Skip to main content
Log in

Pan-H-Linked Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let H be a multigraph, possibly containing loops. An H-subdivision is any simple graph obtained by replacing the edges of H with paths of arbitrary length. Let H be an arbitrary multigraph of order k, size m, n 0(H) isolated vertices and n 1(H) vertices of degree one. In Gould and Whalen (Graphs Comb. 23:165–182, 2007) it was shown that if G is a simple graph of order n containing an H-subdivision \({\mathcal{H}}\) and \({\delta(G) \ge \frac{n+m-k+n_1(H)+2n_0(H)}{2}}\), then G contains a spanning H-subdivision with the same ground set as \({\mathcal{H}}\) . As a corollary to this result, the authors were able to obtain Dirac’s famed theorem on hamiltonian graphs; namely that if G is a graph of order n ≥ 3 with \({\delta(G)\ge\frac{n}{2}}\) , then G is hamiltonian. Bondy (J. Comb. Theory Ser. B 11:80–84, 1971) extended Dirac’s theorem by showing that if G satisfied the condition \({\delta(G) \ge \frac{n}{2}}\) then G was either pancyclic or a complete bipartite graph. In this paper, we extend the result from Gould and Whalen (Graphs Comb. 23:165–182, 2007) in a similar manner. An H-subdivision \({\mathcal{H}}\) in G is 1-extendible if there exists an H-subdivision \({\mathcal{H}^{*}}\) with the same ground set as \({\mathcal{H}}\) and \({|\mathcal{H}^{*}| = |\mathcal{H}| + 1}\) . If every H-subdivision in G is 1-extendible, then G is pan-H-linked. We demonstrate that if H is sufficiently dense and G is a graph of large enough order n such that \({\delta(G) \ge \frac{n+m-k+n_1(H)+2n_0(H)}{2}}\) , then G is pan-H-linked. This result is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bondy J.A.: Pancyclic graphs. J. Comb. Theory Ser. B 11, 80–84 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dirac G.A.: Some theorems on abstract graphs. Proc. Lond. Math. Soc. 2, 69–81 (1952)

    Article  MathSciNet  Google Scholar 

  3. Erdős P., Stone A.: On the structure of linear graphs. Bull. Am. Math. Soc. 52, 1087–1091 (1946)

    Article  Google Scholar 

  4. Erdős P., Simonovits M.: A limit theorem in graph theory. Studia Sci. Math. Hung. 1, 51–57 (1966)

    Google Scholar 

  5. Faudree R., Schelp R.: Path connected graphs. Acta Math. Acad. Sci. Hung. 25, 313–319 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ferrara M., Gould R., Tansey G., Whalen T.: On H-linked graphs. Graphs Comb. 22, 217–224 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Ferrara M., Gould R., Tansey G., Whalen T.: On H-Immersions. J. Graph Theory 57, 245–254 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gould R., Kostochka A., Yu G.: On minimum degree implying that a graph is H-linked. SIAM J. Discret. Math 20(4), 829–840 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gould R., Powell J., Wagner B., Whalen T.: Minimum degree and pan-k-linked graphs. Discret. Math. 309, 3013–3022 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gould R., Whalen T.: Subdivision extendibility. Graphs Comb. 23, 165–182 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hendry G.R.T.: Extending cycles in graphs. Discret. Math. 85, 59–72 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jung H.A.: Eine verallgemeinrung des n-fachen zusammenhangs fur graphen. Math. Ann. 187, 95–103 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kostochka A., Yu G.: An extremal problem for H-linked graphs. J. Graph Theory 50(4), 321–339 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Randerath B., Schiermeyer I., Tewes M., Volkmann L.: Vertex pancyclic graphs. Discret. Appl. Math. 120, 219–237 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Williamson J.E.: Panconnected graphs II. Period. Math. Hung. 8(2), 105–116 (1977)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ferrara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrara, M., Magnant, C. & Powell, J. Pan-H-Linked Graphs. Graphs and Combinatorics 26, 225–242 (2010). https://doi.org/10.1007/s00373-010-0911-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0911-3

Keywords

Mathematics Subject Classification (2000)

Navigation