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Abstract

We prove that the crossing number of a graph decays in a “continuous fashion” in the
following sense. For any ε > 0 there is a δ > 0 such that for a sufficiently large n, every
graph G with n vertices and m ≥ n1+ε edges, has a subgraph G′ of at most (1 − δ)m
edges and crossing number at least (1 − ε)cr(G). This generalizes the result of J. Fox
and Cs. Tóth.

1 Introduction

For any graph G, let n(G) (resp. m(G)) denote the number of its vertices (resp. edges). If it
is clear from the context, we simply write n and m instead of n(G) and m(G). The crossing
number cr(G) of a graph G is the minimum number of edge crossings over all drawings of G
in the plane. In the optimal drawing of G, crossings are not necessarily distributed uniformly
among the edges. Some edges could be more “responsible” for the crossing number than some
other edges. For any fixed k, it is not hard to construct a graph G whose crossing number
is k, but G has an edge e such that G \ e is planar. Richter and Thomassen [RT93] started
to investigate the following general problem. We have a graph G, and we want to remove
a given number of edges. By at least how much does the crossing number decrease? They
conjectured that there is a constant c such that every graph G with cr(G) = k has an edge e
with cr(G−e) ≥ k−c

√
k. They only proved that G has an edge with cr(G−e) ≥ 2

5k−O(1).
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GIG/11/E023 and by the grant SVV-2010-261313 (Discrete Methods and Algorithms). The third author was
supported by the Hungarian Research Fund grants OTKA T-038397, T-046246, K-60427, and K-83767. A
preliminary version of this paper appeared in the proceedings of Graph Drawing 2007 [CKT08].
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Pach, Radoičić, Tardos, and Tóth [PRTT06] proved that for every graph G with m(G) ≥
103
16 n(G), we have cr(G) ≥ 0.032m3

n2 . It is not hard to see [PT00] that for any edge e, we
have cr(G − e) ≥ cr(G) −m+ 1. These two results imply an improvement of the Richter–
Thomassen bound if m ≥ 8.1n, and also imply the Richter–Thomassen conjecture for graphs
of Ω(n2) edges.

J. Fox and Cs. Tóth [FT08] investigated the case where we want to delete a positive
fraction of the edges.

Theorem A ([FT08]). For every ε > 0, there is an nε such that every graph G with n(G) ≥ nε

vertices and m(G) ≥ n(G)1+ε edges has a subgraph G′ with

m(G′) ≤
(

1− ε

24

)

m(G)

and

cr(G′) ≥
(

1

28
− o(1)

)

cr(G).

In this note we generalize Theorem A.

Theorem. For every ε, γ > 0, there is an nε,γ such that every graph G with n(G) ≥ nε,γ

vertices and m(G) ≥ n(G)1+ε edges has a subgraph G′ with

m(G′) ≤
(

1− εγ

1224

)

m(G)

and
cr(G′) ≥ (1− γ)cr(G).

2 Proof of the Theorem

Our proof is based on the argument of Fox and Tóth [FT08], the only new ingredient is
Lemma 1.

Definition. Let r ≥ 2, p ≥ 1 be integers. A 2r-earring of size p is a graph which is a union
of an edge uv and p edge-disjoint paths between u and v, each of length at most 2r− 1. Edge
uv is called the main edge of the 2r-earring.

Lemma 1. Let r ≥ 2, p ≥ 1 be integers. There exists n0 such that every graph G with n ≥ n0

vertices and m ≥ 6prn1+1/r edges contains at least m/3pr edge-disjoint 2r-earrings, each of
size p.

Proof. By the result of Alon, Hoory, and Linial [AHL02], for some n0, every graph with
n ≥ n0 vertices and at least n1+1/r edges contains a cycle of length at most 2r.

Suppose that G has n ≥ n0 vertices and m ≥ 6prn1+1/r edges. Take a maximal edge-
disjoint set {E1, E2, . . . , Ex} of 2r-earrings, each of size p. Let E = E1 ∪ E2 ∪ · · · ∪ Ex, the
set of all edges of the earrings and let G′ = G − E. Now let E′

1 be a 2r-earring of G′ of
maximum size. Note that this size is less than p. Let G′

1 = G′ − E′

1. Similarly, let E′

2 be a
2r-earring of G′

1 of maximum size and let G′

2 = G′

1 − E′

2. Continue analogously, as long as
there is a 2r-earring in the remaining graph. We obtain the 2r-earrings E′

1, E
′

2, . . . , E
′

y, and
the remaining graph G′′ = G′

y does not contain any 2r-earring. Let E′ = E′

1 ∪ E′

2 ∪ · · · ∪ E′

y.

2



We claim that y < n1+1/r. Suppose on the contrary that y ≥ n1+1/r. Take the main edges
of E′

1, E
′

2, . . . , E
′

y. We have at least n1+1/r edges so by the result of Alon, Hoory, and Linial
[AHL02] some of them form a cycle C of length at most 2r. Let i be the smallest index with
the property that C contains the main edge of E′

i. Then C, together with E′

i would be a
2r-earring of G′

i−1 of greater size than E′

i, contradicting the maximality of E′

i.
Each of the earrings E′

1, E
′

2, . . . , E
′

y has at most (p − 1)(2r − 1) + 1 edges so we have

|E′| ≤ y(p − 1)(2r − 1) + y < (2pr − 1)n1+1/r. The remaining graph, G′′ does not contain
any 2r-earring, in particular, it does not contain any cycle of length at most 2r, since it
is a 2r-earring of size one. Therefore, by [AHL02], for the number of its edges we have
e(G′′) < n1+1/r.

It follows that the set E = {E1, E2, . . . , Ex} contains at least m− 2prn1+1/r ≥ 2
3m edges.

Each of E1, E2, . . . , Ex has at most p(2r − 1) + 1 ≤ 2pr edges, therefore, x ≥ m/3pr.

Lemma 2 ([FT08]). Let G be a graph with n vertices, m edges, and degree sequence d1 ≤
d2 ≤ · · · ≤ dn. Let ℓ be the integer such that

∑ℓ−1
i=1 di < 4m/3 but

∑ℓ
i=1 di ≥ 4m/3. If n is

large enough and m = Ω(n log2 n) then

cr(G) ≥ 1

65

ℓ
∑

i=1

d2i .

Proof of the Theorem. Let ε, γ ∈ (0, 1) be fixed. Choose integers r, p such that 1
ε < r ≤ 2

ε ,
and 67

γ < p ≤ 68
γ . It follows that we have 1

r < ε ≤ 2
r , and

67
p < γ ≤ 68

p . Then there is an nε,γ

with the following properties: (a) nε,γ ≥ n0 from Lemma 1, (b) (nε,γ)
1+ε > 18pr · (nε,γ)

1+1/r.
Let G be a graph with n ≥ nε,γ vertices and m ≥ n1+ε edges. Let v1, . . . , vn be the vertices

of G, of degrees d1 ≤ d2 ≤ · · · ≤ dn and define ℓ as in Lemma 2, that is,
∑ℓ−1

i=1 di < 4m/3 but
∑ℓ

i=1 di ≥ 4m/3. Let G0 be the subgraph of G induced by v1, . . . , vℓ. Observe that G0 has
m′ ≥ m/3 edges. Therefore, by Lemma 1 G0 contains at least m′/3pr ≥ m/9pr edge-disjoint
2r-earrings, each of size p.

Let M be the set of the main edges of these 2r-earrings. We have |M | ≥ m/9pr ≥ εγ
1224m.

Let G′ = G−M and G′

0 = G0 −M .
Take an optimal drawing D(G′) of the subgraph G′ ⊂ G. We have to draw the missing

edges to obtain a drawing of G. Our method is a randomized variation of the embedding
method, which has been applied by Leighton [L83], Richter and Thomassen [RT93], Shahrokhi
et al. [SSSV97], Székely [S04], and most recently by Fox and Tóth [FT08]. For every missing
edge ei = uivi ∈ M ⊂ G0, ei is the deleted main edge of a 2r-earring Ei ⊂ G0. So there
are p edge-disjoint paths in G0 from ui to vi. For each of these paths, draw a curve from
ui to vi infinitesimally close to that path, on either side. Call these p curves potential uivi-
edges and call the resulting drawing D. Note that a potential uivi-edge crosses itself if the
corresponding path does. In such cases, we redraw the potential uivi-edge in the neighborhood
of each self-crossing to get a noncrossing curve.

To get a drawing of G, for each ei = uivi ∈ M , choose one of the p potential uivi-edges at
random, independently and uniformly, with probability 1/p, and draw the edge uivi as that
curve.

There are two types of new crossings in the obtained drawing of G. First category crossings
are infinitesimally close to a crossing in D(G′), second category crossings are infinitesimally
close to a vertex of G0 in D(G′).
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The expected number of first category crossings is at most

(

1 +
2

p
+

1

p2

)

cr(G′) =

(

1 +
1

p

)2

cr(G′).

Indeed, for each edge of G′, there can be at most one new edge drawn next to it, and that
is drawn with probability at most 1/p. Therefore, in the close neighborhood of a crossing in
D(G′), the expected number of crossings is at most (1 + 2

p + 1
p2
). See figure 1(a).

(a)

vi

(b)

Figure 1: The thick edges are edges of G′, the thin edges are the potential edges. Figure
shows (a) a neighborhood of a crossing in D(G′) and (b) a neighborhood of a vertex vi in G′.

In order to estimate the expected number of second category crossings, consider the draw-
ing D near a vertex vi of G0. In the neighborhood of vertex vi we have at most di original
edges. Since we draw at most one potential edge along each original edge, there can be at
most di potential edges in the neighborhood. Each potential edge can cross each original
edge at most once, and any two potential edges can cross at most twice. See figure 1(b).
Therefore, the total number of first category crossings in D in the neighborhood of vi is at
most 2d2i . (This bound can be substantially improved with a more careful argument, see e.
g. [FT08], but we do not need anything better here.) To obtain the drawing of G, we keep
each of the potential edges with probability 1/p, so the expected number of crossings in the
neighborhood of vi is at most (1p +

1
p2
)d2i , using the fact that the self-crossings of the potential

uv-edges have been eliminated.
Therefore, the total expected number of crossings in the random drawing of G is at most

(1 + 2
p + 1

p2 )cr(G
′) + (1p + 1

p2 )
∑ℓ

i=1 d
2
i .

There exists an embedding with at most this many crossings, therefore, by Lemma 2 we
have

cr(G) ≤
(

1 +
1

p

)2

cr(G′) +

(

1

p
+

1

p2

) ℓ
∑

i=1

d2i

≤
(

1 +
1

p

)2

cr(G′) +

(

65

p
+

65

p2

)

cr(G).

It follows that

(

1− 65

p
− 65

p2

)

cr(G) ≤
(

1 +
1

p

)2

cr(G′),
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so

(

1− 65

p
− 65

p2

)(

1− 1

p

)2

cr(G) ≤
(

1− 1

p2

)2

cr(G′),

(

1− 65

p
− 65

p2

)(

1− 2

p

)

cr(G) ≤ cr(G′),

(

1− 67

p

)

cr(G) ≤ cr(G′),

consequently,
(1− γ)cr(G) ≤ cr(G′).

3 Concluding remarks

In the statement of our Theorem we cannot require that every subgraph G′ with (1− δ)m(G)
edges has crossing number cr(G′) ≥ (1− γ)cr(G), instead of just one such subgraph G′. In
fact, the following statement holds.

Proposition 1. For every ε ∈ (0, 1) there exist graphs Gn with n(Gn) = Θ(n) vertices and
m(Gn) = Θ(n1+ε) edges with subgraphs G′

n ⊂ Gn such that

m(G′

n) = (1− o(1))m(Gn)

and
cr(G′

n) = o(cr(Gn)).

Proof. Roughly speaking, Gn will be the disjoint union of a large graph G′

n with low crossing
number and a small graph Hn with large crossing number. More precisely, let G = Gn be
a disjoint union of graphs G′ = G′

n and H = Hn, where G′ is a disjoint union of Θ(n1−ε)
complete graphs, each with ⌊nε⌋ vertices and H is a complete graph with ⌊n(3+5ε)/8⌋ vertices.
We have m(G) = Θ(n1+ε) and m(H) = Θ(n(3+5ε)/4) = o(m(G)), since 3+5ε

4 < 1 + ε. By

the crossing lemma (see e. g. [PRTT06]), cr(G) ≥ cr(H) = Ω(n(3+5ε)/2), but cr(G′) =
O(n1−ε · n4ε) = O(n1+3ε) = o(cr(G)), because 3+5ε

2 > 1 + 3ε.

In the preliminary version of this paper [CKT08] we conjectured that we can require that
a positive fraction of all subgraphs G′ of G with (1 − δ)m(G) edges has crossing number
cr(G′) ≥ (1− γ)cr(G). The following construction shows that the conjecture does not hold
in general for graphs with less than n4/3−Ω(1) edges.

Proposition 2. For every ε ∈ (0, 1/3) and δ > 0 there exist graphs Gn with n(Gn) = Θ(n)
vertices and m(Gn) = Θ(n1+ε) edges with the following property. Let G′

n be a random subgraph
of Gn such that we choose each edge of Gn independently with probability p = 1− δ. Then

Pr
[

cr(G′

n) ≤ o(cr(Gn))
]

> 1− e−δnΩ(1/3−ε)
.
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Proof. As in Proposition 1, the idea is to build the graph G = Gn from two disjoint graphs
K and H, where K is a large graph with low crossing number and H is a small graph with
high crossing number. In addition, deleting a random constant fraction of edges from H will
break all the crossings in H with high probability.

Now we describe the constructions more precisely. Let γ > 0 be a constant such that
3ε + 4γ < 1 and 3ε + 5γ > 1. Let K be a disjoint union of Θ(n1−ε) complete graphs,
each with nε vertices (we omit the explicit rounding to keep the notation simple). We have
m(K) = Θ(n1+ε) and cr(K) = Θ(n1+3ε).

The graphH consists of fivemain vertices v1, v2, . . . , v5 and n1−2γ internally vertex disjoint
paths of length nγ connecting each pair vi, vj . The graph H has n(H) = Θ(n1−γ) vertices
and m(H) = Θ(n1−γ) edges. We claim that cr(H) = n2−4γ . The upper bound follows from
the fact that the crossing number of K5 is 1. We take a drawing of K5 with one crossing and
replace each edge e by n1−2γ paths drawn close to e. For the lower bound, take a drawing
of H minimizing the number of crossings. Let pi,j be a path with the minimum number of
crossings among the paths connecting vi and vj. By redrawing all the other paths connecting
vi and vj along pi,j the crossing number of the drawing does not change. The paths pi,j
together form a subdivision of K5, therefore at least one pair pi,j, pk,l of the paths crosses.
Due to the redrawing, every path connecting vi and vj crosses every path connecting vk and
vl, which makes n2−4γ crossings. By the choice of γ, we have n1+3ε = o(n2−4γ), therefore
cr(G) = Θ(cr(H)) and cr(K) = o(cr(G)).

Let G′ be a random subgraph of G where each edge of G is taken independently with
probability p = 1 − δ. Let H ′ = G′ ∩ H. We show that with high probability, H ′ is a
forest, in particular cr(H ′) = 0. This happens if at least one edge is missing from every path
connecting two main vertices of H. The probability of such an event is at least

1− n · (1− δ)n
γ ≥ 1− e−δnγ+logn ≥ 1− e−δnΩ(1/3−ε)

.

It follows that with this probability, cr(G′) ≤ cr(K) ≤ o(cr(G)).

Note that in the previous construction the number δ does not have to be constant: it is
enough to delete a random δ = c log n/nγ fraction of the edges to get the same conclusion
with probability almost 1.

The question whether deleting a small random constant fraction of the edges of a graph
G decreases the crossing number only by a small constant fraction remains open for graphs
with more than n4/3 edges. We do not know the answer even to the following weaker version
of the question.

Problem 1. Let ε ∈ (0, 2/3) and p ∈ (0, 1) be constants. Does there exist c(p) > 0 and n0

such that for every graph G with n(G) > n0 and m(G) > n(G)4/3+ε, a random subgraph G′

of G with each edge taken with probability p has crossing number at least c(p) · cr(G), with
probability at least 1/2?

The graphs in Proposition 2 have small number of edges responsible for almost all the
crossings. Is this the only way how to force a random subgraph of G to have crossing number
o(cr(G))?

Problem 2. Let ε > 0. Does there exist n0 and δ such that every graph G with n(G) ≥ n0

and m(G) ≥ n(G)1+ε has a subset F of o(m(G)) edges such that every subgraph G′ of G with
m(G′) ≥ (1− δ)m(G) and E(G′) ⊂ E(G) \ F has cr(G′) ≥ (1− ε)cr(G)?
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