Skip to main content
Log in

Cleaning Random d-Regular Graphs with Brooms

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A model for cleaning a graph with brushes was recently introduced. Let α = (v 1, v 2, . . . , v n ) be a permutation of the vertices of G; for each vertex v i let \({N^+(v_i)=\{j: v_j v_i \in E {\rm and} j>\,i\}}\) and \({N^-(v_i)=\{j: v_j v_i \in E {\rm and} j<\,i\}}\) ; finally let \({b_{\alpha}(G)=\sum_{i=1}^n {\rm max}\{|N^+(v_i)|-|N^-(v_i)|,0\}}\). The Broom number is given by B(G) =  max α b α (G). We consider the Broom number of d-regular graphs, focusing on the asymptotic number for random d-regular graphs. Various lower and upper bounds are proposed. To get an asymptotically almost sure lower bound we use a degree-greedy algorithm to clean a random d-regular graph on n vertices (with dn even) and analyze it using the differential equations method (for fixed d). We further show that for any d-regular graph on n vertices there is a cleaning sequence such at least n(d + 1)/4 brushes are needed to clean a graph using this sequence. For an asymptotically almost sure upper bound, the pairing model is used to show that at most \({n(d+2\sqrt{d \ln 2})/4}\) brushes can be used when a random d-regular graph is cleaned. This implies that for fixed large d, the Broom number of a random d-regular graph on n vertices is asymptotically almost surely \({\frac{n}{4}(d+\Theta(\sqrt{d}))}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alon N., Chung F.R.K.: Explicit construction of linear sized tolerant networks. Discrete Math. 72, 15–19 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon N., Prałat P., Wormald N.C.: Cleaning d-regular graphs with brushes. SIAM J. Discrete Math. 23, 233–250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alon, N., Spencer, J.H. : The Probabilistic Method. Wiley, London (1992) (3rd edn, 2008)

  4. Biedl T., Chan T., Ganjali Y., Hajiaghayo M., Wood D.: Balanced vertex—orderings of graphs. Discrete Appl. Math. 148(1), 27–48 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bollobás B.: A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. Eur. J. Combin. 1, 311–316 (1980)

    MATH  Google Scholar 

  6. Duckworth, W., Zito, M.: Uncover low degree vertices and minimise the mess: independent sets in random regular graphs. In: Proccedings of the 32nd International Symposium, Mathematical Foundations of Computer Science. Lecture Notes in Computer Science, vol. 4708, pp. 56–66. Springer, Berlin (2007)

  7. Fernholz, D.: Independent set heuristics for random 3-regular graphs, pp. 39 (submitted)

  8. Friedman, J.: A proof of Alon’s second eigenvalue conjecture. Memoirs A.M.S., p. 118 (accepted)

  9. Gaspers S., Messinger M.E., Nowakowski R., Prałat P.: Clean the graph before you draw it!. Inform. Process. Lett. 109, 463–467 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gaspers S., Messinger M.E., Nowakowski R., Prałat P.: Parallel cleaning of a network with brushes. Discrete Appl. Math. 158, 467–478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hoory S., Linial N., Wigderson A.: Expander graphs and their applications. Bull. Am. Math. Soc. (N.S.) 43(4), 439–561 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kim J.H., Wormald N.C.: Random matchings which induce Hamilton cycles and hamiltonian decompositions of random regular graphs. J. Combin. Theory Ser. B 81, 20–44 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Messinger M.E., Nowakowski R.J., Prałat P.: Cleaning a network with brushes. Theor. Comput. Sci. 399, 191–205 (2008)

    Article  MATH  Google Scholar 

  14. Messinger, M.E., Nowakowski, R.J., Prałat, P.: Cleaning with Brooms. Graphs Combin., pp. 16 (accepted)

  15. Messinger, M.E., Nowakowski, R.J., Prałat, P., Wormald, N.C.: Cleaning random d-regular graphs with brushes using a degree-greedy algorithm. In: Proceedings of the 4th Workshop on Combinatorial and Algorithmic Aspects of Networking, pp. 13–26. Lecture Notes in Computer Science, vol. 4852, Springer, Berlin (2007)

  16. Monagan, M.B., Geddes, K.O., Heal, K.M., Labahn, G., Vorkoetter, S.M., McCarron, J., DeMarco, P.: Maple 10 Programming Guide, Maplesoft, Waterloo ON, Canada (2005)

  17. Prałat P.: Cleaning random graphs with brushes. Austral. J. Combin. 43, 237–251 (2009)

    MATH  Google Scholar 

  18. Shearer J.: A note on bipartite subgraphs of triangle-free graphs. Random Struct. Algorithms 3, 223–226 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wormald N.C.: Differential equations for random processes and random graphs. Ann. Appl. Probab. 5, 1217–1235 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wormald N.C.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 276, pp. 239–298. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  21. Wormald N.C.: The differential equation method for random graph processes and greedy algorithms. In: Karoński, M., Prömel, H.J. (eds) Lectures on Approximation and Randomized Algorithms, pp. 73–155. PWN, Warsaw (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Prałat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prałat, P. Cleaning Random d-Regular Graphs with Brooms. Graphs and Combinatorics 27, 567–584 (2011). https://doi.org/10.1007/s00373-010-0986-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0986-x

Keywords

Navigation