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HIGHER DIMENSIONAL MOORE BOUNDS

MICHAEL GOFF

ABSTRACT. We prove upper bounds on the face numbers of simplicial com-
plexes in terms on their girths, in analogy with the Moore bound from graph
theory. Our definition of girth generalizes the usual definition for graphs.

1. INTRODUCTION

The Moore bound in graph theory answers the following classical question. What
is the maximum number of edges in a graph with n vertices and no cycles with g
or fewer vertices? Phrased differently, the Moore bound gives the fewest number
of vertices in a graph with girth (that is, the length of the shortest cycle) greater
than g and average degree a.

Theorem 1.1. [I] Let G be a graph with average degree a > 2 and girth greater
than g. Then G has at least n = ng(a, g + 1) vertices, where

r—1
no(a,2r) =2 Z(a - 1)
=0

r—1
no(a,2r +1) =1+ aZ(a —1)%
i=0
Theorem [[LT] answers an old problem, which appears in [5, Problem 10, p. 163].
A relatively simple proof for a-regular graphs is found in [2], and a weaker inquality
is proven in [6]. Theorem [[.T] was proven in [I] using random walks on the graph.
In this paper we consider similar bounds for simplicial complexes. A simplicial
complez T' with the vertex set V(I') =V = {x1,...,2,} is a collection of subsets of
2V called faces such that I is closed under inclusion. The dimension of I is one less
than the maximum cardinality of a face of I'. If W C V| the induced subcomplex of
I on W, denoted I'[W], has vertex set W and faces {F : F € I', F C W}. The face
numbers are given by f;(T'), which denotes the number of faces with i + 1 vertices
in . For ' C V(T'), the link of F, denoted lk p(F), is the simplicial complex that
has vertex set V — F and faces {G— F : F C G € T'}.
Fix a base field k. The i-th reduced simplicial homology of a simplicial complex
I with coefficients in k is denoted by H;(I';k). We define the (p — 1)-girth of a
simplicial complex I by

grp_1 (D) := min{|W| : H,_,(kp(F)[W]; k) #0 for some § C F €T},

or oo is no such W exists. Although the value of gr,_1(I') may depend on k,
our theorems hold regardless of which field is chosen. Another paper [10] proves an
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analogue of the Moore bound for simplicial complexes, but uses a different definition
of girth.

In words, gr,—1(T") is the fewest number of vertices in a subcomplex in I' that
has a nonzero (p — 1)-cycle in homology, where we consider subcomplexes that are
induced in links of faces. When dimI’ = 1, i.e. T is a graph, our definition of gr,
reduces to the usual definition of girth regardless of k. In that case, grq(T') = oo if
T is a forest, and gr(I") is otherwise the number of vertices in a shortest cycle of
T.

We note some properties of the girth. The following is immediate from the
definition.

Lemma 1.2. Let I' be a simplicial complex. The following inequalities hold for all

p.
1) For all W C V(I), grp—1(T) < grp,—1(T[W]).
2) For all F €T, grp—1(I') < grp—1(lkp(F)).

Our main results are as follows. In Section 2] we prove an upper bound on the
number of edges in terms of the one-girth: if I' has n vertices and dimension d — 1,
gr1(T") > 2r, and the quantity r/log(n/d) sufficiently small, then

fi0) < (27 +e)(d— 1)V rpttr
for an arbitrary € > 0, whereas if gr1(I") > 2r + 1, then
A <@V 4 e(d— 1)t

In Section[3] we prove that if gr1(I') > 2r, then for some constant C,; that depends
only on 7 and i,

fz(l—‘) < Cnidl—l/r—l/r2—...—l/rin1+l/r+1/r2+...+1/ri .

In Section [, we conjecture a general upper bound on f; when gr,_(T") is given,
and we prove that conjecture in some special cases. In Section B we establish the
existence of some simplicial complexes with high girth and large face numbers using
probabilistic methods.

2. ONE-GIRTH AND THE NUMBER OF EDGES

In this section we prove an upper bound on the number of edges of a simplicial
complex when the 1-girth is given. The following is the main theorem of the section.

Theorem 2.1. Let T be a (d — 1)-dimensional simplicial complex with n vertices
and gr1(T) > 2r, r > 2. For every € > 0, there exists & such that if r/log(n/d) < 0,
then
fl(r) < (2—1 + 6)(d— 1)1_1/TTL1+1/T,
Furthermore, if gr1(I') > 2r + 1, then
fl(r) < (2—1—1/r +€)(d_ 1)1_1/TTL1+1/T.

In the case that d = 2, the upper bound on f; of Theorem 2.1]is approximately
equal to that of Theorem [Tl for values of » small relative to log(n). Our proof uses
some of the same techniques used in [I] to prove Theorem [T

To prove theorem [Z.I] we introduce flag complexes. We say that a simplicial com-
plex I' is flag if all the minimal non-faces of I' consist of two vertices, or equivalently
if F' is a face of I' whenever all the 2-subsets of F' are faces. A flag complex is also



HIGHER DIMENSIONAL MOORE BOUNDS 3

called a clique complex. We establish some properties of girths of flag complexes.
The second property allows us to assume that I is flag in the proof of Theorem 2.1

Lemma 2.2. Let I' be a simplicial complex. Then the following hold.

1) Let FeT and W C V(T') so that FNW =0 and FU{w} is a face in T for all
w e W. IfT is flag, then T[W] = lkp(F)[W].

2) T is flag if and only if gr1(T) > 4.

3) If T is flag and gr,—1(T) < oo, then there exists W C V(T') such that |W| =
grp,—1(I") and Hp,_1(T[W]); k) # 0.

Proof: ~ Suppose the conditions of the first claim hold, and let F’ be a face of
T[W]. The conditions imply that there is an edge uv for all u,v € F U F’, and so
FUF’isafacein I. Then F’ € Ikp(F). Also, every face of Ikp(F) is a face in T,
and this proves the first claim. The third claim is immediate from the first.

To prove the second claim, first suppose that I" is flag. Then the link of every
face is also flag by the first claim, and so there is no F € I" and W C V(T') so that
|[W| = 3 and lkp[W] is exactly a graph-theoretic 3-cycle. Hence grq(T') > 4. Now
suppose that T' is not flag, and let W be a minimal non-face of T' with |[W| > 3.
Choose W' ¢ W with |W'| = |W|— 3. Then lkp(W’)[W — W'] is a 3-cycle, and so
gri(T) = 3. O

The proof of Theorem [2.1] requires several technical lemmas. The first is a
condition on when, given that there exists a graph-theoretic cycle in a simplicial
complex on vertices vy, ..., v,, we can conclude that gr(T") < r.

Lemma 2.3. Let ' be a simplicial complex containing a graph theoretic cycle with
(not necessarily distinct) vertices vy, ...,v, and edges v;v;11 for 1 < i < r (sub-
scripts are mod r). Suppose that there exists at most one value of i such that
{vi—1,v5,v41} 48 a face in T. Then gr1(T) <.

Proof: In the case that » = 3, the conditions imply that I'[vq,ve,vs] is the
boundary of a triangle, and so gr1(I') = 3. Assume that r > 4. If for some i,
Vi1 # Ui+1, and there exists an edge v;—1v;4+1 but no triangle {v;_1, v;, viy1},
then gry(I') = 3. Therefore, we may assume this condition: suppose that there
exists at most one value of ¢ such that either v;—; = wv;41 or there is an edge
Vi—10;11. Assume without loss of generality that if such an i exists, i = 2. If
the v; are distinct and T'[vy,...,v,] contains no edges except each v;v;41, then
gri(l) < gri(T[v1,...,v]) = r and the lemma is true. Otherwise, we may choose
j and k so that k—j is minimal, subject to the following conditions: k£ > j+2, v;vg
is an edge in ', and (j, k) # (1, 3). Since for all ¢’ # 2, vy_1 # vy41 and vy 1V 41
is not an edge in I', such j and k can always be chosen so that k¥ > j + 3. Then
I[vj,...,vx] is a graph theoretic cycle and the lemma holds. O

The next lemma roughly states that if T is flag and gr,—1(I') > 2p, then I does
not have too many edges. Define the i-skeleton of T', denoted Skel;(T"), to be the
simplicial complex with vertex set V(I") and faces {F : F € T, |F| < i+ 1}. For
v € V(I'), degv denotes the number of edges that contain v.

Lemma 2.4. Let p be fized, and let T be a flag (d — 1)-dimensional simplicial
complex with n wvertices, and suppose that gr,—1(I') > 2p and d < (1 — §)n for
some § > 0. Then there exists an € > 0, which depends only on 6 and p, such that
f1(T) < (5) —en?. Furthermore, in the case that p = 2, for every € > 0 there exists
&' > 0 such that if d < §'n, then fi(T') < €'n?.
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Proof: ~ We prove the first statement by induction on p. In the case that p = 1,
d < n implies that T' is not a simplex, which implies that gro(I') = 2; hence the
p =1 case is empty. Let § be given, and suppose by way of contradiction that for
arbitrarily small e, there exists a (d — 1)-dimensional simplicial complex I with n
vertices satisfying d < (1 — &)n and f1(T') > () — en®. There exist €1, €z > 0 with
€1 — 0 and eo — 0 as ¢ — 0 such that I" contains a set of vertices Y such that
Y] > (1 — e2)n and every v € Y has at least (1 — €1)n neighbors; otherwise there
would be at least e1ean?/2 pairs of vertices not joined by an edge, a contradiction.
Since dimI' < (1 — §)n and T is flag, then if eo < J, there exists u,v € Y that
are not adjacent. Let W be the set of vertices adjacent to both u and v. Then
W[ > (1 = 2e1)n, and so fi(T[W]) > (3) — en? — 2e1n®. By choosing € and e
sufficiently small, it follows by the inductive hypothesis that gr,_o(T'[W]) < 2p—2.
By Part 3 of Lemma 222, we may choose W’ C W so that H, »(T'[W']; k) # 0 and
|W’| < 2p—2. Since T'[W’, u,v] is the suspension of T[W’], H,_1(T[W’,u,v], k) # 0
and we conclude that gr,_;(I") < 2p.

Now suppose that for some fixed ¢’ and for arbitrarily small ¢’, there exists a
simplicial complex I'" with n vertices, dimension §'n, and fi(I') > €'n?, and we
derive a contradiction to gri(I') > 4. Assume that ¢’ < €'/4. If there is a vertex v
of I' such that degv < (¢//2)n, delete v from I', and repeat this operation until the
resulting simplicial complex I contains no such vertex. Then fi(I') > (¢//2)n?,
and every vertex of IV has degree at least (¢//2)n. Choose v to be a lowest degree
vertex of I, and let a := degv. There are at least a? — a paths of length 2 in
Skel 1 (I'") with starting vertex v and ending vertex not v. Consider two cases.

Case 1: There are at least a? — a — §'n? paths of length 2 starting at v and
ending at a neighbor of v; call this set of paths P. Then there are at least (a? —
a—6&n?)/2 = (3) — (6'/2)n? edges in lk(v), since every path in P contains
an edge in lk (v), and every such edge is contained in two paths in P. Since
follk (v)) = a > €'n/2 > 2dimT, it follows that gri(lk (v)) < 4 if ¢ is chosen
sufficiently small, by the first part of the lemma. This implies that gr,(I") < 4 by
the two parts of Lemma

Case 2: There are fewer than a? — a — §'n? paths of length 2 starting at v and
ending at a neighbor of v. Then there are more than §'n? paths of length 2 starting
at v and ending at vertices that are neither neighbors of v nor v itself. Hence there
exists a vertex u # v such that v is not a neighbor of v, and there are s > §'n paths
of length 2 starting at v and ending at u. Label those paths (v, v1,u),... (v, vs,u).
Since dimI" < s and I' is flag, there exist ¢ # j such that v; and v; are not neighbors
in T. Then Hy(I"[v,u,v;,v;];k) # 0 and hence gri(I") < 4. We conclude that
gr1(T") < 4, which proves the lemma. O

Lemma 2.5. Let I' be a simplicial complex with dimension d — 1, n vertices, and
gr1(T) > 4. For every e1,e3 > 0, there exists § such that if d < dn, then T contains
at most exn vertices that each have degree at least ean.

Proof:  The result follows from the second part of Lemma 2.4 O

Our proof of Theorem ZT] uses a variation of the non-returning walk on Skel | (I
that was introduced in [I]. Here Skel;(T) is the directed graph with vertex set
V(') and directed edges u® and vt whenever uv is an edge in I Let Q =
{vob1, v1ba, ..., vp_1Uk} be a path on Slzell(F), which we define by its edges. We
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say that that @ is a non-returning walk of length k if for all i, v; # v;42 and
{vi, Vi+1,Vit2} is not a face in T

Lemma 2.6. Let T be a (d—1)-dimensional simplicial complex satisfying gr1(I') >
2r. Then there are at most (d — 1)~ non-returning walks of length r between two
given vertices of Sl;ell(l"). Furthermore, if gr1(T') > 2r + 1, then a non-returning
walk of length v + 1 starting with the directed edge uv and another of length r + 1
starting with vt have different endpoints.

Proof:  The first statement is clear for r = 1, and we use induction on r. Consider
non-returning walks of length r between vertices u and v, and suppose by way
of contradiction that there are d vertices vq,...,vq such that there exists a non-
returning walk P, = (utij 1, ..., Ui, 20;, V;V) for 1 <i<d. Sincer > 2, T is flag
and therefore has no (d + 1)- chque For some 1 < ¢ < j < d, there exist v; and v;
that are not joined by an edge. The cycle C = P;(P;)~!, which is constructed by
traversing P; and then P; in reverse, satisfies the conditions of Lemma 2.3, which
is a contradiction to gr(I') > 2r. It follows that there exist at most d — 1 vertices
v1,...,v4_1 as above. By the inductive hypothesis, there are at most (d — 1)" 2
non-returning walks of length r — 1 from u to each of the v;, and the first statement
follows.

To prove the second statement, suppose that there exist two non-returning walks
uwvP; and v Ps, each of length r + 1, that end at the same vertex. Then the cycle
ub Py (Py)1 satisfies the conditions of Lemma 23] and so gri(I') < 2r + 1, a
contradiction. O

Proof of Theorem[Z1: Our proof is an adaptation of the proof of the main theorem
of [1]. Let € be given, and suppose a is the average degree of a vertex in I'. If M
is a value that depends only on €, then we may assume that a > Md by choosing
d < 1/(log2M). We prove the following variant, which implies the theorem:

_ (1=9a)"
T =T

2((1 = €)a)”
(d—1) 1

If a vertex v satisfies degv < a/2, then T'[V(T") — {v}] has a higher average
degree than I". Also, gr(I'[V(T') — {v}]) > gr1(I") by Part 1 of Lemma By
considering T'[V(T") — {v}] instead of T, we may assume without loss of generality
that all vertices of I" have degree at least a/2.

We consider random non-returning walks on Sfell(F). First we specify which
edges can be used for those walks. Fix a > 0 so that a depends only on €. Define
U’ to be the set of all directed edges ub such that either fo(lkr(uv)) > afo(lkr(u))
or fo(lkr(uv)) > afo(lkp(v)). By applying Lemma 235 to links of vertices and then
the first part of Lemma[2.2] we conclude that |U’| < ajan, where o can be chosen
arbitrarily small by choosing M sufficiently large.

Next set U := U’. If there exists a vertex v such that more than (4/3) fo(lk r(v))
directed edges incident to v are in U, then add all directed edges incident to v to
U. Repeat this process until no more directed edges are added to U in this way.

We show that |U| < 3azan. For any set of directed edges X of Skely(I') and
ub € X, define the quantity k(X,u?) to be 1 is neither w nor v is incident to a

if gri(')>2r and

n > if gry(T)>2r+1.
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directed edge not in X, 2 if exactly one of v and v is adjacent to a directed edge
not in X, and 3 otherwise. Then define

K(X):= > k(X,ub).
uveX
Note that K(U’) < 3ajan, and for any set of directed edges X, K(X) > |X|.
Also, K(U) does not increase at any step in the construction of U. To see that,
consider the operation of adding all directed edges incident to v to U. At most
(2/3) fo(lkp(v)) directed edges are added, each has k-value at most 2, and at least
(4/3) fo(lkp(v)) directed edges have their k-values decreased by 1. It follows that
|U| < 3ajan. Let E be the set of directed edges of SEell(F) that are not in U; E
is the set of directed edges that we allow to be used in our random non-returning
walks. By construction, if uv € F, then vt € E.
For vertices u, v such that uv € I, define

T,(v) ={weV{I): v € E,uw ¢ T}
and t,(v) := |T(v)|. By construction, if 4v € E, then ¢, (v) > 0. Also define
T(v) :={we V() : v € E}

and t(v) := |T'(v)|. Let @’ be the average value of t(v) over all vertices v. From
|U| < 3aian we conclude that a — o’ < (3/2)aza. Furthermore, by construction
t;‘(g)v)) >1—3a for all uv € E.

We now define a non-returning random walk of length k, starting at a directed
edge e, by a transition matrix P with rows and columns indexed by E. The entry
P...» specifies the probability that in a random walk w = (w1,...,wp), if w; = €/,
then w; 1 = €”. To construct P, every directed edge vt is given a positive weight
Zow- U Ty(v) = {wn,...,ws}, then for 1 <i < s set

vai

Zyw, T+ Zow,

Pu"u,vﬁ)i =

Otherwise, set P.rov := 0.

Let z be the uniform probability distribution on E: x.; = 1/|E| for all directed
edges ub. In Claim 2.7 we show that the z,, can be chosen so that x is a stable
distribution under P, i.e. P = z. Furthermore, in the claim we show that there
exists ag, which can be chosen arbitrarily small by choosing « sufficiently small,
such that 1 — as < 2y < 1+ a9 for all vw.

For a given non-returning walk w = (v_Tv,vo¥1, ..., vk_1v;) with all edges in
E, we denote by p(w) the probably that w is chosen among non-returning random
walks of length k + 1 starting at v_jvg. Since P,, loap

10,005 41 Z (1+a2)tvi,1(vi)’

k-1 -1
p(w) < (H(l —az)(1+ 042)1%;1(”1')) :

i=0

There exists az = 1 — (1 — az)(1 + az) (1 — 3a), which can be chosen arbitrarily
small by choosing « sufficiently small, such that

k-1 -1
p(w) < (H(l - Oés)t(vi)> :

i=0
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We repeat the calculations in [I]. Let €. ; be the set of non-returning random
walks of length | 4+ 1 starting at an edge e, and set Ng; := |;|. Define N; :=
Yo TeNey. Using the AMGM inequality,

Ny ZerNez Z Z Z HHp ) zep(w),

e weNe

If 17 (w) is the number of instances of ub in a non-returning walk w, excluding
the starting edge, then

Nl 2 H(l _ Of3)T(’U)EC Te E“’Ene,L n@(w)p(w)'
uv
The sum in the exponent is the expected number of visits, excluding the starting
edge, to an edge ub if the starting edge is chosen randomly with the distribution

x. Since x is stable under P, that quantity is I/|E|.
Then

Nz T = as)T ()P = (1 - az)a’)

since z* is a log-convex function in z. Hence there are, on average, at least ((1 —
as)a’)! non-returning walks of length [ + 1 starting at a randomly chosen directed
edge ub. Thus there exists a directed edge ub such that there are at least ((1 —
asz)a’)" non-returning paths of length r + 1 starting at ub, and an undirected edge
u'v’ such that there are at least 2((1 — a3)a’)” non-returning walks of length r + 1
starting at either w'v' or v't/. The theorem follows by Lemmal[26] by a—a’ < 3aia,
and by taking oy and as sufficiently small. ([l

Claim 2.7. In the proof of Theorem [2], we can choose the zy, so that tP = x
and also so that 1 — ag < 2y < 1+ ag for all viv € E, where as can be chosen
arbitrarily small by choosing o sufficiently small.

Proof:  Fix a vertex v, and let z be a vector indexed by the directed edges of E
with starting vertex v. Initially choose each z,, = 1 and define P = P(z) in terms
of the z,, as above. Let P* be the value of P for the initial values of z,,. Also
define

D=D(z):= > |@P(2))i — Tuo|-

weT (v)

Let D* be the initial value of D. D is a measure of how far z is from being stable
under P around v. We calculate

(1) .’IJP vw = Z Toiv~ - oL

WETy (v) Zw €T, (v) Fow’
Initially,
1 -3« tyw(v) 1 (1-3a)!
< < (IP*)'UTU = Tiv <
B = B RV Sy o

Then there exists a5 = (1 — 3a)~! — 1, which can be chosen arbitrarily small if «
is chosen sufficiently small, such that D* < ast(v)/|E|. Throughout the following
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construction, the value of D always decreases, (xP),z never decreases unless to a
value that is at least 1/|E|, and >, cp() Zow = t(v). Since

Z’U'IJJ Z’U'IJJ
(2) > S —— > s = tu(v) 775 > (1= 30) 20w,
u€Ty (v) w' €Ty (
we have 2y, < (1 — 3a) Y E|(xP)yz and
3) ST (o= (1-30)7Y) < (1-3) 'D|E] < agt(v),

W:iZyw > (1—3a) 1

where ag = (1 — 3a) ~tas can be chosen arbitrarily small by choosing « sufficiently
small. Furthermore,

(4) :EP vw = Z xuvz ke = Z Iuﬁ)t(v) — Z ks <

€T (v) w €T, (v) 0w’ S w @, (v) Zou’
Lot RZvw < 1 =+ (64
E u'u _ — — 1 — < Zpw———,
€T (v) aﬁt(v) (1 3a) (f(’U) tw(v)) |E|

where a7 can be chosen arbitrarily small by choosing a sufficiently small. The
second to last inequality follows from (@), and the fact that t,,(v) > (1 — 3a)t(v)
allows us to choose a7 small.

Choose an edge v so that (zP),z is maximal, say 1/|E|+b. Let 2, be the
larger of the following two values: (Case 1) zyw—DI|E|/(2t(v)), or (Case 2) the value
necessary so that if we replace z by 2z’ by replacing z,,, by zw, then P’ := P(2')
satisfies (zP')z, = 1/|E|. Update z by replacing zy, with z,,, in z. Since (zP)yz
is maximal, b > D/(2¢(v)). In Case 2, since (xP)z, /(P’)y = 1 + b|E], it follows
from (EI]) that sz/sz > 1+ b|E|. From (zP),z > 1/|E| and @) we have that
Zpw > (1 4+ a7)™t and hence in Case 2 2y, — 2, > (1 — ag)b|E|, where ag can
be chosen arbitrarily small for « sufficiently small. In either Case 1 or Case 2,
Zow — 2w > (1 —ag)D|E|/(2t(v)). For w’ € T'(v), we calculate

(xP") = — (xP), =, = % Z Z Z 1 _

we T () L) 20 T () 2eBET(v) T

Zv'w 1 1
> - >
; - | =
|E] €T, (v)NTw (v) (Z@ETu(W P vaeTu(w Z”“’)

Zow! 1 1
(1 —6a)t(v) ( - —) .

|E| t(v) = (1 —ag)DIE|/(2t(v))  t(v)
The second equality follows from the fact that the two fractions are equal if u &
tw(v). Since (zP), ~, > (1—-3a)/|E| (by the fact that (zP*) -, > (1—3a)/|E| and
(zP), =, does not decrease to below (1—3a)/|E|) and 2y > |E|(zP), -, (1+a7)"! >
(1 —3a)(1+ ay)™t, we have
(1 - Oég)D

2t(v)2
where ag can be chosen arbitrary small for « sufficiently small. There exists a w’
with (zP), -, <z -, — D/(2t(v)), and so D decreases by at least (1 — ag)ﬁ

(xP") = — (xP), =, >

w’

under the replacement of z with 2z’ This follows from the fact that all the (zP), -

vw’
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increase except for (zP),z, which decreases to a value at least x,,,. After replacing
Zow DY 20, rescale the z,, so that Zw,eT(v) Zow = (V).

By repeating this process, D — 0 exponentially. It follows that the change
in all the z,, in one iteration of the above process also decreases exponentially,
and therefore the z,, converge to values for which xP = z. Furthermore, each
1 —as < zpw < 14 ag for each z,, by @) and (@), where as can be chosen
arbitrarily small by choosing « sufficiently small. O

Our proof depends on the assumption that the average degree of a vertex in I'
is sufficiently large relative to d, and that is the reason for the r/log(n/d) < §
hypothesis.

In some cases, an improvement to Theorem [2.Tlis possible. For example, consider
the case that d = 3 and r = 3. Let u,v € V(T'), and consider paths from u to v of
the form (u,u’,v’,v). By the argument of Lemmal[Z0 v' could take on at most two
values, say v; and ve, and that can happen only if there is an edge v;vs. Similarly,
by considering paths from v to u, v’ can only take on at most two values, say uq
and us, and that can happen only if there is an edge ujus. Since I is flag, if all four
edges uqv1, U1V, UoV1, Uugvz are in I', then I' has a 3-face ujuoviv2, a contradiction
to d = 3. Hence there are at most 3 paths of length 3 from u to v. Following the
proof of Theorem Bl we conclude that for all € > 0, f1(T) < (271 4 €)3Y/3n*/3 for
sufficiently large n.

3. ONE-GIRTH AND HIGHER FACE NUMBERS

Next we prove an analogue to Theorem 2] for higher face numbers. The follow-
ing result bounds higher face numbers when the 1-girth is given.

Theorem 3.1. Let T be a (d — 1)-dimensional simplicial complex with n vertices,
and suppose gr1(I') > 2r, r > 2. Then for some constant C,.; that depends only on
r and 1,

£i(I) < Omdifl/rfl/ﬁ7...71/#n1+1/r+1/r2+...+1/ri'

Proof: ~ We use induction on ¢, with the case that ¢ = 0 trivial. By Part 2 of
Lemma [[:2] and the inductive hypothesis, for a vertex v € V(I'),

fici(lkr(v)) < Or,zeldi_l_l/T_l/ﬁ_"'_l/rFI (deg U)1+1/T+1/T2+”'+1/Ti71-

Then, since (i +1)fi(I') = > vy fim1(kr(v)),

1 i—1—1/r—1/r%—...—1/r*"! 14+1/r4+1/r2 4. 1 /r 0
7:"‘—107‘71.71 Z d (deg 1)) .

veV(T)

fill) <
The theorem follows by Lemma B2 with p =1+ 1/r + 1/r2 + ...+ 1/r"7L. O

Lemma 3.2. Let T be a (d— 1)-dimensional simplicial complex with n vertices and
gri(I') > 2r. Then for a fized p < L5, there exists a constant C, which depends
only on r and p, such that

Z (degv)? < Cdp—r/m /T
veV(T")
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Proof:  For a fixed a > 0, we may assume that d < an by choosing C' sufficiently
large. First we show that there exists a constant Cy, which depends only on 7,
such that foreach 1 < R < d_l"’l/Tnl_l/T, I" does not contain more than ClnR:TTl
vertices with degree at least Rd'~/"n'/". Suppose by way of contradiction that,
for C7 arbitrarily large in terms of r, there are CinR™71 vertices with degree at
least Rd'~/"n'/" and call this set of vertices X.

We consider non-returning walks on Skel;(I'). Construct a directed bipartite
graph G(V, E) with V(G) = X UY, Y := V(I'). We say that there are directed
edges 2y and yZ in G joining x € X and y € Y if zy is an edge in I'. There is a
bijection between walks (v_Tvg, ..., vg_1vg) in T with vg, va,... € X, and walks in
G with the endpoint of the initial directed edge in X. The average out-degree in G
of the vertices of Y is at least Cyd!~Y/"n!/" R7=T

We define a set of edges in G that are allowed in our walks. First define U’ to
be the set of all edges uv or vt with u € X,v € Y that satisfy at least one of the
following three conditions:

1) folkr(uv)) = (1/6)|V (Ikp(w))],

2) [V(Ikr(uv)) N X[ > (1/6)[V (Ikr(v)) N X|,

3) v has out-degree less than %dl’l/’“nl/’”R%.

Suppose that Cj is chosen sufficiently large and « sufficiently small (both in-
dependently of d or n). For a fixed u € X, we have that there are at most
(1/40)|V(Ik r(u))| edges incident to w in the first category by applying Lemma [2.4]
to lkr(u), and so there are at most (1/40)|E| edges in the first category. Likewise,
consider a fixed v € Y. There are at most (1/40)|V(lkr(v)) N X| edges incident to
v in the second category but not the third by applying Lemma 24 to 1k r(v) NT[X],
and so there are at most (1/40)|E| edges in the second category but not the third.
Also, there are fewer than (1/4)|E| directed edges in the third category. Then
U] < 2|8

Now set U := U’. If there is a vertex v in either side of G such that (2/3) degv
of the directed edges incident to v are in U, then add all edges incident to v to U.
Repeat until no more edges can be added in this manner. It follows from the same
argument as in the proof of Theorem 21| that |U| < £8|E|. Furthermore, for every
x € X, there are either 0 or at least Rd'~'/"n'/" /3 directed edges in E — U that

start at x, and for every y € Y there are either 0 or at least %dlfl/rnl/TRT%ll
directed edges in E — U that start at y. For a vertex v € V(G), let T'(v) denote
the number of directed edges in E — U that start at v. By construction, this is the
same as the number of directed edges in E — U that end at v.

Consider walks of length r in G, starting with an edge v_jvy with vy € X and
using edges in F¥—U, such that the corresponding path in I" is a non-returning walk.
For every edge ut or v in such a path with v € X,v € Y we have fo(lkp(uv)) <
(1/6) fo(lkr(u) < (1/2)T(u) and [V (kr(uo)) 0 X| < (1/6)|V(kr(v)) N X| <
(1/2)T'(v). Then for some value Cy that can be chosen arbitrary large by choosing
(1 sufficiently large, there are at least

51 5] r
(%Rdll/rnl/r> 2 <%erld11/rn1/r) 2 _ OQHRl—%“i%dril > OQTLdTil

such paths. It follows from Lemma 2.6] that I" has more than n vertices for Co > 1,
a contradiction.
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Let Wx be the set of vertices with degree between Rd'~'/"n!/" and 2Rd"~Y/"n/".
We have shown that |[W]| < CynR™1 for some C; that depends only on r. Then

Z (deg v)P < ngp—p/ran/er*T%l
veWgr

for some constant C5. By adding over all R = 1,24, ..., 2los: A7) and

by p < £, it follows that }° v (degv)? < CdP=P/Tn!*+P/" for some constant C
that depends only on p and r. (I

The following conjecture, which is reasonable in light of Theorem[21] is a possible
strengthening of Theorem B.11

Conjecture 3.3. Let T be a (d—1)-dimensional simplicial complex with n vertices,
and suppose that gr1(I') > 2r, r > 2. For every ¢ > 0, there exists § > 0 such that
if r/log(n/d) < 0, then

1 1-1/r" 1-1/r71 N1—1/r, 14+1/r+...+1/r!
fi() < (m+e> (d— 1)V (d—2)1= L (d— i)t et
While the theorems in this section and in Section2lonly apply when gr(T") > 5,
the case that grq(I') = 4 is fully addressed by earlier results. Given that gr(I") > 4
(i.e. ' is flag), and that I has dimension d — 1 and n vertices, then all face numbers
are simultaneously maximized by the following construction. Partition V(I") into
d sets Vi,...,V; as evenly as possible, and let all vertex subsets that consist of at
most one element from each of the V; be faces of I". This result is proven in [g].

4. HIGHER GIRTHS

Next we turn our attention to bounds on face numbers that arise from higher
girth assumptions. In this section we conjecture an upper bound on f;_1(I") when
the dimension, number of vertices, and (p — 1)-girth of I are given.

We define the exponents used in the following conjecture recursively. Define

ri—1

Gori =g = L Lr 1T
Gprp—1 =p—1,
1 1 '
Ap,r,i = 50/1)—1,7‘77:—1 + §ap)m-_1 +1, p>3,i>p.

We note some properties of the a values. For all p > 3,7 > 2,7 > p, we have
p.ri > Gp 1,0y Apori > Gp i1, a0 Gp i > Apri1ie AlSo, apri < 2p — 3+ 4,
and lim; o ap i = 2p — 3+ ﬁ Each of these properties can be checked by using

using induction on p and i.

Conjecture 4.1. LetI" be a (d—1)-dimensional simplicial complex with n vertices,
and suppose that gr,—1(I') > 2p + 2r — 4, for some p,r > 2. Then for a constant
Cp,r that depends only on p, 7,1,

fi_l (1—‘) < Cp)’r’idi*ap,'r‘,inap,r,i'

We do not have a general proof of Conjecture [£.1] so we prove the conjecture in
several special cases. Our next theorem verifies the conjecture for flag complexes.
We use the notation avg ;e f(t) to denote the average value of a real-valued function
f(t) as t ranges over all elements of a finite set 7.
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Theorem 4.2. Let T" be a flag (d — 1)-dimensional simplicial complex with n ver-
tices, and suppose that gr,—1(I') > 2p + 2r — 4, for some p,r > 2. Then for a
constant Cp . ; that depends only on p,r,1,

fi,l(F) S Cpmyidiiap’r’inap’r’i.

Proof: ~ We prove the result by induction on p and i. The case that p = 2 is a
restatement of Theorem [B.I], and the case that i = p — 1 is trivial. Now suppose
that p > 3 and 7 > p, and let f;_1 be given.

By the inductive hypothesis, fi_2 < C’pym,ldi_l_“%mfln“PM’*l. For a fixed
value R that is independent of d and n, we may assume that

fie1 > RACy i d'™ 1 Onmisiptemizty
otherwise, then the theorem follows by a, i > ap,r,i—1 and by choosing C,, . ; suffi-

ciently large. The (i—2)-faces of I" are contained in at least Him1

CP,T,iildi*I*ap,T,ifln"‘p,nifl
(¢ — 1)-faces on average, or
ifi-1(I) ifio1
avg per,|F|=i—1.fo(lkr(F)) = i) N SR, == = Py ——
i— p,ri—
For an (i—1)-face F, let ¢(F) := fo(lkp(F)) if fo(lkp(F)) > Rdi/2 and 0 otherwise.
It follows that .
N ifi—1(D)

~ 2fia(T)

For a simplicial complex A, let s(A) denote the number of pairs of vertices
that are not joined by an edge; then s(A) = (f“(QA)) — f1(A). Since T is flag, we
conclude that for some e that depends only on p, i, and r, and for all (i — 1)-
faces F, s(lkp(F)) > eq(F)?. This follows from the first part of Lemma 2.4 if
fo(lkp(F)) > Rdi/2 and is trivial otherwise. From the fact that for any set T' of
real numbers, avg ;e7(t2) > (avger)?, we conclude that there exists a constant C;
independent of d or n such that

> Rdi.

avg FeF,|F\:i71Q(F)

Cifia(D)?

fiea (D)2

For some constant C independent of d or n, there are at least
C1fi—1(T)? . Coffy
fi—Q(F) = di—1-ap,ri-1pap,ri-1

sets of the form {F,v,v’'}, where F is an (i — 2)-face and v, v’ are vertices in Ik p(F)
that are not joined by an edge. By Part 1 of Lemma [Z2] if there is no edge vv’
between two vertices v and v in Ik p(F') for a face F, then there is no edge vv’ in T".
There are at most (g) pairs of vertices v and v’ that are not joined by an edge; call

that set of pairs S. For all (v,v") € S, let ki—2(v,v’) be the number of (i — 2)-faces
whose links contain both v and v’. Then

avg per,|pl=i—15(kr(F)) >

2
av neski_2(v,v") > Cafia
g('u,v )ES =2 ’ — di—l—ap,T,¢,1n2+ap,T,¢,1

for some constant C5 that depends only on Cs.
Choose (v,v") € S so that

Cs f2
ki,Q(’U,’U/) > 3f1_1

— di—1=ap,ri—1p2+ap i1’




HIGHER DIMENSIONAL MOORE BOUNDS 13

Let W be the set of vertices incident to both v and v’, so that
Csflq
fi—a(D[W]) > T —— E—

By the inductive hypothesis, gr,—2(I'[W]) < 2p + 2r — 6 if
Csf?

di—1—ap,ri—1p2+ap,ri-1
By Part 3 of Lemma [2.2] there exists W/ C W so that [W| < 2p — 2r — 6 and
H, o(T[W'];k) # 0. Then T'[W’,v,v] is the suspension of T'[W’], which implies
that H, 1(T[W,v,v';k) # 0 and gr, 1(T[W]) < 2p + 2r — 4, a contradiction.
Therefore,

> Cp_lnl’i—ldi_l_apfl,r,ifl np-1mn,i-1

Csf?,

di—1=ap,ri—1p2+ap,ri-1

< Cpfl n iildiflfap—l,r,i—lnapfl,n,ifl.

We conlcude that, for a constant Cp ;. ;,
fio1 < Cp - id(i—l)/2—ap,ni71/2+(i—1)/2—ap71,ni71/2nap,ni71/2+ap71,ni71/2+1
_ Cp - idifap,r,inapm,d,i'
O

The next special case verifies Conjecture 1] in the case that both r = 2 and
i = p. First we need some technical lemmas.

Lemma 4.3. Let I' be a simplicial complex, and suppose that gr,(I') < co. Then
grp— k(L) <grp,(T') —k for all 0 < k <p.

Proof: Tt suffices to prove the lemma for k = 1. Let F € T' and W C V(T') so
that |[W| = gr,(I") and H,(Ik(F)[W]);k) # 0. Choose v € W. By definition of
grp, Hy(lkp(F)[W —{v}];k) = 0. It follows from the Mayer-Vietoris sequence that
H, 1(kp(FU{v})[W — {v}]); k) # 0, proving the result. O

Lemma 4.4. Let d and p be fized, and let A be a (d—1)-dimensional simplicial com-
plex with V(A) = TUW, |T| = n. Suppose that for allv € T, H,_1(1k a(v)[W]; k) #
0. Then for some i > 2 and for some constant C' that depends on i,d,|W|, p, there
exist at least Cn' subsets W' C T satisfying |W'| =i and Hpy;—o(A[W'UW]; k) # 0
if n is sufficiently large.

Proof: 'We prove the result by induction on d. Let A be the simplicial complex that
is the value of Ik A (v)[W] for the largest number of vertices v. We restrict attention
to the subcomplex A’ = A[T', W], where T’ is the set of vertices v satisfying
Ik A(v)[W] = A. Then for a (possibly very small) constant C’ that depends only
on |W|, |T"| > C'|T).

If there are (ITQ/I)/2 > (CQ/")/Q pairs of vertices {u, v} C T" such that H,(A[W U
{u,v}]; k) # 0, then the result holds with ¢ = 2. Otherwise, by the Mayer-Vietoris
sequence, for at least (‘2/‘)/2 pairs of vertices {u,v} C T, there is an edge uv

and H, 1 (Ik a(uv)[W];k) # 0. Let T/ := {u : H, 1(lka(uv);k) # 0}. Then
avg et |To] > (|T'| —1)/2 > (C'n — 1) /2. Since |T))| < |T’| for all v, there exists a
set V.C T so that |[V| > |T"]|/5 and for all v € V| |T)| > |T"|/5.

For v € V, 1k a(v)[T}, W] satisfies the conditions of the lemma and so, by the
inductive hypothesis, for some 4, and constants C; and C] that depend only on
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iv,d,|W|,p, there exist at least C1(C'n/5)" = Cin' subsets W' C T/ so that
W' =i, and Hpyi, —2(lk o (0)[W/ UW]; k) # 0. If for some v € V, Hpyy, o A[W' U
W1;k) # 0 for (C7/2)n* such values of W', the lemma is proven by taking C' =
C} /2. Otherwise, by the Mayer-Vietoris sequence, there exist (C}/2)n’ values of
W’ so that |[W’| = i, and Hpi, 1 (A[W' U {v} UW];k) # 0. Choose i so that i
is the value of i, for the largest number of vertices v € V. Since i, < d for all v,
there are at least %n vertices v so that there exist (C]/2)n’ values of W’ so that
[W'| =i and Hpy; 1 (A[W' U {v} UW];k) # 0. We conclude that there exist at
least %n”l values of W’ so that |[W’| =i+ 1 and H,y; 1 (A[W/ UW]; k) # 0.
This proves the lemma. ([

Theorem 4.5. Let T be a (d — 1)-dimensional simplicial complex with n vertices,
and suppose that gr,_1(I') > 2p for some p > 2. Then for a constant Cp 4 that
depends only on p and d,

fp—1(T) < Cpan”~ T — Cp gnv27.

Proof: We use the notion of an (s,q)-open cycle, which is a subset W =
{wy,...,w,} C V(T) so that H,_1(T[W];k) # 0. Let OC,,(T") be the set of
(s,q)-open cycles in I', and let oc 5 4(T') := |OC 4 4(T)|.
Adding a face F' with |F| < p to I" does not affect gr,_1(I"), and so we assume
without loss of generality that all sets of cardinality less than p are faces in I'.
Suppose that R is large, independently of n, and that f,_; > Rn” ~3-T. Then
we show that there exists a face F' of I" (possibly the empty face) such that Ik p(F)
contains an (s, g)-open cycle for some s > p and ¢ < s+ p. The theorem then
follows by Lemma [4.3]
Since
1— 1
avg per,|Fl=p—1fo(lkr(F)) > CRn ~ 2T
for some constant C independent of n, by Lemma [L4] (with W = (}) there exists for
each F 2 < ¢1(F) > d+ 1 and constant C] independent of n so that if fo(lk(F))
is sufficiently large,

0C g 1.9, Ik (F)) > C fo(lk p(F)) ),

By considering the value of ¢1 so that 35 p_, |, (p)—g, fo(Ikr(F)) is maximal,
and the fact that avg e (t9) < (avgier(t))? for all ¢ > 1, we have that

__a1
aveg per,|Fl=p—10C g, —1,q, ({k(F)) > C1 Rn® " 27T,

If g1 > p+ 1, then the result is proven, so suppose that ¢; < p.

Now suppose that we have found j, q1,...,¢;—1 such that Q :==q¢: +...+¢gj—1 <
p+ j — 2, and constant C;_; independent of n such that

_41---95—1

() avg per | Fl=p-j+10¢ @—j+1,Q(Ikr(F)) > C; 1 Rn®™ 2=t
Consider F with |F| = p—j. For each W C V(I'), |W| = Q, let U, r be the set of
vertices v such that Ho_;(lk p(F U {v})[W]; k) # 0. From (&) and the fact that all
(p — j + 1)-subsets of T" are faces, we have that

avg per Fl=p—j Y. 9cq-j+1.o(kr(FU{v}) > Cj1Rn®"
veV()—F

a1---a5—1
2P —1

(n—p+7j).
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Since there are fewer than nQ"_Tp“ subsets W of size @ of V(T'), it follows that
19—
avg per | F|=p—j,wcv(r),wi=@|Uw,r| = Cj—1Rn 2Pt
and since 1 — ¢y ...q;—127PT1 >0,

Qta;— L=

avg Fer,|Fl=p—jOC Q+q;—5.Q+q, Ik r(F)) = CjRn 2=

for some ¢; > 2 and C; independent of n, again by Lemma 4] and the above
reasoning. The theorem follows if @) + ¢; > p+ j. Otherwise, repeat this argument
until such j is found. O

Our last special case verifies Conjecture 1] in the case that i = p = d.

Theorem 4.6. Let T be a (p — 1)-dimensional simplicial complex with n vertices,
and suppose that gr ,_1(I') > 2p + 2r — 4, for some p > 2 and r > 2. Then for a
constant Cp » that depends only on p and r,

Fpr (D) < G55 = Gy o,

Proof: ~ We prove by induction on p that if I" has dimension p — 1 and satisfies
fp—1(T) > Cpmnp*%@é, then there exists W C V(T') such that |W| < 2p+ 2r — 4
and I'[W] has a non-trivial (p — 1)-cycle in homology. The theorem then follows
since that cycle cannot be a boundary in a (p — 1)-dimensional simplicial complex.
For p = 2, the claim follows from Theorem [T1]

Suppose that f,—1(T") > (Z’,,)TTLP_AL:?*}4 for sufficiently large C), , independent of
n. Then since every (p — 1)-face contains p faces with p — 2 vertices each,

Z fo(k r(F)) > pCyon?~ 77 =
FeT,|F|=p—1
avg per | F=p-1fo(ler(F)) > pCp P~ 577 £
Take s(A) to be the number of pairs of vertices in A that are not joined by an edge,
as in the proof of Theorem Since T" has dimension p — 1, the link of a (p — 2)
face contains no edges, and by avg e (t?) > (avger)?, we have

o Ar—4
avg FGF,|F‘:p718(1kF(F)) > CTLQ:D 2P 1 fp_22 =

op—Ar—4 4
> s(kp(F) > Cn®Pm T [0
FeT,|F|=p—1
for a value C that can be chosen arbitrarily large by choosing C, , sufficiently
large. Since there are () pairs of vertices in V(I') and f,_o(T) < (pfl), there exist

vertices u and v such that there exists a set P of CnP~ '~ 771 (p — 2)-faces whose
links contain v and v. Let IV be the simplicial complex with maximal faces given
by P. By the inductive hypothesis, for sufficiently large C' there exists W’ C V(I)
such that |W'| < 2p+2r —6 and IV[W'] has a non-trivial (p — 2)-cycle in homology.
Then T'[W’, {u,v}] contains the suspension of I'[W] and therefore has a non-trivial
(p — 1)-cycle in homology, and thus gr,_1(I') < 2p + 2r — 4. O

Problem 4.7. Improve the exponent in the bound of Conjecture[{-1] (or a special
case of it), or give an example to show that such improvement is impossible. Also,
what specific values of Cy, .5 can be given?
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Problem 4.8. What bounds on face numbers are possible if there are several girth
hypotheses, say if gr1 and gro are given?

5. EXISTENCE OF COMPLEXES WITH HIGH GIRTH AND MANY FACES

Although we do not have general examples to prove that the bounds in the above
theorems are tight, we have some examples of simplicial complexes satisfying the
hypotheses of Conjecture 1] and having f,—1 large.

Theorem 5.1. For each p > 2 there exists a constant C, such that for arbitrarily
large n, there exists a (p — 1)-dimensional simplicial complex T' with n vertices
satisfying gr p,—1(I') > 2p and fp—1(T') > Cpnp_ﬁ.

Proof:  'Without loss of generality, we assume that n/p is an integer. Let V be a set
of n vertices, partitioned into sets Vi, ..., V,, each of size n/p. Construct a random
simplicial complex IV as follows. All faces with cardinality at most p — 1 and at
most one element of each of the V; are faces in IV, and every cardinality p set with
exactly one element from each V; is added to I independently with probability a
for some 0 < a < 1. A (p — 1)-dimensional simplicial complex A whose vertex set
can be partitioned into Vi, ..., V), such that every face of A contains at most one
element of each of the V; is called balanced (the definition of a balanced complex
usually requires that all maximal faces have the same cardinality; we do not make
this assumption). By construction, I is balanced.

We check that if A is balanced and (p — 1)-dimensional, then gr,_1(A) < 2p
only if there is a set of vertices W = UY_ {v; 0,vi1} with {v;0,v,1} C V; such
that {vij,,v2j,,...,0pj,} € A for all (ji,...,7,) € {0,1}P. In this case, A[IV]
is the boundary of a p-dimensional cross-polytope. Suppose that gr,_1(A) < 2p.
Let W C V be of minimal size such that H, ,(A[W];k) # 0. If for some 4,
W NV, is a single vertex {v}, then all (p— 1)-faces of A[W] contain v and therefore
H,_1(AW];k) = 0. We conclude that |[W N V;| = 2 for all i, and therefore T'[W]
is contained in the boundary of a p-dimensional cross-polytope. The claim then
follows.

If v; 0,v;,1 € V; for 1 < i < p, then the probability that I'[v1,0,v1,1, ..., Up0, Up,1]
is the boundary of a p-dimensional cross-polytope is a®”. Hence the expected num-
ber of such boundaries in IV, denoted E(oc,(I')), is (”ép)pa?. Also, the expected
number of (p — 1)-faces of I' is E(fp—1(I')) = a(n/p)?. By linearity of expectation,

Bp1 (D) —oc,(0) = atofpy = (“17) .

By choosing a = Cz’)n_fppf_l for CZ’) sufficiently small and independent of n, there
exists I'V such that fp—1(I") —ocp,(I') > Opnpfffptl for some C) independent of n.

Let F1,..., Foc ) be a collection (possibly containing duplicates) of (p — 1)-
faces of I such that every boundary of a p-dimensional cross-polytope in I" contains
some F;. Construct I from I by removing all the F;. Then gr,_1(I') > 2p and
fpo1(T) > CpnP~ 7T O

We also consider the existence of 2-dimensional simplicial complexes with both
f2 and gro large. For that we first need a technical lemma.
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Lemma 5.2. Suppose that I' is a balanced, two-dimensional simplicial complez.
Let W C V(') be a minimal set such that Hy(L'[W];k) # 0, d.e. if W' C W, then
Hy(T[W');k) = 0. Then fo(T[W]) > 2|W| — 4.

Proof: ~ 'We partition W into X,Y, Z so that every face of I'[W] contains at most
one vertex from each of X,Y,Z. If F is a face of T'[W], construct T'[W] — F by
removing F and all faces that contain F' from T'[W]. If T[W] contains a face F' such
that Hy(T'[W] — F;k) # 0, then it suffices to prove that fo(T[W] — F) > 2|W| — 4.
Hence, we may assume without loss of generality that if any face of I'[IW] is removed
to create A, then Hy(A;k) = 0.

I'[X,Y] is a bipartite graph, say with ¢t edges. If 2y is an edge in T'[X, Y], then
there are at least two vertices 21,29 € Z such that zyzi,xyze € I'; otherwise xy
could be removed without changing Hy(I'[W];k), a contradiction. Therefore, it
suffices to show that t > |[W| — 2.

First we show that I'[X,Y] is connected. Let Wh,..., W, be the vertex sets
of the connected components of I'X,Y]. T'W] = U;_;T[W;, Z], and ['[W;, Z] N
(Ué;llF[Wj, 7)) = T'[Z], which is a set of isolated vertices and hence has vanishing
first homology. It follows from induction on ¢ and the Mayer-Vietoris sequence that
Hy(D[W]; k) = @;Zlﬁg (T[W;, Z]; k). Hence, by the minimality assumption, s = 1
and I'[X,Y] is connected.

It follows from the Euler-Poincaré formula that dimy(H;(T[X,Y];k)) = t —
|X|—|Y|+1. Hence, it suffices to show that |Z| < dimy (H; (T[X,Y]; k)) + 1, which
would then imply that ¢t > |[X|+ |Y|+ |Z]| —2 = [W|—2. Let Z = {z1,...,2}.
For 1 < ¢ <r, it must be that Hl(lkF[W] (2i); k) # 0, or else Hy(T[W — {z}];k) =
H,(T[W]; k), a contradiction to the minimality assumption. Let b(i) be the dimen-
sion over k of the image of H;(I'[X,Y];k) under the map on homology induced
by the inclusion of I'X,Y] into I'[X,Y,{z1,...,%}]. Consider a nonzero cycle
C e H(Ik rpw)(2:)), and consider the Mayer-Vietoris sequence on U = I'[X, Y, { z;}]
and W =T[X,Y,{z1,...,zi1 ] with UUW =T[X,Y,{z1,...,zi}] and UNW =
[[X,Y]. IfC # 0in H(T[X,Y,{z1,...,2i_1}]), then b(i) < b(i—1) —1. Otherwise,
Hy(T[X,Y,{z1,...,2}];k) # 0, which implies that s = r. Then b(0) > r — 1, which
proves the lemma. ([

Theorem 5.3. There exists an absolute constant C' such that, for arbitrarily large
n and k < n, there exists a two-dimensional simplicial complexr T' with n vertices

satisfying gro(T) > k and fo(T') > Cn®/2k=3/2,

Proof: ~ We may assume that k < (2C + p)?/3n'/? for some fixed p, since there
exists I' with gro(I') = oo and fo(T') = (”gl) Such a I' can be constructed by
taking the cone over a complete graph.

We use probabilitistic methods to construct an intermediate simplicial complex
I” and then T" with the claimed properties as follows. Partition V(I") = V(IV)
into X,Y, and Z, each of size n/3, and let 0 < a < 1 be a real number. For
all z € X,y € Y,z € Z, vy, rz,yz are edges in I/, and zyz is a face in I with
probability a, chosen independently of all other faces. For all W C V(I'V) with
[W| < Ek, let T;;; be the set of all (2|W]| — 4)-subsets of 2-faces of I' that are
contained in W, and define 7* := Uy < Ty5,- Then define a function 7": 7+ — I"
by choosing T'(7T) € T arbitrarily for all 7 € T*. Construct ' by deleting T(7T)
from I for all 7 € T*.
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If fo(T[W]) > 2|W]| — 4 for some |W| < k, then let 7 be a set of 2|W| — 4
2-faces of I'[W]. Then some face of T should have been deleted in the construction
of I, a contradiction. Since I' is balanced, and fo(T'[W]) < 2|W| — 4 for all W
with |[W| < k, we conclude by Lemma that gro(I') > k. Next we show that
by choosing a = en~'/2k=3/2 for an appropriate value of € independent of n or k,
E(f2(T)) > Cn®/?2k=3/2,

For any value of a, E(f2(I'")) = a(n/3)3 = an?®/27. Also, fo(T') > fo(T) — |T*|.
If we show that for all @ < en™'/2k=3/2 E(|T*|) < an®/54, then it follows by
linearity of expectation that E(fo(T)) > an3/54. Thus, there exists some I' with
f2(T') > an®/54, which proves the theorem.

Let t;, = |{T € T*:|T|=2i —4}|. Then |T*| = Ele t;, and it suffices to show
that if @ < en™1/2k73/2, then E(t;) < Coan®/?, for some absolute constant Cy, by
k < (2C 4 p)?/3n'/3. Since there are () sets W such that |W| = i, and for such a

W there are ( (5) ) sets T of size (2i — 4) of 3-subsets of W, we have

(5)

B(t:) <a*™ <2i - 4) (ZL)

We need to verify that

2i—4 (:3,) n 5/2
4 <2i—4) (z) < Goan™",

3 i
a2i—4( /6 >”_ < Coan®’?.

which follows from

2i—4)/ il
By Stirling’s approximation, this follows from
@275 < i/ 2 (=6 12) 4 (i) i =2t —ig2id

or for an appropriate constant €, a < en~1/2; =5, Since i < k, this follows from
a < en~1/2k=3/2 proving the result. (I

The Ramanujan graphs of [11] are examples of graphs with large girth and many
edges. The Ramanujan complexes of [I2] also have many faces and high girth,
although under a definition of girth that is different from what we use. Perhaps
these constructions can be adapted to our setting to prove that the bounds of
Conjecture [4.1] are, at least in some cases, tight.

6. CONNECTIONS WITH THE MULTIPLICITY CONJECTURE

We conclude our study of Moore bounds by noting the connection with commu-
tative algebra, and in particular the multiplicity conjecture.

Consider the polynomial ring .S over a field k generated by variables z1, ..., x,.
With every simplicial complex I' we associate its Stanley-Reisner ideal It C S
generated by non-faces of I't It := ([[,,c i : L C V,L ¢ T) (see [14]) and its
Stanley-Reisner ring k[I'] := S/Ip.

If I is a graded ideal of S, then we construct a graded minimal free resolution of
S/I as an S-module.

0— @S(—j)ﬂl’j ... @S(—j)ﬂw -85 —=8/I—0.

JEZ JEZL
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In the above expression, S(—j) denotes S with grading shifted by j, and [ denotes
the length of the resolution. In particular, { > codim (S/I). The numbers 5, ; are
called the algebraic Betti numbers of I.

We define a set of quantitites g,—1 of a (d — 1)-dimensional simplicial complex
T" in terms of the resolution. First define the maximal shifts of T' as the largest
indices of nonvanishing Betti numbers: M;(I') := max{j : B;; # 0}. The first
codim (k[I']) = n — d maximal shifts of I are strictly increasing, and so there are d
integers 1 < Qo < Q1 < ... < Qq—1 < n that are not among the first n —d maximal
shifts of . For 1 < p < d, we define g,—1(I') := Qp—1(S/Ir) + 1.

Our definition of the girths of a simplicial complex is closely related to g. In
the following lemma, we make use of Hochster’s formula (see [14, Theorem I1.4.8]),
which states that

Bl = S dimic (i 1TV 1))

W=y

Lemma 6.1. Let T be a (d — 1)-dimensional simplicial complex. Then g,—1(I') =
min{n —d+p+1,gr,_1(I)} for all p.

Proof:  We show that
grp-1(T) = gy (1) i= min {|W] = j : Bp14,(T[W]) > 0,5 > 0.

The result then follows by Hochster’s formula.

First we prove that g, (I') < grp—1(I'). Choose W C V(I') and F' € T so
that H,_;(lkp(F)[W];k) # 0. We show that for some F’ C F, ﬁp_1+|F/‘(I‘[W U
F'];k) # 0. First consider the case that F' is a single vertex. If H, 1 (T[W]; k) # 0,
then the inequality holds. Otherwise, it follows from the Mayer-Vietoris sequence

.= Hy(CW U Fl;k) — Hy 1 (Ikp(F)[W]; k) — H, 1 (T[W];k) — ...

that H,(T[W U F];k) # 0, and the inequality holds in this case as well. Now
suppose that F' contains several vertices, and let v € F. By induction on |F|, there
exists I/ C F — {v} such that gp_l_HF/‘(lkp(U)[W U F'];k) # 0. Now apply the
previous argument to lk p(F — {v}).

Next we show that g, ;(T') > gr, 1(T'). Suppose that H, 1. ;(T[W];k) # 0
for some |W| = g, ;(T') +j. If j = 0, then the claim is proven, so suppose that
J = 1. By defintion of g;, _;, W is of minimal size so that H, 1,;(T[W];k) is
nonvanishing. Hence by the Mayer-Vietoris sequence, for any vertex v € W it
follows that H, o, ;(Ikp(v)[W — {v}];k) # 0. Furthermore, by the definition of
9gp—1 and the argument of the previous paragraph, W — {v} must be a minimal
set with this property. Hence by repeating this procedure j times, there exists a
face F'C W with |F| = j such that H, ;(Ik p(F)[W — F];k) # 0. This proves the
lemma. (]

The multiplicity conjecture is a prominent statement in commutative algebra.
Part of the statement places an upper bound on f;—1 of a (d — 1)-dimensional
simplicial complex in terms of its maximal shifts, or equivalently, in terms of its
girths. In general, let N be a graded module over S with codimension ¢, multiplicity
e(N), and first ¢ maximal shifts M;,...,M.. Then e¢(N) < M;y...M./c!. The
conjecture was first posed in [9], and it follows from the Boij-Séderberg conjecture
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[]. The Boij-Séderberg conjecture was proven in [7] for the Cohen-Macaulay case,
and generalized to the non-Cohen-Macaulay case in [3].

For a (d — 1)-dimensional simplicial complex T' with n vertices, e(S/Ir) =
fa—1(T). Therefore, in terms of girths, the multiplcity conjectures states that

nn—1)...(n—d+1)

JarrD) S G = 1) (@raa (@) =)

Although a general combinatorial proof of this result remains elusive, some papers
such as [I3] establish the result for some classes of simplicial complexes. A simple
proof for the one-dimensional case follows from the observation that if I has girth
at least g and |W| = g — 1, then I'[W] is a forest and has at most g — 2 edges. The
result follows by adding over all such W.

The results in this paper are inspired by the observation that Theorem [I] is
generally much stronger than the multiplicity conjecture for the case of graphs. We
see that the bound of Conjecture A1l is generally much stronger than that of the
multiplicity conjecture when n is large and the girths are small.

(1]
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