Skip to main content
Log in

Path-Bicolorable Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the notion of path-bicolorability that generalizes bipartite graphs in a natural way: For k ≥ 2, a graph G = (V, E) is P k -bicolorable if its vertex set V can be partitioned into two subsets (i.e., color classes) V 1 and V 2 such that for every induced P k (a path with exactly k − 1 edges and k vertices) in G, the two colors alternate along the P k , i.e., no two consecutive vertices of the P k belong to the same color class V i , i = 1, 2. Obviously, a graph is bipartite if and only if it is P 2-bicolorable. We give a structural characterization of P 3-bicolorable graphs which also implies linear time recognition of these graphs. Moreover, we give a characterization of P 4-bicolorable graphs in terms of forbidden subgraphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Albertson M.O., Jamison R.E., Hedetniemi S.T., Locke S.C.: The subchromatic number of a graph. Discrete Math. 74, 33–49 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benzaken C., Hammer P.L., de Werra D.: Split graphs of Dilworth number 2. Discrete Math. 55, 123–128 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berry A., Golumbic M.C., Lipshteyn M.: Recognizing chordal probe graphs and cycle-bicolorable graphs. SIAM J. Discrete Math. 21, 573–591 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brandstädt A., Le V.B.: Split-perfect graphs: characterizations and algorithmic use. SIAM J. Discrete Math. 17, 341–360 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandstädt A., Le V.B.: Structure and linear time recognition of 3-leaf powers. Inf. Process. Lett. 98, 133–138 (2006)

    Article  MATH  Google Scholar 

  6. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph classes: a survey. In: SIAM Monographs on Discrete Math. Appl., vol. 3. SIAM, Philadelphia (1999)

  7. Broersma H., Fomin F.V., Nešetřil J., Woeginger G.: More about subcolorings. Computing 69, 187–203 (2002)

    Article  MathSciNet  Google Scholar 

  8. Chudnovsky M., Robertson N., Seymour P., Thomas R.: The strong perfect graph theorem. Ann. Math. 64, 51–229 (2006)

    Article  MathSciNet  Google Scholar 

  9. Corneil D.G., Lerchs H., Stewart-Burlingham L.: Complement reducible graphs. Discrete Appl. Math. 3, 163–174 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Corneil D.G., Perl Y., Stewart L.K.: A linear recognition algorithm for cographs. SIAM J. Comput. 14, 926–934 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fiala J., Jansen K., Le V.B., Seidel E.: Graph subcolorings: complexity and algorithms. SIAM J. Discrete Math. 16, 635–650 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Földes S., Hammer P.L.: Split graphs. Congressus Numerantium 19, 311–315 (1977)

    Google Scholar 

  13. Golumbic M.C., Lipshteyn M.: Chordal probe graphs. Discrete Appl. Math. 143, 221–237 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoàng, C.T.: Perfect graphs. Ph.D. thesis, School of Computer Science, McGill University Montreal (1985)

  15. Hoàng C.T.: Alternating orientation and alternating colouration of perfect graphs. J. Combin. Theory (B) 42, 264–273 (1987)

    Article  MATH  Google Scholar 

  16. Hoàng C.T., Le V.B.: P 4-free colorings and P 4-bipartite graphs. Discrete Math. Theor. Comput. Sci. 4, 109–122 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Hoàng C.T., Reed B.A.: Some classes of perfectly orderable graphs. J. Graph Theory 13, 445–463 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jamison B., Olariu S.: P 4-reducible graphs—a class of uniquely tree representable graphs. Stud. Appl. Math. 81, 79–87 (1989)

    MathSciNet  MATH  Google Scholar 

  19. Jamison B., Olariu S.: A linear-time recognition algorithm for P 4-reducible graphs. Theor. Comput. Sci. 145, 329–344 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jamison B., Olariu S.: Recognizing P 4-sparse graphs in linear time. SIAM J. Comput. 21, 381–406 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jamison B., Olariu S.: p-Components and the homogeneous decomposition of graphs. SIAM J. Discrete Math. 8, 448–463 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lipshteyn, M.: Structured families of graphs: properties, algorithms, and representations. Ph.D. thesis, University of Haifa (2005)

  23. McConnell R.M., Spinrad J.P.: Modular decomposition and transitive orientation. Discrete Math. 201, 189–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nishimura N., Ragde P., Thilikos D.M.: On graph powers for leaf-labeled trees. J. Algorithms 42, 69–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Preissmann M., de Werra D., Mahadev N.V.R.: A note on superbrittle graphs. Discrete Math. 61, 259–267 (1986)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Bang Le.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandstädt, A., Golumbic, M.C., Le, V.B. et al. Path-Bicolorable Graphs. Graphs and Combinatorics 27, 799–819 (2011). https://doi.org/10.1007/s00373-010-1007-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-010-1007-9

Keywords

Navigation