Skip to main content
Log in

Spanning Trees: A Survey

  • Survey
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we give a survey of spanning trees. We mainly deal with spanning trees having some particular properties concerning a hamiltonian properties, for example, spanning trees with bounded degree, with bounded number of leaves, or with bounded number of branch vertices. Moreover, we also study spanning trees with some other properties, motivated from optimization aspects or application for some problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alon N.: Transversal numbers of uniform hypergraphs. Graphs Combin. 6, 1–4 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon N., Fomin F.V., Gutin G., Krivelevich M., Saurabh S.: Parameterized algorithms for directed maximum leaf problems. Lect. Notes Comput. Sci. 4596, 352–362 (2007)

    Article  MathSciNet  Google Scholar 

  3. Alon N., Fomin F.V., Gutin G., Krivelevich M., Saurabh S.: Better algorithms and bounds for directed maximum leaf problems. Lect. Notes Comput. Sci. 4855, 316–327 (2007)

    Article  MathSciNet  Google Scholar 

  4. Alon, N., Wormald, N.: High degree graphs contain large-star factors. arXiv:math.CO.0810.2053v1

  5. Archedeacon D., Hartsfield N., Little C.H.C.: Nonhamiltonian triangulations with large connectivity and representativity. J. Combin. Theory Ser. B 68, 45–55 (1996)

    Article  MathSciNet  Google Scholar 

  6. Atajan T., Yong X., Inaba H.: Further analysis of the number of spanning trees in circulant graphs. Discrete Math. 306, 2817–2827 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aung M., Kyaw A.: Maximal trees with bounded maximum degree in a graph. Graphs Combin. 14, 209–221 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Austin T.I.: The enumeration of point labelled chromatic graphs and trees. Can. J. Math. 12, 535–545 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  9. Babu C.S., Diwan A.A.: Degree conditions for forests in graphs. Discrete Math. 301, 228–231 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barnette D.W.: Trees in polyhedral graphs. Can. J. Math 18, 731–736 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barnette D.W.: 3-trees in polyhedral maps. Isr. J. Math 79, 251–256 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bauer D., Broersma H., Schmeichel E.: Toughness in graphs—a survey. Graphs Combin. 22, 1–35 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bauer D., Broersma H., Veldman H.J.: Not every 2-tough graph is hamiltonian. Discrete Appl. Math. 99, 317–321 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bauer D., Fan G., Veldman H.J.: Hamiltonian properties of graphs with large neighborhood unions. Discrete Math. 96, 33–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bermond J.-C., Fraigniaud P.: Broadcasting and gossiping in deBruijn networks. SIAM J. Comput. 23, 212–225 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Boesch F., Li X., SuLel C.: On the existence of uniformly most reliable networks. Networks 21, 181–194 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Böhme T., Broersma H.J., Göbel F., Kostochka A.V., Stiebitz M.: Spanning trees with pairwise nonadjacent endvertices. Discrete Math. 170, 219–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bondy A., Chvátal V.: A method in graph theory. Discrete Math. 15, 111–135 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bonsma P.: Spanning trees with many leaves in graphs with minimum degree three. SIAM J. Discrete Math. 22(3), 920–937 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bonsma P., Zickfeld F.: Spanning trees with many leaves in graphs without diamonds and blossoms. Lect. Notes Comput. Sci. 4957, 531–543 (2008)

    Article  MathSciNet  Google Scholar 

  21. Bonsma P., Zickfeld F.: A 3/2-approximation algorithm for finding spanning trees with many leaves in cubic graphs. Lect. Notes Comput. Sci. 5344, 66–77 (2008)

    Article  Google Scholar 

  22. Brandt S.: Subtrees and subforests of graphs. J. Combin. Theory Ser. B 61, 63–70 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bridgland M.F., Jamison R.E., Zito J.S.: The spanning trees forced by the path and the star. J. Graph Theory 23, 421–441 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Broersma H., Koppius O., Tuinstra H., Huck A., Kloks T., Kratsch D., Müller H.: Degree- preserving trees. Networks 35, 26–39 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Broersma H.J., Li X.: The connectivity of the leaf-exchange spanning tree graph of a graph. Ars Combin. 43, 225–231 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Broersma H., Tuinstra H.: Independence trees and Hamilton cycles. J. Graph Theory 29, 227–237 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cai L.: On spanning 2-trees in a graph. Discrete Appl. Math. 74, 203–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cai L.: The complexity of the locally connected spanning tree problem. Discrete Appl. Math. 131, 63–75 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Caro Y., Krasikov I., Roditty Y.: On the largest tree of given maximum degree in a connected graph. J. Graph Theory 15, 7–13 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Caro Y., West D.B., Yuster R.: Connected domination and spanning trees with many leaves. SIAM J. Discrete Math. 13, 202–211 (2000)

    Article  MathSciNet  Google Scholar 

  31. Catlin, P.A.: Edge-connectivity and edge-disjoint spanning trees (2001, preprint). http://www.math.wvu.edu/~hjlai/Pdf/Catlin_Pdf/Catlin49a.pdf

  32. Catlin P.A., Grossman J.W., Hobbs A.M., Lai H.J.: Fractional arboricity, strength, and principal partitions in graphs and matroids. Discrete Appl. Math. 40, 285–302 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Catlin P.A., Lai H.J., Shao Y.: Edge-connectivity and edge-disjoint spanning trees. Discrete Math. 309, 1033–1040 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Cayley A.: A theorem on trees. Q. J. Math. 23, 376–378 (1889)

    Google Scholar 

  35. Chen, G., Egawa, Y., Kawarabayashi, K., Mohar, B., Ota, K.: Toughness of K a,t-minor-free graphs (2010, submitted)

  36. Chen C.C., Koh K.M., Peng Y.H.: On the higher-order edge toughness of a graph. Discrete Math. 111, 113–123 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen Z.H., Lai H.J.: The higher-order edge-toughness of a graph and truncated uniformly dense matroids. J. Combin. Math. Combin. Comput. 22, 157–160 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Chen X., Lin Q., Zhang F.: The number of spanning trees in odd valent circulant graphs. Discrete Math. 282, 69–79 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cheng C.: Maximizing the total number of spanning trees in a graph: two related problems in graph theory and optimization design theory. J. Combin. Theory Ser. B 31, 240–248 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  40. Cheriyan J., Maheshwari S.: Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs. J. Algorithms 9, 507–537 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  41. Choi S., Guan P.: A spanning tree of the 2m-dimensional hypercube with maximum number of degree-preserving vertices. Discrete Math. 117, 275–277 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Chvàtal V.: Tough graphs and hamiltonian circuits. Discerete Math. 5, 215–228 (1973)

    Article  MATH  Google Scholar 

  43. Chvàtal V.: Tree—complete graph Ramsey numbers. J. Graph Theory 1, 93 (1977)

    Article  MathSciNet  Google Scholar 

  44. Chvátal V., Erdős P.: A note on hamiltonian circuits. Discrete Math. 2, 111–113 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  45. Correa J.R., Fernandes C.G., Matamala M., Wakabayashi Y.: A 5/3-approximation for finding spanning trees with many leaves in cubic graphs. Lect. Notes Comput. Sci. 4927, 184–192 (2008)

    Article  MathSciNet  Google Scholar 

  46. Cummins R.L.: Hamilton circuits in tree graphs. IEEE Trans. Circuit Theory 13, 82–90 (1966)

    MathSciNet  Google Scholar 

  47. Cunningham W.H.: Optimal attack and reinforcement of a network. J. Assoc. Comput. Mach. 32, 549–561 (1985)

    MathSciNet  MATH  Google Scholar 

  48. Curran S., Lee O., Yu X.: Chain decompositions of 4-connected graphs. SIAM J. Discrete Math. 19, 848–880 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Curran S., Lee O., Yu X.: Finding four independent trees. SIAM J. Comput. 35, 1023–1058 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  50. Curran S., Lee O., Yu X.: Nonseparating planar chains in 4-connected graphs. SIAM J. Discrete Math. 19, 399–419 (2006)

    Article  MathSciNet  Google Scholar 

  51. Cvetkovič, D., Doob, M., Sachs, H.: Spectra of graphs. In: Mathematics, vol. 87. Academic press, New York (1980)

  52. Czygrinow A., Fan G., Hurlbert G., Kierstead H.A., Trotter W.T.: Spanning trees of bounded degree. Electron. J. Combin. 8, R33 (2001)

    MathSciNet  Google Scholar 

  53. Dahlhaus E., Dankelmann P., Goddard W., Swart H.C.: MAD trees and distance-hereditary graphs. Dicrete Appl. Math. 131, 151–167 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. Dahlhaus E., Dankelmann P., Ravi R.: A linear-time algorithm to compute a MAD tree of an interval graph. Inform. Process. Lett. 89, 255–259 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  55. Dankelmann P., Entringer R.: Average distance, minimum degree, and spanning trees. J. Graph Theory 33, 1–13 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  56. Damaschke P.: Degree-preserving spanning trees in small-degree graphs. Discrete Math. 222, 51–60 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  57. Das K.C.: A sharp upper bounds for the number of spanning trees of a graph. Graphs Combin. 23, 625–632 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  58. Ding G., Johnson T., Seymour P.: Spanning trees with many leaves. J. Graph Theory 37, 189–197 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. Egawa Y., Matsuda H., Yamashita T., Yoshimoto K.: On a spanning tree with specified leaves. Graphs Combin. 24, 13–18 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  60. Egawa, Y., Ozeki, K.: A necessary and sufficient condition for the existence of a spanning tree with specified vertices having large degrees (2010, submitted)

  61. Eǧecioǧlu O., Remmel J.B.: Bijections for Cayley trees, spanning trees and their q-analogues. J. Combin. Theory Ser. A 42, 15–30 (1986)

    Article  MathSciNet  Google Scholar 

  62. Eǧecioǧlu O., Remmel J.B.: A bijection for spanning trees of complete multipartite graphs. Congr. Numer. 100, 225–243 (1994)

    MathSciNet  Google Scholar 

  63. Ellingham M.N.: Spanning paths, cycles and walks for graphs on surfaces. Congr. Numer. 115, 55–90 (1996)

    MathSciNet  MATH  Google Scholar 

  64. Ellingham M.N., Gao Z.: Spanning trees in locally planar triangulations. J. Combin Theory Ser. B 61, 178–198 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ellingham M.N., Nam Y., Voss H.-J.: Connected (g, f)-factor. J. Graph Theory 39, 62–75 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ellingham M.N., Zha X.: Toughness, trees, and walks. J. Graph Theory 33, 125–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. Enomoto, H.: private communication

  68. Enomoto, H., Ohnishi, Y., Ota, K.: Spanning trees with bounded total excess. Ars Combin (2010, to appear)

  69. Enomoto, H., Ozeki, K.: The independence number condition for the existence of a spanning f-tree. J. Graph Thoery (2010, to appear)

  70. Entringer R.C.: Distance in graphs: trees. J. Combin. Math. Combin. Comput. 24, 65–84 (1997)

    MathSciNet  MATH  Google Scholar 

  71. Entringer R.C., Kleitman D.J., Székely L.A.: A note on spanning trees with minimum average distance. Bull. Inst. Combim. Appl. 17, 71–78 (1996)

    MATH  Google Scholar 

  72. Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications, pp. 29–36. Academic Press, New York (1964)

  73. Erdős P., Faudree R.J., Rousseau C.C., Schelp R.H.: Graphs with certain families of spanning trees. J. Combin. Theory Ser. B 32, 162–170 (1982)

    Article  MathSciNet  Google Scholar 

  74. Erdős P., Gallai T.: On maximal paths and circuits of graphs. Acta Math. Acad. Sci. Hung. 10, 337–356 (1959)

    Article  Google Scholar 

  75. Estivill-Castro V., Noy M., Urrutia J.: On the chromatic number of tree graphs. Discrete Math. 223, 363–366 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  76. Fan G., Sun L.: The Erdős-Sós conjecture for spiders. Discrete Math. 307, 3055–3062 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  77. Faudree R.J., Rousseau C.C., Schelp R.H., Schuster S.: Panarboreal graphs. Isr. J. Math. 35, 177–185 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  78. Feng L., Yu G., Jiang Z., Ren L.: Sharp upper bounds for the number of spanning trees of a graph. Appl. Anal. Discrete Math. 2, 255–259 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  79. Fischetti M., Lancia G., Serafini P.: Exact algorithms for minimum routing cost trees. Networks 39, 161–173 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  80. Flandrin E., Jung H.A., Li H.: Hamiltonism, degree sum and neighborhood intersections. Discrete Math. 90, 41–52 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  81. Flandrin E., Kaiser T., Kužel R., Li H., Ryjáček Z.: Neighborhood unions and extremal spanning trees. Discrete Math. 308, 2343–2350 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  82. Frank A., Gyàrfàs A.: How to orient the edges of a graph?. Colloq. Math. Soc. Jànos Bolyai 18, 353–364 (1976)

    Google Scholar 

  83. Frank A., Király T., Kriesell M.: On decomposing a hypergraph into k connected sub-hypergraphs. Discrete Appl. Math. 131, 373–383 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  84. Fujisawa, J., Matsumura, H., Yamashita, T.: Degree bounded spanning trees. Graphs Combin. (2010, to appear)

  85. Fujisawa, J., Saito, A., Schiermeyer, I.: Closure for spanning trees and distant area (2010, submitted)

  86. Fusco E.G., Monti A.: Spanning trees with many leaves in regular bipartite graphs. Lect. Notes Comput. Sci. 4835, 904–914 (2007)

    Article  MathSciNet  Google Scholar 

  87. Garey M.R., Johnson D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman, New York (1979)

    Google Scholar 

  88. Gargano L., Hammar M.: There are spanning spiders in dense graphs (and we know how to find them). Lect. Notes Comput. Sci. 2719, 802–816 (2003)

    Article  MathSciNet  Google Scholar 

  89. Gargano L., Hammar M., Hell P., Stacho L., Vaccaro U.: Spanning spiders and light-splitting switches. Discrete Math. 285, 83–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  90. Gargano L., Hell P., Stacho L., Vaccaro U.: Spanning trees with bounded number of branch vertices. Lect. Notes Comput. Sci. 2380, 355–365 (2002)

    Article  MathSciNet  Google Scholar 

  91. Gilbert B., Myrvold W.: Maximizing spanning trees in almost complete graphs. Networks 30, 23–30 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  92. Griggs J.R., Kleitman D.J., Shastri A.: Spanning trees with many leaves in cubic graphs. J. Graph Theory 13, 669–695 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  93. Griggs J.R., Wu M.: Spanning trees in graphs of minimum degree 4 or 5. Discrete Math. 104, 167–183 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  94. Grimmett G.R.: An upper bound for the number of spanning trees of a graph. Discrete Math. 16, 323–324 (1976)

    Article  MathSciNet  Google Scholar 

  95. Grone R., Merris R.: A bound for the complexity of a simple graph. Discrete Math. 69, 97–99 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  96. Gurgel M.A., Wakabayashi Y.: On k-leaf-connected graphs. J. Combin. Theory Ser. B 41, 1–16 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  97. Harary F., Mokken R.J., Plantholt M.J.: Interpolation theorem for diameters of spanning trees. IEEE Trans. Circuits Syst. 30, 429–432 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  98. Hasunuma T., Nagamochi H.: Independent spanning trees with small depths in iterated line graphs. Discrete Appl. Math. 110, 189–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  99. Heinrich K., Liu G.: A lower bound on the number of spanning trees with k end-vertices. J. Graph Theory 12, 95–100 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  100. Huck A.: Independent trees in graphs. Graphs Combin. 10, 29–45 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  101. Huck A.: Disproof of a conjecture about independent spanning trees in k-connected directed graphs. J. Graph Theory 20, 235–239 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  102. Huck A.: Independent branching in acyclic digraphs. Discrete Math. 199, 245–249 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  103. Huck A.: Independent trees in planar graphs independent trees. Graphs Combin. 15, 29–77 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  104. Itai A., Rodeh M.: The multi-tree approach to reliability in distributed networks. Inform. Comput. 79, 43–59 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  105. Jackson, B.: Hamilton cycles in 7-connected line graphs (2010, preprint)

  106. Jackson B., Wormald N.C.: k-walks of graphs. Aust. J. Combin. 2, 135–146 (1990)

    MathSciNet  MATH  Google Scholar 

  107. Jaeger F.: Flows and generalized coloring theorems in graphs. J. Combin. Theory Ser. B 26, 205–216 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  108. Jain, K., Mahdian, M., Salavatipour, M.R.: Packing Steiner trees. In: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms (SODA), pp. 266–274 (2003)

  109. Johnson D.S., Lenstra J.K., Rinnooy-Kan A.H.: The complexity of the network design problem. Networks 8, 279–285 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  110. Jordán T.: On the existence of k edge-disjoint 2-connected spanning subgraphs. J. Combin. Theory Ser. B 95, 257–262 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  111. Kaneko A.: Spanning trees with constraints on the leaf degree. Discrete Appl. Math. 115, 73–76 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  112. Kaneko A., Kano M., Suzuki K.: Spanning trees with leaf distance at least four. J. Graph Theory 55, 83–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  113. Kaneko A., Yoshimoto K.: The connectivities of leaf graphs of 2-connected graphs. J. Combin. Theory Ser. B 76, 155–169 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  114. Kaneko A., Yoshimoto K.: On spanning trees with restricted degrees. Inform. Process. Lett. 73, 163–165 (2000)

    Article  MathSciNet  Google Scholar 

  115. Kano, M., Kishimoto, H.: Spanning k-tree of n-connected graphs. Graphs Combin. (2010, to appear)

  116. Kano, M., Kyaw, A., Matsuda, H., Ozeki, K., Saito, A., Yamashita, T.: Spanning trees with a bounded number of leaves in a claw-free graph (2010, submitted)

  117. Kawarabayashi K., Nakamoto A., Ota K.: Subgraphs of graphs on surfaces with high representativity. J. Combin. Theory Ser. B 89, 207–229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  118. Kelmans A.: On graphs with the maximum number of spanning trees. Random Struct. Algorithms 9, 177–192 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  119. Khuller B., Schieber B.: On independent spanning trees. Inform. Process. Lett. 42, 321–323 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  120. Kirchhoff, G.: Über dieAuflösung derGleichungen, aufwelcheman bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Article  Google Scholar 

  121. Kleitman D.J., West D.B.: Spanning trees with many leaves. SIAM J. Discrete Math. 4, 99–106 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  122. Kouider M., Vestergaard P.D.: Connected factors in graphs—a survey. Graphs Combin. 21, 1–26 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  123. Kriesell M.: Edge-disjoint trees containing some given vertices in a graph. J. Combin. Theory Ser. B 88, 53–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  124. Kriesell M.: Edge disjoint Steiner trees in graphs without large bridges. J. Graph Theory 62, 188–198 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  125. Kyaw A.: A sufficient condition for a graph to have a k-tree. Graphs Combin. 17, 113–121 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  126. Kyaw A.: Spanning trees with at most 3 leaves in K 1,4-free graphs. Discrete Math. 309, 6146–6148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  127. Kyaw, A.: private communication

  128. Lau L.C.: An approximate max-Steiner-tree-packing min-Steiner-cut theorem. Combinatorica 27, 71–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  129. Lemke, P.: The maximum leaf spanning tree problem for cubic graphs is NP-complete. IMA Preprint Series, # 428 (1988)

  130. Lewinter M.: Interpolation theorem for the number of degree-preserving vertices of spanning trees. IEEE Trans. Circuits Syst. 34, 205 (1987)

    Article  MathSciNet  Google Scholar 

  131. Lewis R.P.: The number of spanning trees of a complete multipartite graph. Discrete Math. 197/198, 537–541 (1999)

    Google Scholar 

  132. Li X., Neumann-Lara V., Rivera-Campo E.: On a tree graph defined by a set of cycles. Discrete Math. 271, 303–310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  133. Li P.C., Toulouse M.: Variations of the maximum leaf spanning tree problem for bipartite graphs. Inform. Process. Lett. 97, 129–132 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  134. Lin C.C., Chang G.J., Chen G.H.: Locally connected spanning trees in strongly chordal graphs and proper circular graphs. Discrete Math. 307, 208–215 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  135. Liu G.Z.: On connectivities of tree graphs. J. Graph Theory 12, 453–459 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  136. Loryś K., Zwoźniak G.: Approximation algorithm for the maximum leaf spanning tree problem for cubic graphs. Lect. Notes Comput. Sci. 2461, 686–697 (2002)

    Article  Google Scholar 

  137. Lu, H.I., Ravi, R.: The power of local optimization: approximation algorithms for maximum-leaf spanning tree. In: Proceedings of the Thirtieth Annual Allerton Conference on Communication, Control and Computing, pp. 533–542 (1992)

  138. Lu H.I., Ravi R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29, 132–141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  139. Matsuda H., Matsumura H.: On a k-tree containing specified leaves in a graph. Graphs Combin. 22, 371–381 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  140. Matsuda, H., Ozeki, K., Yamashita, T.: Spanning trees with a bounded number of branch vertices in a claw-free graph (2010, submitted)

  141. Matthews M.M., Sumner D.P.: Hamiltonian results in K 1,3-free graphs. J. Graph Theory 8, 139–146 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  142. Merris R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197/198, 143–176 (1994)

    Article  MathSciNet  Google Scholar 

  143. Miura K., Takahashi D., Nakano S., Nishizeki T.: A linear-time algorithm to find four independent spanning trees in four-connected planar graphs. Graph Theor. Concepts Comput. Sci. 1517, 310–323 (1998)

    Article  MathSciNet  Google Scholar 

  144. Moon, J.W.: Counting Labelled Trees, Canadian Mathematical Monographs, No. 1, Canadian Mathematical Congress, Montreal (1970)

  145. Nakamoto A., Oda Y., Ota K.: 3-trees with few vertices of degree 3 in circuit graphs. Discrete Math. 309, 666–672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  146. Nash-Williams C.St.J.A.: Edge-disjoint spanning trees of finite graphs. J. Lond. Math. Soc. 36, 445–450 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  147. Neumann-Lara V., Rivera-Campo E.: Spanning trees with bounded degrees. Combinatorica 11, 55–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  148. Ohnishi, Y., Ota, K.: Connected factors with bounded total excess (2010, preprint)

  149. Ore O.: Note on Hamilton circuits. Am. Math. Mon. 67, 55 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  150. Ore O.: Hamilton connected graphs. J. Math. Pures Appl. 42, 21–27 (1963)

    MathSciNet  MATH  Google Scholar 

  151. Ota, K., Ozeki, K.: Spanning trees in 3-connected K 3,t -minor-free graphs (2010, submitted)

  152. Ozeki, K.: Toughness condition for a spanning k-tree with bounded total excess (2010, submitted)

  153. Ozeki, K.: Spanning trees in 3-connected graphs on surfaces (2010, preprint)

  154. Ozeki K., Yamashita T.: A spanning tree with high degree vertices. Graphs Combin. 26, 591–596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  155. Palmer E.M.: On the spanning tree packing number of a graph: a survey. Discrete Math. 230, 13–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  156. Petingi L., Boesch F., SuLel C.: On the characterization of graphs with maximum number of spanning trees. Discrete Math. 179, 155–166 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  157. Petingi L., Rodriguez J.: Bounds on the maximum number of edge-disjoint Steiner trees of a graph. Congr. Numer. 145, 43–52 (2000)

    MathSciNet  MATH  Google Scholar 

  158. Petingi L., Rodriguez J.: A new technique for the characterization of graphs with a maximum number of spanning trees. Discrete Math. 244, 351–373 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  159. Petingi L., Talanfha M.: Packing the Steiner trees of a graph. Networks 54, 90–94 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  160. Plesnik J.: On the sum of all distances in a graph or digraph. J. Graph Theory 8, 1–21 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  161. Plummer M.D.: Graph factors and factorization: 1985–2003: a survey. Discrete Math. 307, 791–821 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  162. Prüfer H.: Neuer Beweis eines Satzes über Permutationen. Arch. Math. Phys. 27, 142–144 (1918)

    Google Scholar 

  163. Rahman M.S., Kaykobad M.: Complexities of some interesting problems on spanning trees. Inform. Process. Lett. 94, 93–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  164. Rivera-Campo E.: An Ore-type condition for the existence of spanning trees with bounded degrees. Congr. Numer. 90, 19–32 (1992)

    MathSciNet  Google Scholar 

  165. Rivera-Campo E.: A note on matchings and spanning trees with bounded degrees. Graphs Combin. 13, 159–165 (1997)

    MathSciNet  MATH  Google Scholar 

  166. Salamon G.: Approximation algorithms for the maximum internal spanning tree problem. Lect. Notes Comput. Sci. 4708, 90–102 (2007)

    Article  Google Scholar 

  167. Salamon G., Wiener G.: On finding spanning trees with few leaves. Inform. Process. Lett. 105, 164–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  168. Sanders D.P., Zhao Y.: On spanning trees and walks of low maximum degree. J. Graph Theory 36, 67–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  169. Seymour, P.D.: Sums of Circuits, Graph Theory and Relation Topics, pp. 341–355. Academic Press, New York (1979)

  170. Shank H.: A note on hamilton circuits in tree graphs. IEEE Trans. Circuit Theory 15, 86 (1968)

    Article  MathSciNet  Google Scholar 

  171. Solis-Oba R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. Lect. Notes Comput. Sci. 1461, 441–452 (1998)

    Article  MathSciNet  Google Scholar 

  172. Szabó J.: Packing trees with constraints on the leaf degree. Graphs Combin. 24, 485–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  173. Szekeres G.: Polyhedral decomposition of cubic graphs. Bull. Austral. Math. Soc. 8, 367–387 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  174. Thomassen C.: Trees in triangulations. J. Combin. Theory Ser. B 60, 56–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  175. Tsugaki M.: A note on a spanning 3-tree. Combinatorica 29, 127–129 (2009)

    Article  MathSciNet  Google Scholar 

  176. Tsugaki M., Yamashita T.: Spanning trees with few leaves. Graphs Combin. 23, 585–598 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  177. Tutte W.T.: On the problem of decomposing a graph into n connected factors. J. Lond. Math. Soc. 36, 221–230 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  178. West D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (1996)

    MATH  Google Scholar 

  179. Whitty R.W.: Vertex-disjoint paths and edge-disjoint branchings in directed graphs. J. Graph Theory 11, 349–358 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  180. Win S.: Existenz von Gerüsten mit vorgeschriebenem Maximalgrad in Graphen (German). Abh. Math. Sem. Univ. Hamburg 43, 263–267 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  181. Win S.: On a conjecture of Las Vergnas concerning certain spanning trees in graphs. Result. Math. 2, 215–224 (1979)

    MathSciNet  MATH  Google Scholar 

  182. Win S.: On a connection between the existence of k-trees and the toughness of a graph. Graphs Combin. 5, 201–205 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  183. Wong R.: Worst-case analysis of network design problem heuristics. SIAM J. Algebraic Discrete Math. 1, 51–63 (1980)

    Article  MATH  Google Scholar 

  184. Wu B.Y., Chao K.M., Tang C.Y.: Approximation algorithms for the shortest total path length spanning tree problem. Discrete Appl. Math. 105, 273–289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  185. Wu B.Y., Lancia G., Bafna V., Chao K.M., Ravi R., Tang C.Y.: A polynomial-time approximation scheme for minimum routing cost spanning trees. SIAM J. Comput. 29, 761–778 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  186. Yong X.R., Acenjian T.: The numbers of spanning trees of the cycle C 3 N and the quadruple cycle C 4 N . Discrete Math. 169, 293–298 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  187. Yoshimoto K.: The connectivities of trunk graphs of 2-connected graphs. Ars Combin. 60, 225–237 (2001)

    MathSciNet  MATH  Google Scholar 

  188. Yu X.: Disjoint paths, planarizing cycles, and spanning walks. Trans. Am. Math. Soc. 349, 1333–1358 (1997)

    Article  MATH  Google Scholar 

  189. Zehavi A., Itai A.: Three tree-paths. J. Graph Theory 13, 175–188 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  190. Zhan S.M.: On Hamiltonian line graphs and connectivity. Discrete Math. 89, 89–95 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  191. Zhang F.J., Chen Z.: Connectivity of (adjacency) tree graphs. J. Xinjiang Univ. Nat. Sci. 3, 1–5 (1986)

    MATH  Google Scholar 

  192. Zhang Y., Yong X., Golin M.J.: The number of spanning trees in circulant graphs. Discrete Math. 223, 337–350 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  193. Zhenhong L., Baoguang X.: On low bound of degree sequences of spanning trees in k-edge- connected graphs. J. Graph Theory 28, 87–95 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  194. Zioło I.A.: Subforests of bipartite figraphs—the minimum degree condition. Discrete Math. 236, 351–365 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  195. Zioło I.A.: Subtrees of bipartite figraphs—the minimum degree condition. Discrete Appl. Math. 99, 251–259 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomoki Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozeki, K., Yamashita, T. Spanning Trees: A Survey. Graphs and Combinatorics 27, 1–26 (2011). https://doi.org/10.1007/s00373-010-0973-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0973-2

Keywords

Navigation