Skip to main content
Log in

On the Chromatic Number of H-Free Graphs of Large Minimum Degree

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

The problem of determining the chromatic number of H-free graphs has been well studied, with particular attention to K r -free graphs with large minimum degree. Recent progress has been made for triangle-free graphs on n vertices with minimum degree larger than n/3. In this paper, we determine the family of r-colorable graphs \({\mathcal{H}_r}\), such that if \({H \in \mathcal{H}_r}\), there exists a constant C < (r − 2)/(r − 1) such that any H-free graph G on n vertices with δ(G) > Cn has chromatic number bounded above by a function dependent only on H and C. A value of C < (r − 2)/(r − 1) is given for every \({H \in \mathcal{H}_r}\), with particular attention to the case when χ(H) = 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen, P.: Dense H-free graphs are almost (χ(H) − 1)-partite. Electron. J. Comb. 17(1), 11 (2010). Research Paper 21

    Google Scholar 

  2. Alon, N., Sudakov, B.: H-free graphs of large minimum degree. Electron. J. Comb. 13(1), 9 pp (2006). Research Paper 19

    Google Scholar 

  3. Andrásfai B., Erdős P., Sós V.T.: On the connection between chromatic number, maximal clique and minimal degree of a graph. Discrete Math. 8, 205–218 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobás, B.: Extremal graph theory. In: London Mathematical Society Monographs, vol. 11. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London (1978)

  5. Brandt S.: Subtrees and subforests of graphs. J. Comb. Theory Ser. B 61(1), 63–70 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brandt, S.: Dense graphs with bounded clique number. Habilitation thesis, Freie University, Berlin (2000)

  7. Brandt, S., Thomassé, S.: Dense triangle-free graphs are four-colourable: a solution to the Erdős-Simonovits problem. J. Comb. Theory Ser. B (2010, to appear)

  8. Erdős P.: Graph theory and probability. Can. J. Math. 11, 34–38 (1959)

    Article  Google Scholar 

  9. Erdős, P.: Extremal problems in graph theory. In: Theory of Graphs and its Applications (Proc. Sympos. Smolenice, 1963), pp. 29–36. Publ. House Czechoslovak Acad. Sci., Prague (1964)

  10. Erdős P., Simonovits M.: On a valence problem in extremal graph theory. Discrete Math. 5, 323–334 (1973)

    Article  MathSciNet  Google Scholar 

  11. Erdös P., Stone A.H.: On the structure of linear graphs. Bull. Am. Math. Soc. 52, 1087–1091 (1946)

    Article  MATH  Google Scholar 

  12. Goddard, W., Lyle, J.: Dense graphs with small clique number. J. Graph Theory (to appear)

  13. Häggkvist, R.: Odd cycles of specified length in nonbipartite graphs. In: Graph Theory (Cambridge, 1981). North-Holland Math. Stud., vol. 62, pp. 89–99. North-Holland, Amsterdam (1982)

  14. Komlós, J., Simonovits, M.: Szemerédi’s regularity lemma and its applications in graph theory. In: Combinatorics, Paul Erdős is eighty, vol. 2 (Keszthely, 1993). volume 2 of Bolyai Soc. Math. Stud., pp. 295–352. János Bolyai Math. Soc., Budapest (1996)

  15. Kövari T., Sós V.T., Turán P.: On a problem of K. Zarankiewicz. Colloq. Math. 3, 50–57 (1954)

    MATH  Google Scholar 

  16. Lovász L.: Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory Ser. A 25(3), 319–324 (1978)

    Article  MATH  Google Scholar 

  17. Łuczak T.: On the structure of triangle-free graphs of large minimum degree. Combinatorica 26(4), 489–493 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Szemerédi, E.: Regular partitions of graphs. In: Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). Volume 260 of Colloq. Internat. CNRS, pp. 399–401. CNRS, Paris (1978)

  19. Thomassen C.: On the chromatic number of triangle-free graphs of large minimum degree. Combinatorica 22(4), 591–596 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Thomassen C.: On the chromatic number of pentagon-free graphs of large minimum degree. Combinatorica 27(2), 241–243 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy Lyle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyle, J. On the Chromatic Number of H-Free Graphs of Large Minimum Degree. Graphs and Combinatorics 27, 741–754 (2011). https://doi.org/10.1007/s00373-010-0994-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-0994-x

Keywords

Navigation