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Some combinatorics related to central binomial

coefficients: Grand-Dyck paths, coloured

noncrossing partitions and signed pattern avoiding

permutations

Luca Ferrari
∗

Abstract

We give some interpretations to certain integer sequences in terms
of parameters on Grand-Dyck paths and coloured noncrossing par-
titions, and we find some new bijections relating Grand-Dyck paths
and signed pattern avoiding permutations. Next we transfer a nat-
ural distributive lattice structure on Grand-Dyck paths to coloured
noncrossing partitions and signed pattern avoiding permutations, thus
showing, in particular, that it is isomorphic to the structure induced by
the (strong) Bruhat order on a certain set of signed pattern avoiding
permutations.

1 Introduction

Let P be a set of paths in the discrete plane, having both the starting
and ending points in common. Then it is natural to consider the partial
order on P defined by declaring that the path P ∈ P is less than the path
Q ∈ P when P lies weakly below Q (weakly meaning that the two paths can
have some points in common). This point of view has been considered in
a series of papers [BBFP, BF, FP], where some order properties of certain
classical sets of lattice paths are exploited. In particular, it is shown that
the class of Dyck paths of the same length endowed with such a partial
order is actually a distributive lattice, and the same happens for Motzkin
and Schröder paths.

The motivation of the present work comes from [BBFP], where it is
shown that the lattices of Dyck paths are order isomorphic to the sets of
312-avoiding permutations with the induced (strong) Bruhat order. As a
byproduct, we then have that 312-avoiding permutations of any given length
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possess a distributive lattice structure. To obtain this result, a new distribu-
tive lattice structure is introduced and studied on noncrossing partitions.
Subsequently, similar results are proved in [BF] starting from Motzkin and
Schröder paths. The aim of the present work is to consider this order struc-
ture on Grand-Dyck paths (which are, by definition, like Dyck paths, except
that they are allowed to cross the x-axis), and to study some of its properties,
as well as to find some related order structure on some kind of noncrossing
partitions and pattern avoiding permutations. In trying to accomplish this
project, we will come across some bijections and formulas which we believe
to be new; in particular, in the spirit of the last section of [BBFP], we will
give certain number sequences a combinatorial interpretation in terms of pa-
rameters on (Grand-)Dyck paths. This is essentially the content of section
2.

However, our main result is contained in section 3, and consists of the
proof that our order structure on Grand-Dyck paths is isomorphic to the
Bruhat order on some classes of signed pattern avoiding permutations. This
generalizes the above recalled result on Dyck paths, which in fact can be seen
as a specialization of the present one. As a byproduct, we have determined a
family of pattern avoiding signed permutations such that the induced Bruhat
order gives rise to a distributive lattice structure (and not merely a poset
structure): to the best of our knowledge, this is the first result of this nature
for signed permutations.

Before starting, we recall a recursive construction of Grand-Dyck paths
based on the ECO method which will be useful in section 2.

Let GDn be the set of Grand-Dyck paths of length 2n, that is, by def-
inition, the set of all lattice paths starting at the origin (0, 0), ending on
the x-axis at (2n, 0) and using only two kinds of steps, namely U = (1, 1)
and D = (1,−1). Dyck paths are a special subclass of Grand-Dyck paths,
which can be obtained by adding the constraint of remaining weakly above
the x-axis.

It is possible to generate Grand-Dyck paths (according to the
semilength) using the so-called ECO method. We will not give a descrip-
tion of this method here, but we refer to the very detailed survey [BDLPP].
The following construction can be found in [PPR].

Given P ∈ GDn, we construct a set of paths of GDn+1 as follows:

-) if the last step of P is a down step, then we insert a peak into any
point of the last descent of G or a valley into the last point of G;

-) otherwise, we insert a valley into any point of the last ascent of P or
a peak into the last point of P .
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The succession rule Ω describing the above construction is:

Ω :





(2)
(2) (3)(3)
(k) (3)2(4)(5) · · · (k)(k + 1)

. (1)

We close this section by providing a series of notations and definitions
we will frequently need throughout all the paper.

An infinite lower triangular matrix A is called a Riordan array [SGWW]
when its column k (k = 0, 1, 2, . . .) has generating function d(x)(xh(x))k ,
where d(x) and h(x) are formal power series with d(0) 6= 0.

We will usually denote lattice paths using capital letters, such as
P,Q,R, . . .. We will also make some use of a functional notation for paths
starting and ending on the x-axis: the notation P (k) stands for the ordinate
of the path P having abscissa k.

In a lattice path P , a peak is a sequence of two consecutive steps, the
first one being an up step and the second one being a down step. Dually,
a valley is defined by interchanging the role of up and down steps in the
definition of a peak.

Moreover, a descent is a sequence of consecutive down steps, whereas
an ascent is a sequence of consecutive up steps.

For a permutation π, we use the term rise to mean a sequence of consec-
utive and increasing entries of π, whereas a fall is a sequence of consecutive
and decreasing entries of π.

We will denote with Bn the hyperoctahedral group of size n, i.e. the set
of all permutations of {1, 2, . . . n} whose elements can be possibly signed.
Signed elements will simply be overlined. A signed element will be often
interpreted as a negative element. In this sense, we say that the absolute
value |x| of an element x is that element without its sign. Moreover, given
π ∈ Bn, we will denote by |π| the permutation of Sn obtained from π by
taking the absolute values of all its elements.

In every poset we will deal with, the covering relation will be denoted
≺.

The linear order on n elements, also called chain of cardinality n, will
be denoted Cn.

A join-irreducible of a distributive lattice D is any element x which is
not the minimum of the lattice and with the property that, if x = u ∨ v,
then x = u or x = v.
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The spectrum of a distributive lattice D is the poset Spec(D) of the
join-irreducibles of D.

2 Bijections and numbers

Given a double indexed sequence (αn,k)n,k∈N, its coloured version is
defined to be (βn,k)n,k∈N = (2kαn,k)n,k∈N. All the formulas we will get
in the present section can be interpreted in the same way, namely we will
provide some combinatorial interpretation for (the row sums of) the coloured
versions of a series of (not always well known) double indexed sequences
using Grand-Dyck paths.

Given a Dyck path P , a factor of P is a minimal subpath of P which is
itself a Dyck path. In figure 1 a Dyck path having 4 factors is shown.

Figure 1: A Dyck path of length 20 having 4 factors.

Now denote by Dn the set of coloured Dyck paths of length 2n, i.e.
Dyck paths whose steps can be coloured in two different ways, say black
and white. There is an obvious bijection between GDn and a special subset
of Dn. More precisely, we have the following, simple proposition.

Proposition 2.1 The set GDn of Grand-Dyck paths of length 2n is in bi-
jection with the subset of Dn consisting of all coloured Dyck paths in which
steps belonging to the same factor occur with the same colour.

Proof. For any given Grand-Dyck path, just reverse the pieces of the
path which lie below the x-axis and colour their steps black (whereas the
remaining steps are taken to be white). �

The subset of Dn mentioned in the above proposition will be denoted D̃n

and its elements will be called factor-bicoloured Dyck paths. For an example,
see figure 2.

The very easy observation expressed in the above proposition yields the
first, obvious enumerative result. Indeed, since it is well known that Grand-
Dyck path are counted by the central binomial coefficients

(2n
n

)
, we have the

following.
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white steps

black steps

Figure 2: A factor-bicoloured Dyck path of length 20.

Proposition 2.2 If bn,k = k
2n−k

(2n−k
n

)
are the ballot numbers, for any n ≥

1, we have (
2n

n

)
=

n∑

k=1

2kbn,k. (2)

Proof. To count Grand-Dyck paths of length 2n we can just count the
elements of D̃n. Given a Dyck path of length 2n, the number of its factors
clearly coincides with the number of returns of the path, that is how many
times the path touches the x-axis except for the starting point. It is well
known (see, for example, [D]) that the number of Dyck paths of length 2n
having precisely k returns is given by the ballot number bn,k = k

2n−k

(2n−k
n

)
.

Since each factor can be coloured in two different ways, the thesis immedi-
ately follows. �

The result of the above proposition is not new, and can be found, for
example, in [Sl], among the formulas for sequence A000984 (i.e. central bi-
nomial coefficients). Therefore identity (2) provides a trivial combinatorial
interpretation for the row sums of the coloured ballot numbers, that is

n∑

k=1

2kbn,k =
∑

P∈GDn

1.

A definitely more interesting result can be obtained by generalizing a
result described in the last section of [BBFP]. To this aim, we need first of
all to introduce a bijection between Grand-Dyck paths and a special class
of set partitions.

If we denote by Πn the set of partitions of {1, 2, . . . , n}, given π =
B1|B2| · · · |Bh ∈ Πn, we will always represent it in such a way that (i) the el-
ements inside each block Bi are listed in decreasing order and (ii) the blocks
are listed in increasing order of their maxima. This will be called the stan-
dard representation, or standard form of π. Thus, for instance, the partition
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{4}|{5, 3, 1}|{6, 2} in Π6 is represented here in its standard form. To improve
readability, in the sequel we will also delete all the parentheses and commas,
so that the above partition will be written 4|531|62. Each partition can be
factored as follows. Given π = B1|B2| · · · |Bh ∈ Πn represented in its stan-
dard form, we say that π has k components when its (linearly ordered) set of
blocks can be partitioned into k nonempty intervals with the property that
the union of the blocks inside the same interval is an interval of {1, 2, . . . , n},
and k is maximum with respect to this property. Each of the above inter-
vals of blocks will be called a component of π. For instance, the partition
2|43|651|8|97 in Π9 has 2 components, which are 2|43|651 and 8|97. We will
denote tn,k the number of partitions of an n-set having k components. Set
partitions having a single component are also called atomic partitions (see
[BZ]).

Proposition 2.3 The infinite triangular array (tn,k)n,k∈N is the Riordan
array (p(x), p(x)), where p(x) is the generating function of atomic partitions.
In particular, tn,k is the coefficient of xn in xkp(x)k.

Proof. Observe that a partition of an n-set having k components can
be uniquely recovered by the subpartition constituted by its first k− 1 com-
ponents and the atomic partition isomorphic to its k-th component. This
argument can be translated into the following recurrence relation:

tn,k =
n∑

h=1

tn−h,k−1ph,

where pn denotes the number of atomic partitions of an n-set. If Ck(x) is
the generating function of the k-th column of the array T = (tn,k)n,k∈N, the
above recurrence becomes:

Ck(x) = xp(x)Ck−1(x),

where p(x) =
∑

n>1 pnx
n is the generating function of atomic partitions.

Iterating we then get:
Ck(x) = (xp(x))k,

which is precisely our thesis. �

The sequence of atomic partitions is also recorded in [Sl] (it is sequence
A074664), and its generating function is p(x) = 1− 1

B(x) , where B(x) is the

(ordinary) generating function of Bell numbers (see, for example, [Kl]). The
infinite matrix T is in [Sl] too (sequence A127743), but the combinatorial
interpretation given here is different.

Remark. Observe that the generating function p(x) can also be de-
termined using a species-theoretic argument. Indeed, the fact that any
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nonempty partition can be decomposed into the (possibly empty) partition
constituted by all but the last of its components and the atomic partition
constituted by the last component alone means that the species of nonempty
partitions is obtained as the Hadamard product of the species of partitions
and the species of atomic partitions, and so we get the generating function
relation:

B(x)− 1 = B(x) · p(x),

whence the equality p(x) = 1− 1
B(x) follows.

To generalize the last result of [BBFP], which gives a combinatorial
interpretation of Bell numbers in terms of natural parameters on Dyck paths,
we now need to introduce the notion of component-bicoloured partition. As
the name itself suggests, a component-bicoloured partition is a set partitions
whose components can be coloured using two different colours, say black
and white. The total number of component-bicoloured partitions of an n-set
is clearly given by

∑n
k=1 2

ktn,k. This is sequence A059279 in [Sl], but also in
this case the present interpretation is not recorded. We now find a further
combinatorial interpretation of this sequence in terms of natural parameters
on Grand-Dyck paths.

A bicoloured Dyck word is a Dyck word (i.e. a word on the alphabet
{U,D} such that, interpreting each U as an up step and each D as a down
step, the resulting path is a Dyck path) whose letters can be coloured either
black or white. We call factor-bicoloured Dyck word any bicoloured Dyck
word corresponding to a factor-bicoloured Dyck path.

Define a bicoloured Bell matching of a factor-bicoloured Dyck word to
be any Bell matching of the associated Dyck word (i.e. the word obtained
by “forgetting colours”). Following [BBFP], a Bell matching of a Dyck word
ω is a matching between the U ’s and the D’s of ω such that

1. for any set of consecutive D’s, the leftmost D is matched with the
adjacent U on its left;

2. every other D is matched with a U on its left, in such a way that there
are no crossings among the arcs originated from a set of consecutive
D’s.

Observe that, in a bicoloured Bell matching, if a U and aD are matched,
then they have the same colour.

Adapting the argument given for proposition 6.1 in [BBFP], the reader
can now easily prove the following.

Proposition 2.4 There is a bijection between bicoloured Bell matchings of
factor-bicoloured Dyck words of length 2n and component-bicoloured parti-
tions of an n-set.
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Given two bicoloured Bell matchings, we say that they are equivalent
when they are bicoloured Bell matchings of the same factor-bicoloured Dyck
word. Since it is clear that, for each fixed factor-bicoloured Dyck word there
is exactly one bicoloured Bell matching without crossings among its arcs, as
an immediate consequence of the last proposition we have that in the equiv-
alence classes of the above defined equivalence relation there is precisely
one bicoloured Bell matching corresponding to a component-bicoloured non-
crossing partition. It is convenient to record this fact in a proposition.

Proposition 2.5 There is a bijection between GDn (or, which is the same,

D̃n) and the set ÑC(n) of component-bicoloured noncrossing partitions of
an n-set.

Now we are ready to state the main result of this section, which provides
a combinatorial interpretation for the coloured version of the row sums of
the sequence (tn,k)n,k∈N using Grand-Dyck paths. In the following theorem,
the word “positive” means “above the x-axis”, and “negative” stands for
“below the x-axis”. Moreover, the (absolute) height of a peak (or a valley)
is given by the (absolute value of) the ordinate if its vertex.

Theorem 2.1 Given a Grand-Dyck path P , let A be the set of positive peaks
and negative valleys of P and B the set of non-positive peaks, non-negative
valleys and returns on the x-axis of P . If we linearly order the elements
of A and B using their abscissas, and denote by p1, p2, . . . , ph the absolute
heights of the elements of A and by v1, v2, . . . , vh the absolute heights of the
elements of B (with the convention vh = 0), then we have

n∑

k=1

2ktn,k =
∑

P∈GDn

h∏

i=1

(
pi − 1

vi

)
. (3)

Proof. First of all, we observe that |B| = |A|, since each element of
A is followed by precisely one element of B. Therefore the statement of the
theorem is proved to be consistent.

Now let π be a component-bicoloured noncrossing partition of an n-set;
proposition 2.5 implies that π is uniquely associated with a Grand-Dyck
path P , and so with a factor-bicoloured Dyck path P̃ of length 2n. If we
denote by Q the Dyck path obtained from P̃ by “forgetting” colours, we
observe that the pi’s are the heights of the peaks of Q, whereas the vi’s are
the heights of the valleys (except for vh, which is the height of the last return
of Q, and so vh = 0). Therefore, recalling the definition of Bell matching and
the last theorem of [BBFP], if |[π]| is the equivalence class of π, we obtain:

|[π]| =

h∏

i=1

(
pi − 1

vi

)
.
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Summing over all Grand-Dyck paths, we then get formula (3), and the
theorem is proved. �

To conclude the part of this section devoted to partitions, we observe
that the notion of component-bicoloured partition is a specialization of
the well-known notion of bicoloured partition, i.e. partition with bicoloured
blocks (see, for instance, [LLPP]). As it is obvious, such partitions are enu-
merated by the sequence

∑n
k=1 2

kSn,k, where the Sn,k’s are the Stirling num-
bers of the second kind; this is sequence A001861 in [Sl]. Also in this case
there is a combinatorial interpretation of this numbers in terms of Grand-
Dyck paths. The key result is the following proposition, which refines the
formula found in [BBFP] to express Bell numbers in terms of parameters on
Dyck paths and whose proof (which can be carried out by suitably general-
izing the argument of [BBFP]) is left to the reader.

Proposition 2.6 If Dn(k) denotes the set of Dyck paths of length 2n having
exactly k peaks, it is

Sn,k =
∑

P∈Dn(k)

k∏

i=1

(
pi − 1

vi

)
,

where pi and vi are the heights of the peaks and the valleys of P , respectively
(with vk = 0 by convention).

As an immediate consequence, we have the following alternative inter-
pretation for the row sums of the coloured Stirling numbers of the second
kind.

Corollary 2.1 With the same notations as in the above proposition, we
have:

n∑

k=1

2kSn,k =
n∑

k=1

2k
∑

P∈Dn(k)

k∏

i=1

(
pi − 1

vi

)
.

The second part of the present section is devoted to the description of
some new bijections between Grand-Dyck paths and signed pattern avoiding
permutations. More precisely, we propose here two bijections: the former
has been found with the help of the ECO method, whereas the latter will
be useful in the next section to define an interesting distributive lattice
structure.

The first bijection involves the classes of signed pattern avoiding permu-
tations Bn(21, 21), where Bn is the hyperoctahedral group on n elements. It
is known [Si] that |Bn(21, 21)| =

(2n
n

)
. Moreover, combining some results in
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[Si] and in [Re], an explicit bijection between GDn and Bn(21, 21) can be de-
scribed. However, our bijection is different from the one so obtained. Before
starting, observe that a permutation in Bn(21, 21) is a shuffle of the signed
and unsigned elements, each of which are ordered increasingly by absolute
value. Thus, given π ∈ Bn(21, 21), we can consider the two elements a and
b such that |a| and |b| are the maximum of the absolute values of the signed
and of the unsigned elements, respectively. It is clear that |a| = n or |b| = n.
We call quasi maximum of π the one between a and b whose absolute value
is different from n.

To describe our first bijection, we represent permutations by a graphical
device used, for instance, in [BFP]. We represent the elements of the permu-
tations as dots placed on horizontal lines, in such a way that elements with
greater absolute values lie on higher lines. It is an extremely natural repre-
sentation, so we deem it is not necessary to give a more formal definition
(see figure 3 for an example).

Figure 3: A graphical representation of the permutation 24315

Let π ∈ Bn(21, 21). Starting from π we will construct a set of permuta-
tions belonging to Bn+1(21, 21), by adding a new element in the last position
of π and then suitably renaming some of the elements of π. From a graphical
point of view, we simply add a new horizontal line in the representation of π,
and we place on such a line the new element. In performing this operation,
we have to take care that the resulting permutations still avoids the two
patterns 21 and 21. To make sure that this happens, we can distinguish two
cases.

1. Suppose that the quasi maximum a of π is signed. In this case, we can
add at the end of π any signed element having absolute value greater
than a, as well as the unsigned element n+ 1. Figure 4 describes how
this construction works.

2. On the other hand, if the quasi maximum a of π is unsigned, we are
allowed to add at the end of π any unsigned element greater than a,
as well as the signed element n+ 1 (see figure 5).

In the first case, if a = n+ 2− k, then π produces k sons, whose quasi
maximums are easily seen to be n+ 2− k, n+ 3− k, . . . , n, n, and so the
numbers of their sons are, respectively, k + 1, k, . . . 4, 3, 3. Similarly, in the
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(4)

(3) (3)

(3)

Figure 4: Our ECO construction performed on 12435. Here signed elements
are represented using black bullets.

Figure 5: Our ECO construction performed on 21354768.

second case, we have the same statement as above, with signed elements
replaced by unsigned ones and vice versa. Thus, also in this case the numbers
of sons are the same as above.

Therefore, we observe that we have an ECO construction for signed
permutations avoiding 21 and 21 which is isomorphic to the ECO construc-
tion for Grand-Dyck paths recalled in the introduction, and described by
the succession rule Ω given in (1). Such an isomorphism defines a bijection
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between GDn and Bn(21, 21). Moreover, the underlying ECO construction
allows to easily translate many natural statistics on Grand-Dyck paths into
specific parameters defined on permutations. To give just a glimpse of this
fact, we propose a couple of examples.

Given a signed permutation π = π1 · · · πn ∈ Bn, we define the following
two sets:

A(π) = {i ≤ n | πi is unsigned and π1 · · · πi−1 has a signed maximum} ∪

{i ≤ n | πi is signed and π1 · · · πi has an unsigned maximum};

B(π) = {i ≤ n | the two greatest elements of π1 · · · πi have different signs}.

By convention, we assume that 1 ∈ A(π) if and only if π1 is unsigned
and that 1 ∈ B(π) for any permutation π.

Proposition 2.7 The statistic “number of peaks” on Grand-Dyck paths cor-
responds to the A-statistic on Bn(21, 21).

Proof. Observe that, in the ECO construction of Grand-Dyck paths
proposed in the introduction (and encoded by the rule in (1)), the sons of a
Grand-Dyck path P having h peaks can have either h peaks or h+1 peaks.
More precisely:

path1) if P ends with a sequence of down steps, then all the sons of P have
h + 1 peaks but the one obtained by adding a valley at the end of P
and the one obtained by adding a peak at the beginning of the last
descent of P ; if P has label (k), the two sons of P having h peaks are
then labelled (3) and (k + 1);

path2) if P ends with a sequence of up steps, then all the sons of P have h+1
peaks but the one obtained by adding a valley at the beginning of the
last ascent of P (if P has label (k), then the label of such a son is
(k + 1)).

Transferring the above considerations on permutations by means of our
bijection, we have the following two cases:

perm1) if π ∈ Bn(21, 21) has an unsigned maximum, then, in the above de-
scribed ECO construction of Bn(21, 21), the two sons of π having la-
bels (3) and (k + 1) corresponding to the paths mentioned in path1)
are avoided by adding a signed element a whose absolute value is not
greater than the absolute values of all the elements of π; this means
that πa has an unsigned maximum;

perm2) if π ∈ Bn(21, 21) has a signed maximum, then the son of π labelled
(k + 1) is avoided by adding any signed element.

12



The above considerations immediately implies that, if π corresponds to
P in our bijection, then h = |A(π)|, which is the thesis. �

Proposition 2.8 The statistic “number of returns” on Grand-Dyck paths
corresponds to the B-statistic on Bn(21, 21).

Proof (sketch). The arguments to be used here are completely analo-
gous to those of the previous proposition. We just observe that, in the ECO
construction of Grand-Dyck paths, a new return is produced whenever ei-
ther a valley or a peak is appended at the end of the path. This translates on
permutations into the addition to the right of π of an element a whose sign
is different from the sign of the maximum of π and such that the maximum
of π and a are the two greatest elements of πa. �

In passing through, we notice that it is possible to define another (pre-
sumably new) bijection between GDn and Bn(21, 21). Also in this case, we
start by considering the usual ECO construction of Grand-Dyck paths and
then we translate it into permutations avoiding the two patterns 21 and 21.
Without going into details, the idea is to generate permutations by adding
a new maximum (instead of adding the rightmost element). This can be
represented by using a graphical device similar to the one above: just re-
place horizontal lines with vertical lines. In figure 6 an example of how this
construction works is shown. We entirely leave to the interest reader the
accomplishment of all the details of this alternative approach, as well as the
task of translating some statistics on Grand-Dyck paths (such as the number
of peaks and the number of returns considered above) into permutations.

Figure 6: An alternative ECO construction performed on 12435.

Our second bijection involves a different type of pattern avoiding permu-
tations, namely permutations which avoid the four patterns 312, 312, 21, 21.
The classes of pattern-avoiding permutations Bn(312, 312, 21, 21) are
counted by the central binomial coefficients

(2n
n

)
, and this can be eas-

ily proved by exhibiting a completely trivial bijection with component-
bicoloured noncrossing partitions.

13



Proposition 2.9 (Bar-removing bijection). There is a bijection between

ÑC(n) and Bn(312, 312, 21, 21).

Proof. Taken π ∈ ÑC(n), written as usual in its standard form, delete
the vertical bars so to obtain a permutation belonging to Bn (still denoted
by π). The presence of a pattern 21 or of a pattern 21 in π would imply that,
in the associated partition, the elements of such a pattern should belong to
two different components and the greatest of them should belong to a block
with a lesser index. But this is impossible in our standard representation
of partitions. Moreover, the fact that |π| is noncrossing implies that every
signed version of the pattern 312 cannot appear in the associated signed
permutation. Finally, it is immediate that, avoiding any signed version of
312 and the two patterns 21 and 21 is equivalent to avoiding 312, 312, 21
and 21.

To prove that this is actually a bijection, it is sufficient to observe that,
given π ∈ Bn(312, 312, 21, 21), the associated partition can be uniquely re-
covered by inserting a vertical bar between the elements of each rise of |π|
�

Now, using propositions 2.5 and 2.9, we get the following corollary.

Corollary 2.2 There is a bijection between GDn and Bn(312, 312, 21, 21).

This last bijection is a sort of signed analog of a well known bijection
between Dyck paths and 312-avoiding permutations, which can be found
for example in [BK, Kr]. It also has the remarkable feature of translating
many natural statistics on paths into natural statistics on permutations.
For instance, the number of unsigned (resp. signed) left-to-right maxima
in a permutation of Bn(312, 312, 21, 21) is equal to the number of positive
peaks (resp. negative valley) of the associated Grand-Dyck path.

3 Posets

The set GDn of Grand-Dyck paths of length 2n can be naturally ordered
by declaring P ≤ Q whenever P (k) ≤ Q(k), for all k. This means that the
path P lies weakly below Q (see the example in figure 7). This very natural
partial order is easily seen to yield a distributive lattice structure, in which
the join and meet of two paths are taken coordinatewise. The minimum
and maximum of these lattices will be denoted 0 and 1, respectively. See
figure 8 for the Hasse diagram of GD3. The resulting lattice structures have
already appeared in the literature (see [NF]), but they have been considered
on different combinatorial objects. It is immediate the following fact, whose
easy proof is left to the reader.
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Figure 7: Two comparable Grand-Dyck paths of length 20.

Figure 8: The lattice GD3.

Proposition 3.1 The lattice GDn of Grand-Dyck paths of length 2n is iso-
morphic to the Young lattice of integer partitions which lie inside the n× n

square.

Young lattices of partitions have been intensively investigated since
many years, see for instance [St] for an interesting study on the unimodality
properties of such lattices. Of course, as an immediate consequence of the
above proposition, we have that Grand-Dyck lattices are rank-unimodal.

However, even if the abstract lattice structure we are considering is not
new, we claim that the study of order and lattice properties arising from the
special representation in terms of Grand-Dyck paths is worth being carried
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out.

Our first result concerns the shape of join-irreducible elements.

Proposition 3.2 A Grand-Dyck path P ∈ GDn is join-irreducible if and
only if it has precisely one peak. Therefore, Spec(GDn) ≃ C2

n.

Proof (sketch). The covering relation on Grand-Dyck paths works as
follows: Q covers P if and only if Q can be obtained from P by changing
a valley into a peak. Then the first part of the thesis immediately follows.
As far as the second part is concerned, just observe that, thanks to the last
proposition, join-irreducibles corresponds to integer partitions of rectangular
shape. �

We have already mentioned that the lattices GDn are rank-unimodal.
The rank function rn of GDn is clearly related to the area function. More
precisely, we have the following proposition.

Proposition 3.3 If P ∈ GDn, then

rn(P ) =
A(P ) + n2

2
,

where A(P ) denotes the area (with sign) of the region included between the
path and the x-axis.

Proof. By induction, suppose that P ≺ Q in GDn and that rn(P ) =
A(P )+n2

2 . Since Q is obtained from P by simply reversing a valley, we have

that A(Q) = A(P ) + 2, and so rn(Q) = A(Q)+n2

2 = A(P )+2+n2

2 = A(P )+n2

2 +

1 = rn(P ). Since rn(0) = A(0)+n2

2 = −n2+n2

2 = 0, the proof is completed.
�

Our next goal will be to translate the above described lattice structure
on partitions. To accomplish this task we make use of the bijection between
the set D̃n of factor-bicoloured Dyck paths of length n and component-
bicoloured noncrossing partitions stated in proposition 2.5. For the sake of
simplicity, from now on we will refer to black (resp., white) items (steps,
factors,...) as to coloured (resp., noncoloured) items.

We start by observing that the Grand-Dyck lattice structure can be
read off on factor-bicoloured Dyck paths as follows: if P,Q ∈ D̃n, we say
that P ≤ Q when, for every k ∈ N, one of the following holds:

1. if P (k) and Q(k) both belong to coloured factors, then P (k) ≥ Q(k);

2. if P (k) and Q(k) both belong to noncoloured factors, then P (k) ≤
Q(k);
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3. P (k) belongs to a coloured factor and Q(k) belongs to a noncoloured
one.

Now, if we transport this lattice structure along the above recalled bi-
jection, we obtain a lattice structure on component-bicoloured noncrossing
partitions. In the sequel, we denote these lattices of partitions ÑC(n) (where
n is the size of the ground set, of course).

Our next results concerns the description of the order relation on
ÑC(n).

Given π ∈ ÑC(n), define the max-vector of π to be the vector max(π)
whose i-th component equals the maximum of the first i element of |π|, when
π is written in its standard form; moreover, each component of max(π)
appears coloured when it is coloured in π. Therefore, for instance, taken
π = 2|431|6|7|985 ∈ ÑC(9), we have max(π) = (2, 4, 4, 4, 6, 7, 9, 9, 9).

For any given n ∈ N, denote by M(n) the set of max-vectors of ÑC(n),

that is M(n) = {v = (v1, . . . , vn) | ∃π ∈ ÑC(n) : v = max(π)}. It is not dif-
ficult to see that M(n) consists of all vectors with n bicoloured components
having increasing absolute values and such that, for any i < n, |vi| ≥ i and,
if vi and vi+1 have different colours, then vi = i.

Now define on M(n) a partial order as follows. Given two max-vectors
v = (v1, . . . , vn) and w = (w1, . . . , wn), we say that v ≤ w when, for every
i ≤ n either

(i) vi and wi are both coloured and vi ≥ wi, or

(ii) vi and wi are both noncoloured and vi ≤ wi, or

(iii) vi is coloured and wi is noncoloured.

Clearly, the covering relation of the poset [M(n);≤] can be described
by saying that precisely one of the above situations (i), (ii) or (iii) holds for
a specific i, whereas all the other components are equal, and in each of the
three cases we have respectively:

(i) vi = wi + 1,

(ii) wi = vi + 1,

(iii) |vi| = |wi|.

Using max-vectors it is now possible to characterize the covering relation
of ÑC(n).

Proposition 3.4 Given π, ρ ∈ ÑC(n), it is π ≺ ρ if and only if max(π) ≺
max(ρ).
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Proof. Saying that π ≺ ρ in ÑC(n) means that, if we consider the
two associated factor-bicoloured Dyck paths P = P (π) and R = R(ρ), they
differ precisely in two steps, namely either:

(i) a coloured peak of P is changed into a coloured valley of R, or

(ii) a noncoloured valley of P is changed into a noncoloured peak of R, or

(iii) a coloured peak of P is changed into a noncoloured peak of R (in this
case the two peaks necessarily lies on the x-axis).

Now observe that, given v = (v1, . . . , vn) = max(π) ∈ M(n), the po-
sition di(π) of the i-th down step in the associated factor-bicoloured Dyck
path is given by vi + i, and of course the same happens for the max-vector
w = (w1, . . . , wn) = max(ρ) ∈ M(n) (i.e., di(ρ) = wi + i). Therefore, in the
above three cases, we have:

(i) P and R coincide, except for a pair of adjacent steps, which is UD in
P and DU in R. If the down step involved is the i-th, then we have
wi = di(ρ)− i = di(π)− 1− i = vi − 1.

(ii) P and R coincide, except for a pair of adjacent steps, which is DU in
P and UD in R. If the down step involved is the i-th, then we have
wi = di(ρ)− i = di(π) + 1− i = vi + 1.

(iii) P and R coincide, except for a pair of adjacent steps, which is UD in
P and UD in R, and such a peak lies on the x-axis. In this last case,
if the down step involved is the i-th, then we have that vi and wi have
the same absolute value, but vi is coloured whereas wi is noncoloured.

Thus, the fact that π ≺ ρ in ÑC(n) is equivalent to the fact that
max(π) ≺ max(ρ) in M(n), which is our thesis. �

Corollary 3.1 Given π, ρ ∈ ÑC(n), it is π ≤ ρ if and only if max(π) ≤
max(ρ).

Our last goal is to transfer the above order on signed pattern avoid-
ing permutations. This can be done by simply applying the bar-removing
bijection of proposition 2.9, thanks to which we obtain a partial order on
Bn(312, 312, 21, 21). The following proposition gives a characterization of
the associated covering relation.

We will use the term signed (respectively, unsigned) inversion of π to
mean a pair (πi, πj), with i < j, πi = a (resp., πi = a), πj = b (resp., πj = b)
and a > b. An analogous definition is given for the term signed (unsigned)
noninversion.
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Proposition 3.5 Let π, ρ ∈ Bn(312, 312, 21, 21). Then π ≺ ρ if and only if
ρ is obtained from π by either:

(i) interchanging the elements of a signed inversion, or

(ii) interchanging the elements of an unsigned noninversion, or

(iii) changing a signed element belonging to a rise of |π| into an unsigned
one.

Proof. The condition π ≺ ρ in Bn(312, 312, 21, 21) can be translated
on factor-bicoloured paths by saying that exactly one of the three conditions
listed in the proof of proposition 3.4 holds. Using the results of [BBFP], it
is not difficult to conclude that the first two conditions corresponds, on per-
mutations, to conditions (i) and (ii) of the present proposition. Concerning
the third condition, if, in a path P , a coloured peak at height 0 is changed
into a noncoloured one, then, on the associated permutation π, we have a
signed element belonging to a rise of |π| which is changed into an unsigned
one, and the proof is completed. �

The distributive lattice structure on Bn(312, 312, 21, 21) obtained via
the bar-removing bijection turns out to have a very interesting alternative
combinatorial description. Before giving it explicitly, we determine a formula
to compute its rank function. Given a permutation π ∈ Bn(312, 312, 21, 21),
we denote by inv(π) the number of unsigned inversions of π, by ninv(|π|)
the number of non-inversions of |π| and by #(π) the number of unsigned

elements of π. Thus, for instance, given π = 243167589 ∈ ÑC(9), we have
inv(π) = 4, ninv(|π|) = 30 and #(π) = 5.

Proposition 3.6 If π ∈ Bn(312, 312, 21, 21), denoting by rn(π) its rank, we
have:

rn(π) = ninv(|π|) + 2inv(π) + #(π).

Proof. The minimum 0 of the lattice Bn(312, 312, 21, 21) is the per-
mutation n(n− 1) · · · 21, and it is clear that ninv(|n(n− 1) · · · 21|) +
2inv(n(n − 1) · · · 21) + #(n(n− 1) · · · 21) = 0 = rn(0).

Using an induction argument, suppose that, in Bn(312, 312, 21, 21), we
have π ≺ ρ. Thanks to proposition 3.5, we have three possible cases, which
we deal with using the same numeration as in the statement of such a propo-
sition.

(i) In this case, in the associated coloured Dyck path there is a coloured
peak which is changed into a coloured valley. Referring to [BBFP], we
can then say that, in the permutation π, a new signed noninversion is
produced, and so:

inv(ρ) = inv(π), ninv(|ρ|) = ninv(|π|) + 1, #(ρ) = #(π),

19



whence

ninv(|ρ|) + 2inv(ρ) + #(ρ) = ninv(|π|) + 2inv(π) + #(π) + 1

= rn(π) + 1 = rn(ρ).

(ii) This situation corresponds to changing a valley in a peak in a non-
coloured factor of the associated coloured Dyck path. But is it known
from [BBFP] that this produces one more unsigned inversion in ρ

(leaving unchanged all the signed elements), and so

inv(ρ) = inv(π) + 1, ninv(|ρ|) = ninv(|π|) − 1, #(ρ) = #(π),

and an analogous computation as above immediately yields

ninv(|ρ|) + 2inv(ρ) + #(ρ) = rn(ρ).

(iii) Finally, in this last case the difference between π and ρ consists of
the fact that ρ contains one more unsigned element, whence (using
analogous arguments as those for the preceding two cases) the thesis
follows. �

Our last result, which we deem is the main one of the present
paper, is the determination of an isomorphism between our lattices
Bn(312, 312, 21, 21) and an important and well known poset structure on
permutations. To this aim, we need to introduce a few notations and defi-
nitions.

Call S±n the set of permutation of the set {n, n− 1, . . . , 2, 1, 1, 2, . . . , n−
1, n}, linearly ordered as indicated. As already remarked, this corresponds
to setting k = −k and then considering the usual linear order. In what
follows, we will often tacitly make the above identification, but we keep on
writing k instead of −k in order to gain a better readability. Given π in
the hyperoctahedral group Bn, denote by π̂ the permutation of S±n defined
by π̂(i) = π(n + 1− i) and π̂(i) = π̂(i), for every i ∈ {1, . . . , n}. Thus,
for instance, if π = 32541 ∈ B5, then π̂ = 3254114523 ∈ S±5. Observe,
in particular, that, given π̂ expressed, as usual, in one-line notation, π is
obtained, again in one-line notation, by taking the first half of the elements
of π̂. Moreover, let Ŝ±n[312, 312, 21, 21] = {π̂ | π ∈ Bn(312, 312, 21, 21)}
(here we use square brackets in order to avoid confusion with the notation
for pattern avoidance).

Theorem 3.1 The poset Bn(312, 312, 21, 21) is isomorphic to
Ŝ±n[312, 312, 21, 21] endowed with the (strong) Bruhat order.

Proof. Suppose first that π ≺ ρ in Bn(312, 312, 21, 21). From proposi-
tion 3.5, we have three cases to analyze.
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(i) Suppose that ρ is obtained from π by interchanging the elements of a
signed inversion. To fix the notations, we can denote by i, j ≤ n the two
elements such that i < j, π(i) = ρ(j) and π(j) = ρ(i) are both signed
and π(i) > π(j) (and so ρ(i) < ρ(j)). Then, from the definition of π̂
and ρ̂, it follows that π̂(n+ 1− i) = ρ̂(n+ 1− j) and π̂(n+ 1− j) =
ρ̂(n+ 1− i) are both signed and π̂(n+ 1− i) > π̂(n+ 1− j) (and so
ρ̂(n+ 1− i) < ρ̂(n+ 1− j)). Since n+1−i > n+1−j, this means that
ρ̂ possesses at least one more inversion than π̂. An analogous argument
on the elements π̂(n+1−i) = ρ̂(n+1−j) and π̂(n+1−j) = ρ̂(n+1−i)
shows that ρ̂ has one further inversion more than π̂. It is then easy
to realize that these are the only inversions of ρ̂ which are not also in
π̂, and so we can conclude that ρ̂ has two more inversions than π̂ in
the Bruhat order of Ŝ±n[312, 312, 21, 21], which is enough to say that
π̂ ≤ ρ̂ in such a Bruhat poset.

(ii) An analogous argument can be developed when ρ is obtained from
π by interchanging the elements of an unsigned noninversion. Also in
this case, following the same lines, it is possible to show that ρ̂ has two
more inversions than π̂ in the Bruhat order of Ŝ±n[312, 312, 21, 21].

(iii) If ρ is obtained from π by changing a signed element belonging to a rise
into an unsigned one, then π̂ and ρ̂ coincide except for two elements;
more precisely, there exists a positive i ≤ n such that π̂(i) = ρ̂(i) is
signed (and so π̂(i) = ρ̂(i) is unsigned). Thus, the pair (π̂(i), π̂(i)) is a
noninversion in π̂, whereas (ρ̂(i), ρ̂(i)) is an inversion in ρ̂. From this
we deduce that ρ̂ has one more inversion than π̂.

The above arguments allows us to conclude that, if π ≺ ρ in
Bn(312, 312, 21, 21), then π̂ ≤ ρ̂ in the Bruhat order of Ŝ±n[312, 312, 21, 21].
As an obvious consequence, we have that, if π ≤ ρ in Bn(312, 312, 21, 21),
then π̂ ≤ ρ̂ in the Bruhat order of Ŝ±n[312, 312, 21, 21], which is the first
part of the theorem.

Vice versa, suppose that π̂ ≺ ρ̂ in Ŝ±n[312, 312, 21, 21] with the in-
duced Bruhat order. This means that ρ̂ is obtained from π̂ by performing
as little inversions as possible (and, of course, remaining inside the class
Ŝ±n[312, 312, 21, 21]). We can distinguish some cases.

• Given i > j > 0, if π̂(i) < π̂(j) and both π̂(i), π̂(j) are unsigned, then
we can exchange π̂(i) and π̂(j), provided that there is no k, i > k > j,
such that π̂(i) < π̂(k) < π̂(j). However, in this case, we also need
to exchange the two elements π̂(i) and π̂(j) in order to remain inside
Ŝ±n[312, 312, 21, 21]. Thus, we have obtained a permutation ρ̂ having
two more inversions than π̂. Translating all this on Bn(312, 312, 21, 21),
we have that ρ is obtained from π by interchanging the elements of
an unsigned noninversion. Of course, we have, by symmetry, exactly
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the same situation if we start by considering 0 < i < j such that
π̂(i) < π̂(j) and π̂(i), π̂(j) both signed.

• With a completely analogous argument, we can prove that a
permutation ρ̂ which covers π̂ in the induced Bruhat order of
Ŝ±n[312, 312, 21, 21] can be obtained by interchanging π̂(i) and π̂(j),
when 0 < i < j, π̂(i) and π̂(j) are both unsigned and π̂(i) < π̂(j) (or,
equivalently, when i > j > 0, and π̂(i) < π̂(j)). In Bn(312, 312, 21, 21),
this means that ρ is obtained from π by interchanging the elements of
a signed inversion.

• If π̂(i) and π̂(j) have different signs, for i, j > 0, we cannot exchange
π̂(i) and π̂(j), since a 21 pattern would arise. And the same would
happen for π̂(i) and π̂(j).

• The only case which does not fit into one of the above is when ρ̂

is obtained from π̂ by interchanging two elements π̂(i) and π̂(j), with
i, j > 0. In this case, it is easy to see that, if π̂(i) and π̂(j) had different
absolute values, then, in ρ ∈ Bn(312, 312, 21, 21) we would have two
elements having the same absolute value, which is clearly not allowed.
The only possibility we have to perform an interchange is to have i = j

(i.e., to interchange two elements of the kind a, a). In this case, ρ is
obtained from π by changing a signed element into an unsigned one,
and, in order that the inversion in Ŝ±n[312, 312, 21, 21] is minimal, it
is necessary that, for every 0 < k < i, π̂(k) > π̂(i) > 0. This means
that, in Bn, π(n+ i− 1) is signed and belongs to a rise of |π|.

Now, putting things together, thanks to proposition 3.5, we have shown
that, if π̂ ≺ ρ̂ in Ŝ±n(312, 312, 21, 21), then π ≺ ρ in Bn(312, 312, 21, 21),
which is enough to conclude. �

This last result is a “signed generalization” of the fact (proved in
[BBFP]) that the lattices of Dyck paths are isomorphic to the lattices of
312−avoiding permutations under the Bruhat order. Indeed, consider the
hyperoctahedral group Bn endowed with the Bruhat order, as it is defined,
for instance, in [BB]. Using our language, it can be described as follows.
Given π′, ρ′ ∈ Bn, consider the permutations π̂, ρ̂ ∈ S±n defined by the jux-
taposition of π and π′ and of ρ and ρ′, respectively, where π (resp., ρ) is
defined by reversing and changing all the signs of π′ (resp., ρ). For instance,
if π′ = 14523 ∈ B5, then π = 32541 and π̂ = 3254114523 ∈ S±5. Then
π′ ≤ ρ′ in the Bruhat order of Bn if and only if π̂ ≤ ρ̂ in the Bruhat order of
the symmetric group S±n. Therefore, as a consequence of the last theorem,
we get our final results, which states that Bn(312, 312, 21, 21) is isomorphic
to a set of signed pattern avoiding permutation under the Bruhat order.
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Corollary 3.2 The poset Bn(312, 312, 21, 21) is isomorphic to
Bn(213, 213, 12, 12) endowed with the Bruhat order.

Proof. Just observe that, if π and π′ are related as above, then π avoids
a pattern σ if and only if π′ avoids the pattern obtained by reversing σ and
changing the signs of all its elements. �
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Figure 9: The lattice B3(312, 312, 21, 21)
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