Skip to main content
Log in

The Cyclomatic Number of a Graph and its Independence Polynomial at −1

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

If by s k is denoted the number of independent sets of cardinality k in a graph G, then \({I(G;x)=s_{0}+s_{1}x+\cdots+s_{\alpha}x^{\alpha}}\) is the independence polynomial of G (Gutman and Harary in Utilitas Mathematica 24:97–106, 1983), where αα(G) is the size of a maximum independent set. The inequality |I (G; −1)| ≤ 2ν(G), where ν(G) is the cyclomatic number of G, is due to (Engström in Eur. J. Comb. 30:429–438, 2009) and (Levit and Mandrescu in Discret. Math. 311:1204–1206, 2011). For ν(G) ≤ 1 it means that \({I(G;-1)\in\{-2,-1,0,1,2\}.}\) In this paper we prove that if G is a unicyclic well-covered graph different from C 3, then \({I(G;-1)\in\{-1,0,1\},}\) while if G is a connected well-covered graph of girth ≥ 6, non-isomorphic to C 7 or K 2 (e.g., every well-covered tree ≠ K 2), then I (G; −1) = 0. Further, we demonstrate that the bounds {−2ν(G), 2ν(G)} are sharp for I (G; −1), and investigate other values of I (G; −1) belonging to the interval [−2ν(G), 2ν(G)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alavi Y., Malde P.J., Schwenk A.J., Erdös P.: The vertex independence sequence of a graph is not constrained. Congressus Numerantium 58, 15–23 (1987)

    MathSciNet  Google Scholar 

  2. Arocha J.L.: Propriedades del polinomio independiente de un grafo. Revista Ciencias Matematicas V, 103–110 (1984)

    MathSciNet  Google Scholar 

  3. Balister P.N., Bollobás B., Cutler J., Pebody L.: The interlace polynomial of graphs at −1. Eur. J. Comb. 23, 761–767 (2002)

    Article  MATH  Google Scholar 

  4. Beineke L.W., Vandell R.C.: Decycling graphs. J. Graph Theory 25, 59–77 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bousquet- MMélou M., Linusson S., Nevo E.: On the independence complex of square grids. J. Algebraic Comb. 27, 423–450 (2008)

    Article  MATH  Google Scholar 

  6. Brown J.I., Dilcher K., Nowakowski R.J.: Roots of independence polynomials of well-covered graphs. J. Algebraic Comb. 11, 197–210 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Campbell, S.R.: Some results on cubic well-covered graphs, Ph. D. thesis, 1987, Vanderbilt University. Department of Mathematics (1987)

  8. Dochtermann, A., Engström, A.: Algebraic properties of edge ideals via combinatorial topology. Electron. J. Comb. 16(2), #R2 (2009)

  9. Engström A.: Independence complexes of claw-free graphs. Eur. J. Comb. 29, 234–241 (2008)

    Article  MATH  Google Scholar 

  10. Engström A.: Upper bounds on the Witten index for supersymmetric laticce models by discrete Morse theory. Eur. J. Comb. 30, 429–438 (2009)

    Article  MATH  Google Scholar 

  11. Engström A.: Complexes of directed trees and independence complexes. Discret. Math. 309, 3299–3309 (2009)

    Article  MATH  Google Scholar 

  12. Favaron O.: Very well-covered graphs. Discret. Math. 42, 177–187 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  13. Finbow A., Hartnell B., Nowakowski R.J.: A characterization of well-covered graphs of girth 5 or greater. J. Comb. Theory B 57, 44–68 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gutman I., Harary F.: Generalizations of the matching polynomial. Utilitas Mathematica 24, 97–106 (1983)

    MathSciNet  MATH  Google Scholar 

  15. Harary, F.: Graph Theory. Parseus Books (1969)

  16. Hoede C., Li X.: Clique polynomials and independent set polynomials of graphs. Discret. Math. 125, 219–228 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jonsson, J.: Simplicial complexes of graphs. Lecture Notes in Mathematics, vol. 1928. Springer, Berlin (2008)

  18. Karp, R.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, Plenum Press, New York, pp. 85–103 (1972)

  19. Knopfmachera A., Tichy R.F., Wagner S., Ziegler V.: Graphs, partitions and Fibonacci numbers. Discret. Appl. Math. 155, 1175–1187 (2007)

    Article  Google Scholar 

  20. Levit, V.E., Mandrescu, E.: On unimodality of independence polynomials of some well-covered trees, Discrete Mathematics and Theoretical Computer Science. Lecture Notes in Computer Science, vol. 2731. Springer, Berlin, pp. 237–256 (2003)

  21. Levit, V.E., Mandrescu, E.: The independence polynomial of a graph—a survey. In: Proceedings of the 1st International Conference on Algebraic Informatics, Aristotle University of Thessaloniki, Greece, 20–23 October, pp. 233–254 (2005)

  22. Levit V.E., Mandrescu E.: Independence polynomials of well-covered graphs: generic counterexamples for the unimodality conjecture. Eur. J. Comb. 27, 931–939 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Levit V.E., Mandrescu E.: Partial unimodality for independence polynomials of König–Egerváry graphs. Congressus Numerantium 179, 109–119 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Levit V.E., Mandrescu E.: Some structural properties of very well-covered graphs. Congressus Numerantium 186, 97–106 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Levit V.E., Mandrescu E.: On the roots of independence polynomials of almost all very well-covered graphs. Discret. Appl. Math. 156, 478–491 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Levit, V.E., Mandrescu, E.: A simple proof of an inequality connecting the alternating number of independent sets and the decycling number. Discret. Math. 311, 1204–1206 (2011)

    Google Scholar 

  27. Pedersen A.S., Vestergaard P.D.: The number of independent sets in unicyclic graphs. Discret. Appl. Math. 152, 246–256 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Plummer M.D.: Some covering concepts in graphs. J. Comb. Theory 8, 91–98 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  29. Prodinger H., Tichy R.F.: Fibonacci numbers of graphs. Fibonacci Q. 20, 16–21 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Ueno S., Kajitani Y., Gotoh S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discret. Math. 72, 355–360 (1988)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vadim E. Levit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levit, V.E., Mandrescu, E. The Cyclomatic Number of a Graph and its Independence Polynomial at −1. Graphs and Combinatorics 29, 259–273 (2013). https://doi.org/10.1007/s00373-011-1101-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-011-1101-7

Keywords

Navigation