3} \cup A_{1} \cup S_{6} \cup S_{7} \cup S_{8}$. And $N_{Z \cup\{v\}}\left(Y_{1}\right) \subseteq Y_{2} \cup A_{1} \cup S_{1}$.

Hence, we can put all the vertices of Y_{1} in A_{1}, all the vertices of Y_{2} in S_{1} and all the vertices of Y_{3} in B_{1}. We obtain a split of the cubic structure $Z \cup\{v\}$.

Claim 4.2 The lemma holds if v is complete to $\left(S_{1} \cup S_{2} \cup S_{3} \cup S_{4}\right) \backslash S_{i}, i=1,2,3,4$.
PROOF - We prove the claim when $i=4$, the other cases are symmetric. So v is complete
to $S_{1} \cup S_{2} \cup S_{3}$.
(1) If there exists a path $Q=v-\cdots-w$ such that $V(Q \backslash v) \subseteq B \cup R$ and w has a neighbor s_{4} in S_{4} then $G[Z \cup\{v\}]$ contains a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$.

Let us consider such a path Q minimal with respect its properties. Every vertex of $Q \backslash v$ is in B_{4}. Indeed, B_{4} is the only set among B_{1}, \ldots, B_{4}, R that allows neighbors in S_{4}, and there are no edges between the sets B_{1}, \ldots, B_{4}, R. Hence by the properties of B_{4}, no vertex of $Q \backslash v$ can have neighbors in $S_{1} \cup S_{2} \cup S_{3}$. So, $V\left(P_{s_{4}} \cup Q \cup P_{s_{1}} \cup P_{s_{2}} \cup P_{s_{3}}\right)$ where $s_{1} \in S_{1}$, $s_{2} \in S_{2}, s_{3} \in S_{3}$, induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. This proves (1).

Let Y be the set of these vertices w of $B \cup R$ such that there exists a path $Q=v-\cdots-w$ whose interior is in $B \cup R$. If v has some neighbors in B_{4} then by (11) we may assume that every component of $G\left[Y \cap B_{4}\right]$ contains no neighbors of vertices of S_{4}. So, every such component can be taken out of B_{4} and put in R instead. Then we may put v in S_{8} and we obtain a split of the cubic structure $Z \cup\{v\}$.

Claim 4.3 The lemma holds.
PROOF - By Claim 4.1 we may assume that v has no neighbor in A.
(1) For the pairs (i, j) such that $1 \leq i<j \leq 4$ and the pairs (i, j) among $(1,5),(2,6),(3,7)$, $(4,8)$ the statement below is true:

If there exists a path $Q=u-\cdots-w$ of $G[B \cup R \cup\{v\}]$ such that u has a neighbor in S_{i} and w has a neighbor in S_{j} then the lemma holds.
Let us choose such a pair (i, j) and such a path Q, subject to the minimality of Q. Note that by the definition of a cubic structure, $V(Q) \subseteq B \cup R$ is impossible. So, Q contains v.

If u is adjacent to $s_{1} \in S_{1}, s_{2} \in S_{2}, s_{3} \in S_{3}, s_{4} \in S_{4}$ then $Q=u=v$ by the minimality of Q. So, $V\left(P_{s_{1}} \cup P_{s_{2}} \cup P_{s_{3}} \cup P_{s_{4}} \cup Q\right)$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. Hence, we may assume that u (and symmetrically w) has no neighbor in S_{4}.

If u is adjacent to $s_{1} \in S_{1}, s_{2} \in S_{2}, s_{3} \in S_{3}$ then $Q=u=v$ by the minimality of Q. By Claim 4.2 we may assume that v is not complete to $S_{1} \cup S_{2} \cup S_{3}$, so v has a non-neighbor in $S_{1} \cup S_{2} \cup S_{3}$, say $s_{1} \in S_{1}$. Let $s_{2} \in S_{2}, s_{3} \in S_{3}$ be neighbors of v. By Item 6 of the definition, we have $S_{6} \cup S_{7} \neq \emptyset$, so up to the symmetry between S_{2}, S_{7} and S_{3}, S_{6} we may assume that there exists $s_{6} \in S_{6}$. Note that $v s_{6} \notin E(G)$ because G is triangle-free. So $V\left(P_{s_{1}} \cup P_{s_{2}} \cup P_{s_{3}} \cup P_{s_{4}} \cup Q\right) \cup\left\{s_{6}\right\}$ induces a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$. So, we may assume that u (and symmetrically w) has no neighbor in S_{3}.

If (i, j) is such that $1 \leq i<j \leq 4$ then up to symmetry, u has a neighbor in $s_{1} \in S_{1}$ and w has a neighbor $s_{2} \in S_{2}$. No vertex of Q has neighbors in $S_{5} \cup S_{6}$ because such a vertex would form a triangle or would contradict the minimality of Q. Also no vertex of Q has neighbors in $S_{3} \cup S_{4}$. Indeed for u, w this follows from the preceeding paragraphs, and for the interior vertices of Q, it follows from the minimality of Q. So, $V\left(P_{s_{1}} \cup P_{s_{2}} \cup P_{s_{3}} \cup P_{s_{4}} \cup Q\right) \cup\{s\}$ where $s \in S_{5} \cup S_{6}$ is a tree that covers $x_{1}, x_{2}, x_{3}, x_{4}$.

If u has a neighbor $s_{1} \in S_{1}$ and w has a neighbor $s_{5} \in S_{5}$, then no vertex of Q has neighbors in $S_{2} \cup S_{3} \cup S_{4}$. Indeed, such a vertex would form a triangle or would contradict the minimality of Q. So, $V\left(P_{s_{1}} \cup P_{s_{2}} \cup P_{s_{3}} \cup P_{s_{4}} \cup Q\right) \cup\left\{s_{5}\right\}$ induces a tree that covers
$x_{1}, x_{2}, x_{3}, x_{4}$. Similarly, we can prove that our claim holds when (i, j) is one of $(2,6),(3,7)$, $(4,8)$. This proves (1).

Let Y be the set of these vertice u of $B \cup R \cup\{v\}$ such that there exists a path from v to u whose interior is in $B \cup R$. From (1) it follows that $N_{Z}(Y)$ is included in either $S_{1} \cup N_{S}\left(S_{1}\right)$, $S_{2} \cup N_{S}\left(S_{2}\right), S_{3} \cup N_{S}\left(S_{3}\right), S_{4} \cup N_{S}\left(S_{4}\right)$ or $S_{5} \cup S_{6} \cup S_{7} \cup S_{8}$. So, respectively to these cases, Y can be put in either $B_{1}, B_{2}, B_{3}, B_{4}$ or R, and we obtain a split of the cubic structure $Z \cup\{v\}$.

This completes the proof of Lemma 2.1.

5 NP-completeness of four-in-a-centered-tree

The NP-completeness of four-in-a-centered-tree follows directly from the fact (proved by Bienstock [1]) that the problem of detecting an induced cycle passing through two prescribed vertices of a graph is NP-complete. In fact, the NP-completeness result of Bienstock remains true for several classes of graphs where some induced subgraphs are forbidden. In [6], Lévêque, Lin, Maffray and Trotignon study the kinds of graph that can be forbidden. We use one of their result. When $k \geq 3$, we denote by C_{k} the cycle on k vertices.

Theorem 5.1 (see [6]) Let $k \geq 3$ be an integer. Then the following problem is NPcomplete:

Instance: two vertices x, y of degree 2 of a graph G that does not contain C_{3}, \ldots, C_{k}.
Question: does G contain an induced cycle covering x, y ?
We deduce easily:
Theorem 5.2 Let $k \geq 3$ be an integer. Then the following problem is NP-complete:
Instance: four terminals $x_{1}, x_{2}, x_{3}, x_{4}$ of a graph G that does not contain C_{3}, \ldots, C_{k}.
Question: Does G contain a centered tree covering $x_{1}, x_{2}, x_{3}, x_{4}$?
Proof - Let us consider an instance G, x, y of the NP-complete problem of Theorem 5.1. Let $x^{\prime}, x^{\prime \prime}$ be the neighbors of x and $y^{\prime}, y^{\prime \prime}$ be the neighbors of y. We prepare an instance $G^{\prime}, x_{1}, x_{2}, x_{3}, x_{4}$ of our problem as follows. We delete x, y. We add five vertices $c, x_{1}, x_{2}, x_{3}, x_{4}$ and the following edges: $c x_{1}, c x_{2}, c x^{\prime}, c x^{\prime \prime}, x_{3} y^{\prime}, x_{4} y^{\prime \prime}$. Now, $G^{\prime}, x_{1}, x_{2}, x_{3}, x_{4}$ is an instance of our problem.

Since $x_{1}-c-x_{2}$ is a P_{3} of G^{\prime} and since x_{1}, x_{2} are of degree 1, every induced centered tree of G^{\prime} covering $x_{1}, x_{2}, x_{3}, x_{4}$ must be made of four edge-disjoint paths $c-x_{1}, c-x_{2}, c-\cdots-x_{3}$, $c-\cdots-x_{4}$. So, such a tree exists if and only if there exists an induced cycle of G covering x, y. This proves that our problem is NP-complete.

By the same way, four-in-a-centered-tree can be proved NP-complete for several classes of graphs defined by a given list \mathcal{L} of forbidden subgraphs. Each time, the proof relies on a direct application of an NP-completeness result for \mathcal{L}-free graphs from [6]. Going into the
details of every possible list that we can get would not be too illuminating since the lists are described in [6]. Let us just mention one result: four-in-a-centered-tree is NP-complete for triangle-free graphs with every vertex except one of degree at most three.

Acknowledgement

We are grateful to Paul Seymour for pointing out to us a simplification in our original NPcompleteness proof.

The authors are also grateful to the anonymous referee for his helpful comments which helped in improving the quality of this article.

References

[1] D. Bienstock. On the complexity of testing for odd holes and induced odd paths. Discrete Math., 90:85-92, 1991. See also Corrigendum by B. Reed, Discrete Math., 102, (1992), p. 109.
[2] M. Chudnovsky and P. Seymour. Excluding induced subgraphs. In Surveys in Combinatorics, volume 346, pages 99-119. London Mathematical Society Lecture Notes Series, 2007.
[3] M. Chudnovsky and P. Seymour. The three-in-a-tree problem. Manuscript.
[4] N. Derhy and C. Picouleau. Finding Induced Trees. Accepted for publication in Discrete Appl. Math., 2008.
[5] A. Gibbons. Algorithmic Graph Theory. Cambridge University Press, 1985.
[6] B. Lévêque, D. Lin, F. Maffray and N. Trotignon. Detecting induced subgraphs. Manuscript, 2007.

[^0]: *CEDRIC, CNAM, Paris (France), email: nicolas.derhy@cnam.fr
 ${ }^{\dagger}$ CEDRIC, CNAM, Paris (France), email: chp@cnam.fr
 ${ }^{\ddagger}$ CNRS, LIAFA, Université Paris 7 - Paris Diderot (France), email: nicolas.trotignon@liafa.jussieu.fr

