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Abstract

It is known that every planar graph has a planar embedding where
edges are represented by non-crossing straight-line segments. We study
the planar slope number, i.e., the minimum number of distinct edge-slopes
in such a drawing of a planar graph with maximum degree ∆. We show
that the planar slope number of every planar partial 3-tree and also every
plane partial 3-tree is at most O(∆5). In particular, we answer the ques-
tion of Dujmović et al. [Computational Geometry 38 (3), pp. 194–212
(2007)] whether there is a function f such that plane maximal outerplanar
graphs can be drawn using at most f(∆) slopes.
Keywords: graph drawing; planar graphs; slopes; planar slope number

1 Introduction

The slope number of a graph G was introduced by Wade and Chu [12]. It is
defined as the minimum number of distinct edge-slopes in a straight-line drawing
of G. Clearly, the slope number of G is at most the number of edges of G, and
it is at least half of the maximum degree ∆ of G.

Dujmović et al. [2] asked whether there was a function f such that each
graph with maximum degree ∆ could be drawn using at most f(∆) slopes. In
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1

ar
X

iv
:1

01
2.

41
37

v1
  [

m
at

h.
C

O
] 

 1
9 

D
ec

 2
01

0



general, the answer is no due to a result of Barát et al. [1]. Later, Pach and
Pálvölgyi [11] and Dujmović et al. [3] proved that for every ∆ ≥ 5, there are
graphs of maximum degree ∆ that need an arbitrarily large number of slopes.

On the other hand, Keszegh et al. [7] proved that every graph of maximum
degree three can be drawn using at most five slopes, and if we additionally
assume that the graph is connected and has at least one vertex of degree less
than three then four slopes suffice. Mukkamala and Szegedy [10] have shown
that four slopes also suffice for every connected cubic graph. Dujmović et al. [3]
give a number of bounds in terms of the maximum degree: for interval graphs,
cocomparability graphs, or AT-free graphs. All the results mentioned so far are
related to straight-line drawings which are not necessarily non-crossing.

It is known that every planar graph G can be drawn so that edges of G
are represented by non-crossing segments [6]. We call such a planar drawing a
straight-line embedding of G. In this paper, we examine the minimum number
of slopes in a straight-line embedding of a planar graph.

In this paper, we make the (standard) distinction between planar graphs,
which are graphs that admit a plane embedding, and plane graphs, which are
graphs accompanied with a fixed prescribed combinatorial embedding, i.e., a
prescribed face structure, including a prescribed outer face. Accordingly, we
distinguish between the planar slope number of a planar graph G, which is the
smallest number of slopes needed to construct any straight-line embedding of G,
as opposed to the plane slope number of a plane graph G, which is the smallest
number of slopes needed to realize the prescribed combinatorial embedding of
G as a straight-line embedding.

The research of slope parameters related to plane embedding was initiated
by Dujmović et al. [2]. In [4], there are numerous results for the plane slope
number of various classes of graphs. For instance, it is proved that every plane
3-tree can be drawn using at most 2n slopes, where n is its number of vertices.
It is also shown that every 3-connected plane cubic graph can be drawn using
three slopes, except for the three edges on the outer face.

Recently, Keszegh, Pach and Pálvölgyi [8] have shown that any planar graph
of maximum degree ∆ can be drawn with 2O(∆) slopes. Their argument is based
on a representation of planar graph by touching disks.

In this paper, we study both the plane slope number and the planar slope
number. The lower bounds of [1, 3, 11] for bounded-degree graphs do not
apply to our case, because the constructed graphs with large slope numbers are
not planar. Moreover, the upper bounds of [7, 10] give drawings that contain
crossings even for planar graphs.

For a fixed k ∈ N, a k-tree is defined recursively as follows. A complete
graph on k vertices is a k-tree. If G is a k-tree and K is a k-clique of G, then
the graph formed by adding a new vertex to G and making it adjacent to all
vertices of K is also a k-tree. A subgraph of a k-tree is called a partial k-tree.

We present several upper bounds on the plane and planar slope number in
terms of the maximum degree ∆. The most general result of this paper is the
following theorem, which deals with plane partial 3-trees.
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Theorem 1.1. The plane slope number of any plane partial 3-tree with maxi-
mum degree ∆ is at most O(∆5).

Note that the above theorem implies that the planar slope number of any
planar partial 3-tree is also at most O(∆5).

Since every outerplanar graph is also a partial 3-tree, the result above an-
swers a question of Dujmović et al. [4], who asked whether a plane maximal
outerplanar graph can be drawn using at most f(∆) slopes.

Unlike the results of Keszegh, Pach and Pálvölgyi [8], our arguments are
only applicable to a restricted class of planar graphs. On the other hand, our
bound is polynomial in ∆ rather than exponential, and moreover, our proof is
constructive.

In the special case of series-parallel graphs of maximum degree at most 3,
we are able to prove a better (in fact optimal) upper bound.

Theorem 1.2. Any series-parallel graph with maximum degree at most 3 has
planar slope number at most 3.

Extended abstract of this paper was presented at Graph Drawing 2009 [5].
Note that in that version Theorem 1.1 was stated with bound O(2O(∆)).

2 Preliminaries

Let us introduce some basic terminology and notation that will be used through-
out this paper.

Let s be a segment in the plane. The smallest angle α ∈ [0, π) such that s
can be made horizontal by a clockwise rotation by α, is called the slope of s. The
directed slope of a directed segment is an angle α′ ∈ [0, 2π) defined analogously.

A plane graph is called a near triangulation if all its faces, except possibly
the outer face, are triangles.

3 Plane partial 3-trees

In this section we present the proof of Theorem 1.1. We start with some ob-
servations about the structure of plane 3-trees. Throughout this section, we
assume that ∆ is a fixed integer.

It is known that any plane 3-tree can be generated from a triangle by a
sequence of vertex-insertions into inner faces. Here, a vertex-insertion is an
operation that consists of creating a new vertex in the interior of a face, and
then connecting the new vertex to all the three vertices of the surrounding face,
thus subdividing the face into three new faces.

For a plane partial 3-tree G we define the level of a vertex v as the smallest
integer k such there is a set V0 of k vertices of G with the property that v is on
the outer face of the plane graph G − V0. Let G be a plane partial 3-tree. An
edge of G is called balanced if it connects two vertices of the same level of G.
An edge that is not balanced is called tilted. Similarly, a face of G whose all

3



vertices belong to the same level is called balanced, and any other face is called
tilted. In a plane 3-tree, the level of a vertex v can also be equivalently defined
as the length of the shortest path from v to a vertex on the outer face. However,
this definition cannot be used for plane partial 3-trees.

Note that whenever we insert a new vertex v into an inner face of a 3-tree,
the level of v is one higher than the minimum level of its three neighbors; note
also that the level of all the remaining vertices of the 3-tree is not affected by
the insertion of a new vertex.

Let u, v be a pair of vertices forming an edge. A bubble over uv is an
outerplanar plane near triangulation that contains the edge uv on the boundary
of the outer face. The edge uv is called the root of the bubble. A trivial bubble
is a bubble that has no other edge apart from the root edge. A double bubble
over uv is a union of two bubbles over uv which have only u and v in common
and are attached to uv from its opposite sides. A leg is a graph L created from
a path P by adding a double bubble over every edge of P . The path P is called
the spine of L and the endpoints of P are also referred to as the endpoints of
the leg. Note that a single vertex is also considered to form a leg.

A tripod is a union of three legs which share a common endpoint. A spine
of a tripod is the union of the spines of its legs. Observe that a tripod is an
outerplanar graph. The vertex that is shared by all the three legs of a tripod is
called the central vertex.

Let G be a near triangulation, let Φ be an inner face of G. Let T be a tripod
with three legs X,Y, Z and a central vertex c. An insertion of tripod T into the
face Φ is the operation performed as follows. First, insert the central vertex c
into the interior of Φ an connect it by edges to the three vertices of Φ. This
subdivides Φ into three subfaces. Extend c into an embedding of the whole
tripod T , by embedding a single leg of the tripod into the interior of each of
the three subfaces. Next, connect every non-central vertex of the spine of the
tripod to the two vertices of Φ that share a face with the corresponding leg.
Finally, connect each non-spine vertex v of the tripod to the single vertex of Φ
that shares a face with v. See Figure 1. Observe that the graph obtained by a
tripod insertion into Φ is again a near triangulation.

Lemma 3.1. Let G be a graph. The following statements are equivalent:

1. G is a plane 3-tree, i.e., G can be created from a triangle by a sequence of
vertex insertions into inner faces.

2. G can be created from a triangle by a sequence of tripod insertions into
inner faces.

3. G can be created from a triangle by a sequence of tripod insertions into
balanced inner faces.

Proof. Clearly, (3) implies (2).
To observe that (2) implies (1), it suffices to notice that a tripod insertion

into a face Φ can be simulated by a sequence of vertex insertions: first insert
the central vertex of a tripod into Φ, then insert the vertices of the spine into
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Figure 1: An example of a tripod consisting of vertices of level 1 in a plane
3-tree.

the resulting subfaces, and then create each bubble by inserting vertices into
the face that contains the root of the bubble and its subsequent subfaces.

To show that (1) implies (3), proceed by induction on the number of levels
in G. If G only has vertices of level 0, then it consists of a single triangle and
there is nothing to prove. Assume now that the G is a graph that contains
vertices of k > 0 distinct levels, and assume that any 3-tree with fewer levels
can be generated by a sequence of balanced tripod insertions by induction.

We will show that the vertices of level k induce in G a subgraph whose every
connected component is a tripod, and that each of these tripod is inserted inside
a triangle whose vertices have level k − 1.

Let C be a connected component of the subgraph induced inG by the vertices
of level k. Let v1, v2, . . . , vm be the vertices of C, in the order in which they
were inserted when G was created by a sequence of vertex insertions. Let Φ
be the triangle into which the vertex v1 was inserted, and let x, y and z be the
vertices of Φ. Necessarily, all three of these vertices have level k − 1. Each of
the vertices v2, . . . , vm must have been inserted into the interior of Φ, and each
of them must have been inserted into a face that contained at least one of the
three vertices of Φ.

Note that at each point after the insertion of v1, there are exactly three faces
inside Φ that contain a pair of vertices of Φ; each of these three faces is incident
to an edge of Φ. Whenever a vertex vi is inserted into such a face, the subgraph
induced by vertices of level k grows by a single edge. These edges form a union
of three paths that share the vertex v1 as their common endpoint.

On the other hand, when a vertex vi is inserted into a face formed by a
single vertex of Φ and a pair of previously inserted vertices vj , v`, then the
graph induced by vertices of level k grows by two new edges vivj and viv`, as
well as a new triangular face with vertices vi, vj , v`.

With these observations, it is easily checked (e.g., by induction on i) that
for every i ≥ 1, the subgraph of G induced by the vertices v1, . . . , vi is a tripod
inserted into Φ. From this fact, it follows that the whole graph G may have
been created by a sequence of tripod insertions into balanced faces.
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Note that when we insert a tripod into a balanced face, all the vertices of
the tripod will have the same level (which will be one higher than the level of
the face into which we insert the tripod). In particular, each balanced face we
create by this insertion is an inner face of the inserted tripod.

Recall that a plane partial 3-tree is a plane graph that is a subgraph of a
3-tree. Kratochv́ıl and Vaner [9] have shown that every plane partial 3-tree G
is in fact a subgraph of a plane 3-tree. Furthermore, if a plane partial 3-tree G
has at least three vertices, it is in fact a spanning subgraph of a plane 3-tree,
i.e., it can be extended into a plane 3-tree by only adding edges.

Unfortunately, the plane 3-tree that contains a plane partial 3-tree G may
in general require arbitrarily large vertex-degrees, even if the maximum degree
of G is bounded. Thus, the result of Kratochv́ıl and Vaner does not allow us to
directly simplify the problem to plane 3-trees drawing.

To overcome this difficulty, we introduce the notion of ‘plane semi-partial
3-tree’, which can be seen as an intermediate concept between plane 3-trees and
plane partial 3-trees.

Definition 3.2. A graph G is called a plane semi-partial 3-tree if G is obtained
from a plane 3-tree H by erasing some of the tilted edges of H.

Our goal is to prove that every plane partial 3-tree of maximum degree ∆
can be drawn with at most O(∆5) slopes. We obtain this result as a direct
consequence of two main propositions, stated below.

Proposition 3.3. Any connected plane partial 3-tree of maximum degree ∆ is
a subgraph of a plane semi-partial 3-tree of maximum degree at most 37∆.

Proposition 3.4. For every ∆ there is a set S of at most O(∆5) slopes with
the property that any plane semi-partial 3-tree of maximum degree ∆ has a
straight-line embedding whose edge-slopes all belong to S.

We begin by proving Proposition 3.3.

3.1 Proof of Proposition 3.3

We begin by a simple lemma, which shows that the deletion of tilted edges from
a plane 3-tree does not affect the level of vertices.

Lemma 3.5. Let H = (V,E) be a plane 3-tree, let T be a set of tilted edges of
H, let G = (V,E \ T ) be a semi-partial 3-tree. Let v be a vertex of level k with
respect to H. Then v has level k in G as well.

Proof. Fix a vertex v of level k in H. Of course, the deletion of an edge may
only decrease the level of a vertex, so v has level at most k in G. On the other
hand, it follows from Lemma 3.1 that every vertex of level k in H is separated
from the outer face by k nested triangles C0, C1, . . . Ck−1, where Ci is a triangle
formed by balanced edges that belong to level i. Since every balanced edge of H
belongs to G as well, we know that all the triangles C0, C1, . . . Ck−1 belong to
G, showing that v has level at least k. It follows that the level of v is preserved
by the deletion of tilted edges.
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Let G = (V,E) be a plane semi-partial 3-tree obtained from a plane 3-tree
H = (V,E′) by the deletion of several tilted edges. As a consequence of the
previous lemma, we see that an edge e ∈ E is tilted in G if and only if it is tilted
in H.

Assume now that F is a connected plane partial 3-tree with maximum de-
gree ∆ ≥ 1 and at least three vertices. Our goal is to show that there is a plane
semi-partial 3-tree G with maximum degree at most 37∆ that contains F as a
spanning subgraph. The following definition introduces the key notion of our
proof.

Definition 3.6. Let F be a connected plane partial 3-tree with maximum
degree ∆, and let k be an integer. We say that a 3-tree H correctly covers F
up to level k, if the following conditions are satisfied:

• F is a spanning subgraph of H.

• Let V ≤k denote the set of vertices that have level at most k in H. For
every vertex v ∈ V ≤k there are at most 36∆ balanced edges of H that are
incident to v.

Furthermore, we say that H correctly covers F at all levels if, for any k, H
correctly covers F up to level k.

As mentioned before, Kratochv́ıl and Vaner [9] have shown that every plane
partial 3-tree F is a spanning subgraph of a plane 3-tree H. Note that such
a 3-tree H correctly covers F up to level 0, because every vertex at level 0 is
adjacent to two balanced edges.

Our proof of Proposition 3.3 is based on the following lemma.

Lemma 3.7. For every connected partial 3-tree F there is a 3-tree H that
correctly covers F at all levels.

Before we prove the lemma, let us show how it implies Proposition 3.3.

Proof of Proposition 3.3 from Lemma 3.7. Let F be a plane partial 3-tree of
maximum degree ∆, and let H be the 3-tree that correctly covers F at all
levels. Define a semi-partial 3-tree G which is obtained from H by erasing all
the tilted edges of H that do not belong to F . By construction, G is a semi-
partial 3-tree that contains F as a subgraph. Moreover, every vertex of G is
adjacent to at most ∆ tilted edges and at most 36∆ balanced edges, so G has
maximum degree at most 37∆.

Let us now turn to the proof of Lemma 3.7.

Proof. Let F be a partial 3-tree with maximum degree ∆, and assume for con-
tradiction that there is no graph H that would correctly cover F . Let k be the
largest integer such that there is a graph H that correctly covers F up to level k.
We have seen that k ≥ 0. On the other hand, we clearly have k < |V (F )|. Thus,
k is well defined.
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Fix a graph H correctly covering F up to level k. By our assumption, H has
vertices of level greater than k. We will now define a 3-tree H ′ that correctly
covers F up to level k + 1, which contradicts the maximality of k.

Note that it is sufficient to ensure that H ′ is constructed by a sequence of
balanced tripod insertions in which all the tripods inserted at level at most k+1
have degrees bounded by 36∆.

We construct H ′ in such a way that it coincides with H on vertices of level
at most k; more precisely, if u and v are two vertices of level at most k in H,
then u and v are connected by an edge of H ′ if and only if they are connected
by an edge of H. Notice that this property guarantees that the vertices at level
at most k in H are at the same level in H ′ as in H. Let H≤k be the subgraph
of H induced by the vertices of level at most k. H≤k is a 3-tree.

Let Φ be a balanced face of H≤k formed by vertices at level k which contains
at least one vertex of H at level k + 1 in its interior. Note that at least one
such face exists, since we assumed that at least one vertex has level greater than
k in H. For any such face Φ, we will modify the sequence of tripod-insertions
performed inside Φ, such that the tripod inserted into this face has maximum
degree at most 36∆, while the modified graph will still contain F as a subgraph.
By doing this modification inside every nonempty balanced face at level k, we
will eventually obtain a graph H ′ that correctly covers F up to level k + 1.

Fix Φ to be a balanced face at level k with nonempty interior. Let T ⊂ H be
the tripod that has been inserted into Φ during the construction of H. Let VT
and ET be the vertices and the edges of T . We will now define a modified tripod
T ′ on the vertex set VT , satisfying the required degree bound. We will then show
that the sequence of tripod insertions that have been performed inside T during
the construction of H can be transformed into a sequence of tripod insertions
inside T ′, where the new sequence of insertions yields a graph H ′ that contains
F as a subgraph.

We define T ′ by the following rules.

1. All the edges of T that belong to F are also in T ′.

2. All the edges of T that belong to the boundary of the outer face of T also
belong to T ′. These edges form the boundary of the outer face of T ′.

3. All the edges that form the spine of T also belong to T ′ and they form its
spine.

4. Let Ψ be an internal face of the tripod T . Let u, v and w be the three
vertices of Ψ. Assume that both u and v are connected by an edge of F
to a vertex in the interior of Ψ (not necessarily both of them to the same
vertex). In such case, add the edge uv to T ′.

5. Let T ′0 be the graph formed by all the edges added to T ′ by the previous
four rules. Note that T ′0 is an outerplanar graph with the same outer face
as T . However, not all the inner faces of T ′0 are necessarily triangles, so T ′0
is not necessarily a tripod. Assume that T ′0 has an inner face with more
than three vertices, and that v0, v1, . . . , vr are the vertices of this face,
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listed in cyclic order. We form the path v1, vr, v2, vr−1, v3, vr−2, . . . whose
edges triangulate the face of T ′0. We add all the edges of this path into T ′.
We do this for every internal face of T ′0 that has more than three vertices.
The resulting graph T ′ is clearly a tripod.

Let us now argue that the tripod T ′ has maximum degree at most 36∆. Let
v ∈ VT be any vertex of this tripod. Let us estimate degT ′(v), by counting the
edges adjacent to v that were added to T ′ by the rules above. Clearly, there are
at most ∆ such edges that were added by the first rule, and at most nine such
edges that were added by the second and third rule.

We claim that there are at most 2∆ edges incident with v added by the
fourth rule. To see this, notice that if e = uv is an edge added by this rule,
then at least one of the two faces of T that are incident to e must contain in
its interior an edge e′ of F that is incident to v. In such situation, we say that
e′ is responsible for the insertion of e into T ′. Clearly, an edge of F may be
responsible for the insertion of at most two edges incident with v. Since v has
degree at most ∆ in F , this shows that at most 2∆ edges incident with v are
added to T ′0 by the fourth rule. Consequently, T ′0 has maximum degree at most
3∆ + 9.

To estimate the number of edges added to T ′ by the fifth rule, it is sufficient
to observe that in every internal face of T ′0 whose boundary contains v there are
at most two edges of T ′ incident to v added by the fifth rule. Thus, ∆(T ′) ≤
3∆(T ′0) ≤ 9∆ + 27 ≤ 36∆, as claimed.

Having thus defined the tripod T ′, we modify the graph H as follows. We
remove all the vertices appearing in the interior of the face Φ of H≤k; that is,
we remove the tripod T as well as all the vertices inserted inside T . Instead, as
a first step towards the construction of H ′, we insert T ′ inside Φ.

To finish the construction of H ′, we need to insert the vertices of level greater
than k + 1 into the faces of T ′, so that the resulting graph contains F as a
subgraph. We perform this insertion separately inside every face of T ′0. Note
that T ′0 is a subgraph of T as well as a subgraph of T ′, and that each internal
face of T ′0 is a union of several faces of T ′. Let Ψ be a face of T ′0. If Ψ is a
triangle, then Ψ is in fact a face of T ′ as well as a face of T . If T contains a
subgraph HΨ inside Ψ, we define H ′ to contain the same subgraph inside Ψ as
well. Since HΨ has been created by a sequence of tripod insertions inside Ψ, we
can perform the same sequence of tripod insertion again inside the same face
during the construction of H ′.

Assume now that Ψ is not a triangle. In the graphH, the face Ψ is subdivided
into a collection of triangular faces Ψ1,Ψ2, . . . ,Ψk. Let Hi be the subgraph of
H appearing inside the face Ψi in H. We know that each Hi is a result of a
sequence of tripod insertions.

Let us use the following terminology: if there is an edge of F that connects
a vertex of Hi to a vertex v on the boundary of Ψ, we say that Hi is adjacent
to v. Since the graph F is connected, each nonempty graph Hi must be adjacent
to at least one vertex on the boundary of Ψ. Observe that if Hi is adjacent to
two distinct vertices u and v on the boundary of Ψ, then the edge that connects
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u and v must belong to T ′0 by the fourth rule in the construction of T ′. In
particular, u and v appear consecutively on the boundary of Ψ. This also shows
that Hi cannot be adjacent to three distinct vertices of Ψ, since we assumed
that Ψ is not a triangle.

Consider now the tripod T ′. In this tripod, the face Ψ is triangulated into
a collection of faces Ψ′1,Ψ

′
2, . . . ,Ψ

′
k. Each of these triangular faces has at least

one edge of T ′0 on its boundary. We will insert the graphs H1, H2, . . . ,Hk into
these faces, by performing for each Hi a sequence of tripod insertions which
generates Hi inside one of the faces Ψ′1,Ψ

′
2, . . . ,Ψ

′
k.

To ensure that the resulting graph will contain F as a subgraph, it suffices to
guarantee that whenever Hi is adjacent to a vertex v ∈ Ψ, it will be inserted into
a face Ψ′j that contains v on its boundary. Such a face always exists, since each
Hi is adjacent to at most two vertices of Ψ, and if it is adjacent to two vertices
u, v, then the two vertices must be connected by an edge on the boundary of Ψ,
which implies that there is a face Ψ′j that contains both u and v on its boundary.

It may happen that two distinct graphs Hi and Hj need to be inserted
into the same face Ψ′`. In such case, the first graph is inserted directly into Ψ′`,
thus partitioning it into several smaller triangular subfaces, while all subsequent
graphs that need to be inserted into Ψ′` are inserted into an appropriately chosen
subface of Ψ′`. This subface need not be balanced. We choose this subface in
such a way that we preserve the cyclic order of edges of F around every vertex
v on the boundary of Ψ.

After we perform the construction above inside every face Ψ of T ′0, we obtain
a plane 3-tree H ′ that correctly covers F up to level k + 1. This completes the
proof of the lemma.

3.2 Proof of Proposition 3.4

To complete the proof of our main result, it remains to show that every plane
semi-partial 3-tree of bounded maximum degree has a straight-line embedding
with a bounded number of slopes.

We start with a brief overview of the construction. We will use the fact that
a plane semi-partial 3-tree G can be decomposed into tripods formed by vertices
of the same level, with each tripod T of level k ≥ 1 being inserted into a triangle
Φ formed by vertices of level k − 1. The triangle Φ is itself an inner face of a
tripod of level k − 1.

The tripods appearing in this decomposition of G may be arbitrarily large.
However, a tripod T of level k ≥ 1 has only a bounded number of vertices that
are adjacent to a vertex of the triangle Φ of level k− 1. These vertices of T will
be called relevant vertices.

Given a tripod T in the decomposition of G, we will construct an embedding
of T that only uses edge-slopes from a set of slopes S′ and moreover, all the
relevant vertices of T are embedded on points from a set of points P ′, where
the sets S′ and P ′ are independent of T and their size is polynomial in ∆.

We will then show that these embeddings of tripods (after a suitable scaling)
can be nested into each other to provide the embedding of the whole graph G.
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We will argue that the number of edge-slopes in this embedding of G is bounded.
This will follow from the fact that the balanced edges of G belong to a tripod
and their slope belongs to S′, while the slopes of the tilted edges only depend
on the positions of the relevant vertices of a tripod T and on the shape of the
triangle Φ surrounding T . Since the relevant vertices can only have a bounded
number of positions, and the triangle Φ is formed by balanced edges and hence
may have only a bounded number of shapes, we will conclude that the tilted
edges may only determine a bounded number of slopes.

Let us now describe the construction in detail. We recall that ∆ is a fixed
constant throughout this section, and we let ST(∆) denote the set of plane
semi-partial 3-trees of maximum degree at most ∆. Any graph G ∈ ST(∆) can
be created by a sequence of partial tripod insertions into balanced faces, where
a partial tripod insertion is defined in the same way as an ordinary tripod
insertion, except that some of the tilted edges are omitted when the new tripod
is inserted.

Choose a graph G ∈ ST(∆), and assume that T is a tripod that is used in
the construction of G by a sequence of partial tripod insertions. Let {x, y, z}
be the triangle in G into which the tripod T has been inserted. We say that
a vertex v of T is relevant if v is connected by an edge of G to at least one of
the vertices x, y or z. Since each of the three vertices x, y and z has degree at
most ∆, the tripod T has at most 3∆ relevant vertices. Let us further say that
a bubble of T is relevant if it contains at least one relevant vertex. Since every
vertex of T is contained in at most six bubbles, we see that T has at most 18∆
relevant bubbles.

We will use the term labelled tripod of degree ∆ to denote a tripod T with
maximum degree at most ∆, together with an associated set of at most 3∆
relevant vertices of T . Let Tr(∆) be the (infinite) set of all the labelled tripods
of degree ∆. Similarly, a labelled bubble of degree ∆ is a bubble of maximum
degree at most ∆, together with a prescribed set of at most 3∆ relevant vertices.
B(∆) denotes the set of all such labelled bubbles.

Let ET be an embedding of a tripod in the plane, and let v be a vertex of
ET . Let α ∈ 〈0, 2π) be a directed slope. We say that the vertex v has visibility
in direction α, if the ray starting in v and having direction α does not intersect
ET in any point except v.

Throughout the rest of this section, let ε denote the value π/100 (any suffi-
ciently small integral fraction of π is suitable here).

Our proof of Proposition 3.4 is based on the following key lemma.

Lemma 3.8 (Tripod Drawing Lemma). For every ∆ there is a set of slopes S
of size O(∆3), a set of points P of size O(∆2), and a set of triangles R of size
O(∆3), such that every labelled tripod T ∈ Tr(∆) has a straight-line embedding
ET with the following properties:

1. The slope of any edge in the embedding ET belongs to S.

2. Each relevant vertex of ET is embedded on a point from P .

3. Each internal face of ET is homothetic to a triangle from R.
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4. The central vertex of ET is embedded in the origin of the plane.

5. Any vertex of ET is embedded at a distance at most 1 from the origin.

6. Each spine of T is embedded on a single ray starting from the origin. The
three rays containing the spines have directed slopes 0, 2π/3 and 4π/3.
Let these three rays be denoted by r1, r2 and r3, respectively.

7. Let r̂irj denote the closed convex region whose boundary is formed by the
rays ri and rj. Any relevant vertex of ET embedded in the region r̂1r2 (or
r̂2r3, or r̂1r3) has visibility in any direction from the set 〈ε, 2π/3− ε〉 (or
〈2π/3 + ε, 4π/3− ε〉, or 〈4π/3 + ε, 2π − ε〉, respectively).

Note that the three regions r̂1r2, r̂2r3 and r̂1r3 are not disjoint. For in-
stance, if a relevant vertex of T is embedded on the ray r1, it belongs to
both r̂1r2 and r̂1r3, and hence it must have visibility in any direction from
the set 〈ε, 2π/3− ε〉 ∪ 〈4π/3 + ε, 2π − ε〉.

Before we prove Lemma 3.8, we show how the lemma implies Proposition 3.4.

Proof of Proposition 3.4 from Lemma 3.8. Let S be the set of slopes, P be the
set of points and R be the set of triangles from Lemma 3.8. Let S′ be the set
of all the slopes that differ from a slope in S by an integer multiple of ε. Note
that |S′| ≤ π

ε |S|. Let P ′ be the (finite) set of points that can be obtained by
rotating a point in P around the origin by an integral multiple of ε. Let R′ be
the (finite) set of triangles that is obtained by rotating the triangles in R by an
integral multiple of ε.

We will show that any graph G ∈ ST(∆) has a straight-line embedding
where the slopes of balanced edges belong to S′ and the slopes of tilted edges
also belong to a finite set which is independent of G.

Let T be a labelled tripod used in the construction of the graph G. Assume
that T is inserted into a triangle formed by three vertices x, y, z (see Figure 2).
Let τ be the triangle formed by the three points x, y, z. Assume that the three
vertices are embedded in the plane. Without loss of generality, assume that the
triangle τ has acute angles by the vertices y and z, and the three vertices xyz
appear in counterclockwise order around the boundary of τ . Thus the altitude
of τ from the vertex x intersects the segment yz on a point p which is in the
interior of the segment yz. Let η be the slope of the (directed) segment yz.

We can find a point c in the interior of the triangle τ , and a positive real
number r = r(τ), such that for any point v at a distance at most r from c, the
following holds:

1. v is in the interior of τ

2. the slope of the segment vx differs from the slope of the segment px (which
is equal to η + π/2) by less than ε

3. the slope of the segment vy differs from the slope of the segment py (which
is equal to −η) by less than ε
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Figure 2: Illustration of the proof of Proposition 3.4

4. the slope of the segment vz differs from the slope of the segment pz (which
is equal to η) by less than ε

Indeed, it suffices to choose c sufficiently close to the point p and set r sufficiently
small, and all the above conditions will be satisfied.

Consider now the embedding ET of T . Place the center of the tripod on the
point c, and scale the whole embedding by the factor r, so that it fits inside
the triangle τ . In view of the four conditions above, and in view of the seventh
part of Lemma 3.8, it is not difficult to observe that we may rotate the (scaled)
embedding of T around the point c by an integral multiple of ε in such a way
that every relevant vertex v ∈ T has visibility towards all its neighbors among
the three vertices x, y, z. Thus, we are able to embed all the necessary tilted
edges of G between xyz and T as straight line segments.

Note that in our embedding, all the balanced edges of T have slopes from
the set S′, and all its internal faces are homothetic to the triangles from the
set R′. Furthermore, any tilted edge has one endpoint in the set {x, y, z} and
another endpoint in the set c + rP ′ (the set P ′ scaled r-fold and translated in
such a way that the origin is moved to c). Hence any labelled tripod T ∈ Tr(∆)
can be inserted inside the triangle xyz in such a way that the slopes of the
edges always belong to the same finite set which depends on the triangle xyz
but not on the tripod T . Note that the triangle xyz may be arbitrarily thin, in
particular it can have inner angles smaller than ε.

Let us now show how the above construction yields an embedding of the
whole graph G. For every such triangle τ ∈ R′, fix the point c = c(τ) and the
radius r = r(τ) from the above construction. Any scaled and translated copy
of τ will have the values of c and r scaled and translated accordingly.

We now embed the graph G recursively, by embedding the outer face as an
arbitrary triangle from R′, and then recursively embedding each tripod into the
appropriate face by the procedure described above. Since we only insert tripods
into balanced faces, it is easily seen that every tripod is being embedded inside
a triangle of R′.

Overall, the construction uses at most |S′| = O(∆3) distinct slopes for the
balanced edges, and at most |R′||P ′| = O(∆5) distinct slopes for the tilted
edges. The total number of slopes is then O(∆5), as claimed.
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In the rest of this section, we prove the Tripod Drawing Lemma. Let T be
a labelled tripod and let B be a bubble of T . Recall that the root edge of B is
the edge that belongs to a spine of T . Note that the same root edge is shared
by two bubbles of T . Recall also that a bubble is called trivial if it only has two
vertices.

We now introduce some terminology that will be convenient for our descrip-
tion of the structure of a given bubble.

Definition 3.9. Let B be a nontrivial bubble in a tripod T . The unique internal
face of B adjacent to its root edge will be called the root face of B. The dual of a
bubble B is the rooted binary tree B̂ whose nodes correspond bijectively to the
internal faces of B, and two nodes are adjacent if and only if the corresponding
faces of B share an edge. The root of the tree B̂ is the node that represents the
root face of B.

When dealing with the internal faces of B, we will employ the usual termi-
nology of rooted trees; for instance, we say that a face Φ is the parent (or child)

of a face Ψ if the node representing Φ in B̂ is the parent (or child) of the node
representing Ψ. For every internal face Φ of B, the three edges that form the
boundary of Φ will be called the top edge, the left edge and the right edge, where
the top edge is the edge that Φ shares with its parent face (or the root edge, if
Φ is the root face), while left and right edges are defined in such a way that the
top, left, and right edge form a counterclockwise sequence on the boundary of Φ.
With this convention, we may speak of a left child face or right child face of Φ
without any ambiguity. Our terminology is motivated by the usual convention
of embedding rooted binary trees with their root on the top, and the parent, the
left child and the right child appearing in counterclockwise order around every
node of the tree. Furthermore, for a given face Φ, the bottom vertex of Φ is the
common vertex of the left edge and right edge of Φ.

Let us explicitly state the following simple fact which directly follows from
our definitions.

Observation 3.10. Let Φ1,Φ2, . . . ,Φk be a sequence of internal faces of a
bubble B, such that for any j < k, Φj+1 is the left child of Φj. Then all the
faces Φ1, . . . ,Φk share a common vertex. In particular, if B has maximum
degree ∆, then k < ∆. An analogous observation holds for right children as
well.

We now describe an approach that allows us to embed an arbitrary bubble
with maximum degree ∆ inside a bounded area using a bounded number of
slopes.

Lemma 3.11. Let xyz be an equilateral triangle with vertex coordinates x =
(0, 0), y = (1, 0) and z = (1/2,−

√
3/2). Fix two sequences of slopes α1, α2,

. . . , α∆−1 and β1, β2, . . . , β∆−1, with 0 > α1 > α2 > · · · > α∆−1 > −π/3
and 0 < β1 < β2 < · · · < β∆−1 < π/3. Let S be the set of 2∆ − 1 slopes
{0} ∪ {α1, α2, . . . , α∆−1} ∪ {β1, β2, . . . , β∆−1}. Let B be a bubble of maximum
degree ∆. Then B has a straight line embedding EB inside xyz that only uses
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Figure 3: Illustration of the proof of Lemma 3.11.

the slopes from the set S, the root edge of EB corresponds to the segment xy,
and moreover the triangular faces of EB form at most 2∆− 3 distinct triangles
up to homothetic equivalence.

Proof. Proceed by induction on the size of B. If B is trivial, the statement
holds. Assume now that B is a nontrivial bubble. Let Φ0 be the root edge of B.
See Figure 3.

Define the maximal sequence of faces Φ1,Φ2, . . . ,Φ` in such a way that Φi+1

is the left child of Φi, with Φ1 being the left child of the root edge Φ0. The
maximality of the sequence means that Φ` has no left child. Symmetrically,
define a maximal sequence of faces Ψ1, . . . ,Ψr such that Ψ1 is the right child
of Φ0, and Ψi+1 is the right child of Ψi. By Observation 3.10, we know that
` < ∆− 1 and r < ∆− 1.

Let (p, α) denote the ray starting at a point p and heading in direction α.
Let B be an arbitrary bubble. Let v1 be the intersection of the rays (x, α1)

and (y, β1). The root face Φ0 will be embedded as the triangle xyv1. Define
points v2, . . . , v`+1 by specifying vi as the intersection of (x, αi) and (v1, π).
The face Φi is then embedded as the triangle xvivi+1. Similarly, define points
w2, . . . , wr+1 where wi is the intersection of (y, βi) with (v1, 0). Then Ψ1 is
embedded as the triangle yv1w2, while for k > 1 we embed Ψk as the triangle
ywkwk+1.

Note that when we remove the two vertices incident to the root edge from
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the bubble B, the remaining edges and vertices form a union of ` + r bubbles
B1 ∪ · · · ∪B` ∪B′1 ∪ . . . ∪B′`, where Bi is a bubble whose root edge is the right
edge of Φi while B′j is rooted at the left edge of Ψj . Using induction, we know
that each Bi has a straight line embedding inside the equilateral triangle whose
top edge is the horizontal segment vivi+1 (and symmetrically for B′j).

This completes the proof.

Corollary 3.12. Let xyz be an arbitrary triangle and B a bubble of maximum
degree ∆. There are sets S of 2∆ − 1 slopes and R of 2∆ − 3 triangles that
depend on xyz but not on B, such that B can be embedded inside xyz using
only slopes from S and triangles from R for triangular faces, in such a way that
the root edge of B coincides with the segment xy.

Proof. This follows from Lemma 3.11, using the fact that for any triangle there
is an affine transform that maps it to an equilateral triangle, and that affine
transforms preserve the number of distinct slopes used in a straight-line embed-
ding.

The construction from Lemma 3.11 can be applied to embed all the irrel-
evant bubbles of a given labelled tripod T . Unfortunately, the construction
of Lemma 3.11 is not suitable for the embedding of relevant bubbles, because
it provides no control about the position of the relevant vertices. Indeed, in-
side the triangle xyz of the previous lemma, there are infinitely many points
where a vertex may be embedded by the construction described in the proof
of the lemma. Thus, we can give no upper bound on the number of potential
embeddings of relevant vertices.

For this reason, we now describe a more complicated embedding procedure,
which allows us to control the position of the relevant vertices. We first need
some auxiliary definitions.

Definition 3.13. An adder A is a bubble with a root edge h and another edge
t 6= h, such that the dual tree of A is a path, and the edge t is an external edge
adjacent to the single leaf face of A. See Figure 4. The edges h and t are called
head and tail of the adder. It is easy to see that every adder contains a unique
path Z whose first edge is h, its last edge is t and no other edge of Z belongs
to the outer face of A. The path Z will be called the zigzag path of the adder
A. The length of the adder is defined to be the number of edges of its zigzag
path. By definition, each adder has length at least 2. An adder of length 2 will
be called degenerate.

We will now show that adders of bounded degree can be embedded inside a
prescribed quadrilateral using a bounded number of slopes and triangles.

Lemma 3.14. For every convex quadrilateral Q = abcd and for every ∆ there
is a set S of O(∆) slopes, a set S0 ⊆ S of O(1) slopes, and a set R of O(∆)
triangles such that any nondegenerate adder A of maximum degree ∆ has a
straight line embedding EA with the following properties:

1. All the edge-slopes of EA belong to the set S.
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Figure 4: An adder. The bold edges form the zigzag path.

2. All the edges on the outer face of EA have slopes from the set S0.

3. Each internal face of EA is homothetic to a triangle from R.

4. The head of A coincides the edge ab of Q and the tail of A coincides
with cd.

5. The embedding EA is contained in the convex hull of abcd.

Proof. Note that the lemma is clearly true when restricted to adders of length
at most four (or any other bounded length). In the rest of the proof, we assume
that A is an adder of length at least five.

We first deal with the case when the edges ab and cd are parallel (i.e., Q
is a trapezoid), and the adder A has odd length ` = 2k + 1. Without loss of
generality, assume that the segments ab and cd are horizontal and that the line
containing cd is above the line containing ab. Let α be the slope of the diagonal
ac and β the slope of the diagonal bd, with 0 < α < β < π. Let e be the point
where the two diagonals intersect. Notice that the two triangles abe and cde
are homothetic. Let r = ‖ab‖/‖cd‖ = ‖ae‖/‖ce‖ be the dilation factor of the
homothecy.

Let Z be the zigzag path of A. Let us identify the head of A with the
segment ab and the tail of A with cd, in such a way that the cyclic order of the
four points abcd on the boundary of Q is the same as the cyclic order in which
the corresponding vertices appear on the outer face of A.

Since A has odd length, the endpoints of its zigzag path are diagonally
opposite in Q, see Figure 5. We lose no generality by assuming that a and c are
the endpoints of the zigzag path. Let v0, v1, v2, . . . , vk, wk, wk−1, wk2 , . . . , w1, w0

be the sequence of the vertices of Z, in the order in which they appear on the
path Z, with v0 = a, v1 = b, w0 = c, and w1 = d. Fix an arbitrary slope γ such
that β < γ < π. All the vertices of Z will be embedded on the two diagonals ac
and bd. Since the first two and last two vertices have already been embedded,
let us proceed by induction, separately in each half of Z. If, for some i ≥ 0,
the vertex vi has already been embedded on the diagonal ac, then we embed
vi+1 on bd in such a way that the segment vivi+1 is horizontal. If vi has been
embedded on the diagonal bd, then vi+1 is embedded on ac and the slope of
vivi+1 is equal to γ.
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Figure 5: Embedding an adder with prescribed head and tail. These figures
illustrates the embedding of the adder of odd length 2k + 1. The two figures
correspond to the two cases depending on the parity of k.

We proceed similarly with the vertices wi: if wi is on ac then wi+1 is on bd
and the segment wiwi+1 has slope γ; otherwise wi is on bd and wi+1 is on ac
and the corresponding segment is horizontal.

We may easily show by induction that for any i, the triangles evivi+1 and
ewiwi+1 are similar, all of them with the same ratio r = ‖evi‖/‖ewi‖. Fur-
thermore, we see that evivi+1 is similar to evi+2vi+3, with a ratio q that is
independent of i. From these facts, we see that all the segments of the form
viwi+1 have at most two distinct slopes (depending on the parity of i), and
similarly for the segments of the form wivi+1.

Let us consider all the triangles formed by triples of vertices xyz where x, y
and z are three consecutive vertices of the path Z. Note that these triangles
are internally disjoint, and their edges form at most six distinct slopes, namely
0, α, β, γ, the slope of the segment vkwk−1 and the slope of the segment vk−1wk.
Furthermore, the latter two slopes belong to a set of at most four slopes that
are independent of k, and hence independent of the adder A. The union of the
above-described triangles will form the outer boundary of our embedding of A.
It remains to place the vertices of A that do not belong to Z to this boundary.

Let us fix ∆−2 additional slopes γ1 < γ2 < · · · < γ∆−2 which are all greater
than γ but smaller than π. Note than any vertex u of A that does not belong
to Z is incident to exactly one edge that does not belong to the outer face of A,
and this edge connects u to a vertex of Z. Thus, to complete the description of
the embedding of A, it suffices to specify, for every vertex v of Z, the slopes of
all the edges that do not belong to the outer face of A and that connect v to a
vertex not belonging to Z. Thus, let us fix an arbitrary vertex v of Z. Let us
assume that v has been embedded on the diagonal ac and that v = vi for some
i ≤ k (the cases when v belongs to bd or v = wi are analogous). Let u1, . . . , u`
be the vertices not belonging to Z and adjacent to v by an internal edge of A.
Note that if v has at least one such neighbor ui, then v 6= v1, because v1 is
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not incident to any edge not belonging to the outer face. Let v+ be the vertex
that follows after v on Z (typically, v+ = vi+1, unless v = vk, when v+ = wk).
Assume that the vertices u1, . . . u` are listed in their counterclockwise order with
respect to the neighborhood of v. Let us place each ui at the intersection of the
line vi−1v

+ and the ray (v, π + γi). This choice guarantees that the edge vui
has slope γi.

We have thus found a straight line embedding of A that has all the required
properties and uses at most ∆ +O(1) slopes. This completes the case when A
is an odd-length adder and Q is a trapezoid.

Assume now that A is an arbitrary nondegenerate adder of length ` ≥ 5,
and Q is an arbitrary convex quadrilateral. Our goal is to reduce this situation
to the cases solved above. Note that the adder A can be written as a union of
two non-degenerate sub-adders A1 and A2, where A1 has odd length, A2 has
length three or four, A1 has the same head as A, A2 has the same tail as A, the
tail of A1 is the head of A2, and the adders A1 and A2 are otherwise disjoint.
Accordingly, the convex quadrilateral Q = abcd can be decomposed into a union
of two internally disjoint quadrilaterals Q1 = abc′d′ and Q2 = d′c′cd, where
Q1 is a trapezoid. We may now use our previous arguments to construct an
embedding of A1 inside Q1, and an embedding of A2 inside Q2, and combine
the two embeddings into an embedding of Q satisfying the conditions of the
lemma.

We will use adders as basic building blocks in a procedure that embeds any
given bubble with prescribed relevant vertices in such a way that the embedding
of all the relevant vertices is chosen from a finite set of points. The following
technical lemma summarizes all the key properties of the bubble embedding
that we are about to construct.

Lemma 3.15. Let T = abc be an isosceles triangle with base ab, and with
internal angles ε/2, ε/2 and π−ε. Assume that the line ab is horizontal and the
point c is below the line ab. For every ∆ > 0 there is a set S of O(∆3) slopes, a
set P of O(∆) points, and a set R of O(∆3) triangles, such that every labelled
bubble B ∈ B(∆) has an embedding EB with the following properties.

1. All the edge-slopes of EB belong to S.

2. Any relevant vertex of B is embedded at a point from P .

3. Every internal face of EB is homothetic to a triangle from R.

4. The root edge of B coincides with the segment ab.

5. The whole embedding EB is inside the triangle T .

6. Any relevant vertex of EB has visibility in any direction from the set 〈π+
ε, 2π − ε〉.

Proof. Let us first introduce some terminology (see Figure 6). Let B ∈ B(∆)
be a labelled bubble. Recall from Definition 3.9 that the dual of B, denoted
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Figure 6: An example of a labelled bubble B with its dual tree B̂. Relevant
vertices are represented by large black disks. The large gray disks of the bottom
figure represent the non-relevant priority vertices.

by B̂, is a rooted binary tree whose root corresponds to the root face of B.
For an internal face Φ of B, we let Φ̂ denote the corresponding node of B̂. We
distinguish several types of nodes in B̂. A node Φ̂ is called relevant node, if the
bottom vertex of the face Φ is a relevant vertex of B. A node Φ̂ of B̂ is called
peripheral if the subtree of B̂ rooted at Φ̂ does not contain any relevant node,
in other words, neither Φ̂ nor any descendant of Φ̂ is relevant. A node is central
if it is not peripheral. Note that the central nodes induce a subtree of B̂; we let
B̂′ denote this subtree. By construction, all the leaves of B̂′ are relevant nodes
(but there may be relevant nodes that are not leaves).

A node Φ̂ of B̂′ is a branching node if both its children belong to B̂′ as well.
A node of B̂′ is a connecting node if it is neither relevant nor branching. By
definition, each connecting node has a unique child in B̂′, and the connecting
nodes induce in B̂′ a disjoint union of paths. We call these paths the connections.

We say that a face Φ of B is al relevant face if the corresponding node Φ̂
is a relevant node. Peripheral faces, branching faces and connecting faces are
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defined analogously. Let B′ be the subgraph of B whose dual is B̂′. If B̂′ is
empty, define B′ to be the trivial bubble consisting of the root edge of B. In
any case, B′ is a subbubble of B and has the same root edge as B.

Note that since every leaf of B̂′ is a relevant node, and since B has at most
3∆ relevant vertices by definition of B(∆), the tree B̂′ has at most O(∆) leaves
and consequently at most O(∆) branching nodes.

Let us now describe the basic idea of the proof. We begin by specifying the
set P of points. The points of P will form a convex cup inside the triangle T .
For a given bubble B ∈ B(∆), we construct the embedding EB in three steps.
In the first step, we take all the vertices of B that belong to relevant faces and
branching faces, and embed them to the points of P . In the second step, we
embed all the connecting faces. Each connection in B̂′ corresponds to a (possibly
degenerate) adder contained in B′, whose head and tail have been embedded in
the first step. Using the construction from Lemma 3.14, we insert these adders
into the embedding. Thus, in the first two steps, we construct an embedding
of B′. In the third step, we extend this embedding into an embedding of B by
adding the peripheral faces. These faces form a disjoint union of subbubbles,
each of them rooted at an edge belonging to the outer face of B′. We use
Corollary 3.12 to embed each of these subbubbles into a thin triangle above a
given root edge.

Let us describe the individual steps in detail. Set D = 18∆. Recall that T
is an isosceles triangle with base ab. Let C be any circular arc with endpoints
a and b, drawn inside T . Choose a sequence p1, p2, . . . , pD of distinct points of
C, in such a way that p1 = a, pD = b, and the remaining points are chosen
arbitrarily on C in order to form a left-to-right sequence. Let P be the set
{p1, . . . , pD}.

Let us say that a vertex v of B is a priority vertex if it either belongs to a
relevant face, or it belongs to a branching face, or it belongs to the root edge
of B. Note that all priority vertices actually belong to B′, and that each relevant
vertex is a priority vertex as well. Let ` be the number of priority vertices. We
know that B has at most 3∆ relevant faces. Since every leaf of B̂′ represents a
relevant face, we see that B′ has at most 3∆− 1 branching faces. This implies
that ` < D = 18∆.

Let v1, v2, . . . , v` be the sequence of all the priority vertices of B, listed in
counterclockwise order of their appearance on the outer face of B, in such a way
that v1 and v` are the vertices of the root edge of B. For each i ∈ {1, . . . , `−1},
we embed the vertex vi on the point pi, while the vertex v` is embedded on
the point vD = b. Note that this embedding guarantees that the root edge
of B coincides with the segment ab = p1pD. Moreover, since this embedding
preserves the cyclic order of the vertices on the boundary of the outer face,
we know that the edges induced by the priority vertices do not cross. This
completes the first step of the embedding.

In the second step, we describe the embedding of the connecting faces of B.
Let Φ1,Φ2, . . . ,Φk be a sequence of faces of B corresponding to a connection
in B̂, where we assume that for each i < k, the node Φ̂i is the parent of Φ̂i+1
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Figure 7: An adder representing a connection in B̂.

in B̂. See Figure 7. Let x be the left vertex of Φ1 and let y be the right vertex
of Φ1. The vertices x and y either form the root edge of B, or they belong to
the parent face of Φ1, which is either a relevant face or a branching face. In
either case, both x and y are priority vertices. In particular, x corresponds to a
point pm ∈ P , and y corresponds to pn ∈ P , for some m < n.

Consider now the face Φk. Since it is neither relevant nor branching, it has
a unique child face Φ′ in B′. The face Φ′ is relevant or branching, so all its
vertices are priority vertices. Let u be the left vertex of Φ′ and let v be its right
vertex. The edge uv is the intersection of Φ′ and Φk. Let A be the adder formed
by the union of the faces Φ1, . . . ,Φk, with head xy and tail uv. Note that this
adder does not contain any other priority vertices apart from x, y, u and v. In
particular, the vertex u is either equal to x, or it corresponds to pm+1. For the
vertex v, we have three possibilities: either v = y, or v = pn−1, or v = p`−1 and
y = pD.

Let us first deal with the case when the adder A is degenerate, i.e., either
x = u or y = v. We first define a set Q of auxiliary points (see Figure. 8. For
every i < D, consider the segment pipi+1, and subdivide this segment with ∆−2
new points qi1, q

i
2, . . . , q

i
∆−2. Next, for i < D−1, consider also the segment pipD

and subdivide it with ∆− 2 points q̃i1, q̃
i
2, . . . , q̃

i
∆−2. Let Q be the set of all the

points qij and q̃ij , for all i and j.
Assume now that A is a degenerate adder with x = u (the case when y = v

is analogous). Recall that A has k internal faces Φ1, . . . ,Φk. All these faces
share the vertex x, and in particular, x has degree k + 1 in A. This shows
that k < ∆, and consequently there are at most ∆ − 2 non-priority vertices in
A, all of them on a path from v to y. See Figure 9. If v = pn−1, we embed
these non-priority vertices on the points qn−1

1 , . . . , qn−1
k−1 . On the other hand, if

v = p`−1 and y = pD, we embed the non-priority vertices of A on the points
q̃`−1
1 , . . . , q̃`−1

k−1. This determines the embedding of A.
Consider now the case when A is non-degenerate. The four vertices x, y, u

and v form a convex quadrilateral, and we embed A inside this quadrilateral,
using the construction of Lemma 3.14. This again determines the embedding
of A.
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Figure 8: The auxiliary points from the set Q.
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Figure 9: The embedding of a degenerate connection adder.

Using the constructions described above, we embed all the adders represent-
ing connections in B̂. Note that each adder is embedded inside the convex hull
of its head and tail. Moreover, if A and A′ are adders representing two different
connections, the convex hull of the head and tail of A is disjoint from the convex
hull of the head and tail of A′, except for at most one vertex shared by the two
adders. This shows that the embedding is indeed a plane embedding of the
graph B′, completing the second step of the construction.

Before we describe the last step, let us estimate the number of vertices,
edge-slopes and internal faces that may arise in the first two steps. Clearly, any
relevant vertex is embedded on a point from the set P , which has size O(∆)
and does not depend on the bubble B.

Any edge e embedded in the first two steps may have one of the following
forms.

• The edge e connects two points from P . Such edges can take at most
O(∆2) slopes.

• The edge e connects a vertex from P to a vertex from Q. This yields
O(∆3) possible slopes.

• The edge e connects two vertices of Q. This is only possible when both
vertices of e belong to a segment determined by a pair of points in P . The
slope of e is then equal to a slope determined by two points from P .

• The edge e belongs to a non-degenerate adder A representing a connection
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in B. In the embedding from Lemma 3.14, the edges of a given adder A
determine at most O(∆) slopes, and these slopes only depend on the four
vertices forming the head and tail of A. This fourtuple of vertices has
the form {pi, pi+1, pj−1, pj} or {pi, pi+1, pj−1, pD}. There are O(∆2) such
fourtuples and hence O(∆3) possible slopes for the edges of this type.

Overall, there is a set of O(∆3) slopes, independent of B, such that any edge
embedded in the first two steps has one of these slopes.

Next, we count homothecy types of internal faces. Any internal face Φ
embedded in the first two steps has one of the following types.

• All the vertices of Φ belong to P . There are O(∆3) such faces.

• Φ has two vertices from P and one vertex from Q. In such case the triple
of vertices of Φ must be of one of these forms, for some values of i, j and k:
{pi, pj , qj1}, or {pi, pj , qj−1

k }, or {pi, pD, q̃jk}. There are O(∆3) such triples.

• Φ has two vertices from Q and one vertex from P . In such case the two
vertices from Q are of the form {qij , qij+1} or {q̃ij , q̃ij+1} for some i and j.

This again gives O(∆3) possibilities for Φ.

• Φ is an internal face of a non-degenerate adder, embedded by Lemma 3.14.
Lemma 3.14 shows that the internal faces of such an adder form O(∆)
homothecy types depending only on the position of head and tail. Since
there are O(∆2) positions for head and tail, this gives O(∆3) triangle
types up to homothecy.

We conclude that each internal face of B′ is homothetic to one of O(∆3) trian-
gles, and these triangles do not depend on B′.

We next estimate the number of slopes formed by edges on the outer face
of B′. For e on the outer face of B′ there are two possibilities.

• If both endpoints of e are priority vertices, or if e belongs to a connection
represented by a degenerate adder, then the line determined by the seg-
ment e passes through two points of P . In particular, such a segment e
must have one of O(∆2) slopes determined by P .

• Suppose e belongs to the outer face of a non-degenerate adder A. By
Lemma 3.14, the edges of the outer face of A have O(1) distinct slopes,
depending on the head and tail of A. Overall, such edges have at most
O(∆2) slopes.

This shows that the slopes of the edges of the outer face of B′ all belong to a
set of O(∆2) slopes.

To finish the proof, it remains to perform the third step of the construction,
where we embed the peripheral faces. Fix an angle δ > 0 such that δ < ε/2
and any two distinct edge-slopes used in the first two steps of the construction
differ by more than 2δ. Let e be an edge of the outer face of B′. Let Te be an
isosceles triangle whose base is the edge e, whose internal angles have size δ, δ,
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and π − 2δ, and which lies in the outer face of B′. It is easy to check that our
choice of δ guarantees that for any two edges e and f on the outer face of B′,
the triangles Te and Tf are disjoint, except for a possible common vertex of e
and f .

Let B̂0 be a maximal subtree of B̂ formed entirely by peripheral nodes, and
let B0 be the dual of B̂0. Note that B0 is a subbubble of B rooted at an edge
of the outer face of B′. Let e be the root edge of B0. Using Corollary 3.12, we
embed B0 inside Te, in such a way that the root edge of B0 coincides with e.
This embedding of B0 uses O(∆) edge-slopes and O(∆) triangle types for its
internal faces, and these edge-slopes and triangle types only depend on the slope
of e.

Since the edges on the outer face of B′ may have at most O(∆2) edge-slopes,
we may embed all the peripheral faces of B, while using only O(∆3) edge-slopes
and O(∆3) triangle types in addition to the edge-slopes and triangle types used
in the first two steps of the construction.

This completes the last step of the construction. It is easy to check that in
the obtained embedding of B, any relevant vertex has visibility in any direction
from the set 〈π+ε, 2π−ε〉, and the remaining claims of the lemma have already
been verified.

At last, we are ready to give the proof of the Tripod Drawing Lemma. Let
us recall its statement:

Lemma 3.8 (repeated). For every ∆ there is a set of slopes S of size O(∆3),
a set of points P of size O(∆2), and a set of triangles R of size O(∆3), such
that every labelled tripod T ∈ Tr(∆) has a straight-line embedding ET with the
following properties:

1. The slope of any edge in the embedding ET belongs to S.

2. Each relevant vertex of ET is embedded on a point from P .

3. Each internal face of ET is homothetic to a triangle from R.

4. The central vertex of ET is embedded in the origin of the plane.

5. Any vertex of ET is embedded at a distance at most 1 from the origin.

6. Each spine of T is embedded on a single ray starting from the origin. The
three rays containing the spines have directed slopes 0, 2π/3 and 4π/3.
Let these three rays be denoted by r1, r2 and r3, respectively.

7. Let r̂irj denote the closed convex region whose boundary is formed by the
rays ri and rj. Any relevant vertex of ET embedded in the region r̂1r2 (or
r̂2r3, or r̂1r3) has visibility in any direction from the set 〈ε, 2π/3− ε〉 (or
〈2π/3 + ε, 4π/3− ε〉, or 〈4π/3 + ε, 2π − ε〉, respectively).

Note that the three regions r̂1r2, r̂2r3 and r̂1r3 are not disjoint. For in-
stance, if a relevant vertex of T is embedded on the ray r1, it belongs to
both r̂1r2 and r̂1r3, and hence it must have visibility in any direction from
the set 〈ε, 2π/3− ε〉 ∪ 〈4π/3 + ε, 2π − ε〉.
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Proof. Fix a tripod T ∈ Tr(∆). Let X, Y , and Z be the three legs of the tripod
T . The center c of the tripod will coincide with the origin of the coordinate
system, and the spines of the three legs will be embedded onto three rays with
slopes 0, 2π/3 and 4π/3 starting at the origin. We will now describe how to
embed the leg X onto the horizontal ray (c, 0). The embeddings of the remaining
two legs are then built by an analogous procedure, rotated by 2π/3 and 4π/3.

Let X be a fixed leg of the tripod, represented as a sequence D1, D2, . . . , Dk

of double bubbles, ordered from the center outwards. Recall that a bubble is
called relevant if it contains at least one relevant vertex. We will also say that
a double bubble is relevant if at least one of its two parts is relevant.

Define a parameter D by D = 13∆. The leg X can have at most 6∆ relevant
double bubbles. A maximal consecutive sequence of the form Di, Di+1, . . . , Dj

in which each element is an irrelevant double bubble will be called an irrelevant
run. We partition X into a sequence of parts P1, P2, . . . , P`, where a part is
either a single relevant double bubble, or a nonempty irrelevant run. Since by
definition no two irrelevant runs are consecutive, we see that X has at most
12∆ + 1 < D parts.

Let Tε be an isosceles triangle with internal angles of size ε/2, ε/2 and π− ε
whose base edge is horizontal. From Lemma 3.15, we know that there is a set of
points Pε ⊂ Tε of size O(∆), a set of slopes Sε of size O(∆3) and set of triangles
Rε of size O(∆3) such that any bubble of B ∈ B(∆) can be embedded inside Tε
using slopes from Sε in such a way that each relevant vertex of B coincides with
a point from the set Pε and the internal faces of the embedding are homothetic
to triangles in R. Let EB denote this embedding.

We will combine these embeddings to obtain an embedding of the whole leg
X. To each of the at most D parts of X we will assign a segment of length
L = 1

D on the horizontal ray (c, 0).
Assume first that Pi is a part of X consisting of a single relevant double

bubble, formed by a pair of bubbles B and C. We will embed Pi in such a way
that the common root edge of B and C coincides with a horizontal segment ei
of length L, whose endpoints have horizontal coordinates (i− 1)L and iL. The
two bubbles B and C are then embedded inside two scaled and translated copies
of Tε that share a common base ei, using the embeddings EB and EC , possibly
reflected along the horizontal axis.

Now assume that Pi is a part of X that consists of an irrelevant run of k
irrelevant double bubbles Dj , Dj+1, . . . , Di+k−1. We embed the root edge of
each double bubble onto a segment of length L/k, and embed the rest of the
double bubble into a scaled and translated copy of Tε. We then concatenate
these embeddings to obtain an embedding of the whole irrelevant run, which
will occupy a segment of length exactly L on the spine of X.

Overall, since the leg has at most D parts, the whole leg will be embedded
at distance at most 1 from the origin. It is easy to see that the embedding of
X uses at most 2|Sε| slopes and 2|Rε| triangles for faces (up to scaling). The
embedding of the whole tripod will then require at most 6|Sε| = O(∆3) slopes
and 6|Rε| = O(∆3) non-homothetic triangles.

Let us estimate the number of possible points where a relevant vertex may be
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embedded. For every relevant double bubble, there are at most D possibilities
where its root edge may be embedded within the embedding of X. Since a
bubble may be either above or below the spine, each relevant bubble has at
most 2D possibilities where it may appear withinX, and at most 6D possibilities
within the whole tripod. As soon as we fix the embedding of the root edge and
the relative position of the bubble with respect to its spine, we are left with
at most |Pε| possibilities where a relevant vertex may be embedded. There are
overall at most 6D|Pε| = O(∆2) possible embeddings of relevant vertices.

Using Lemma 3.15, it is straightforward to check that the embedding satisfies
the required visibility properties. Lemma 3.8 (and hence also Proposition 3.4
and Theorem 1.1) is now proved.

4 Series-parallel graphs of maximum degree 3

In this section, we prove Theorem 1.2, which states that each series-parallel
graph of maximum degree at most 3 has planar slope number at most 3. This
bound is optimal, since it is not difficult to see that, e.g., the complete bipartite
graph K2,3, which is series-parallel, cannot be embedded with fewer than 3
slopes.

We will in fact show that any series-parallel graph with ∆ ≤ 3 can be
embedded using the slopes from the set S = {0, π/4,−π/4}. This particular
choice of S is purely aesthetic, since for any other set S′ of three slopes there
is an affine bijection of the plane that maps segments with slopes from S′ to
segments with slopes from S. Thus, any plane graph that has an embedding
with three distinct slopes also has an embedding with the slopes from the set S.

Throughout this section, segments of slope π/4 (or 0, or −π/4) will be known
as increasing (or horizontal, or decreasing, respectively).

Let us first define series-parallel graphs.
A two-terminal graph (G, s, t) is a graph together with two distinct pre-

scribed vertices s, t ∈ V (G), known as terminals. The vertex s is called source
and t is called sink.

For a sequence (G1, s1, t1), (G2, s2, t2), . . . , (Gk, sk, tk) of two-terminal graphs,
we define the serialization of the sequence to be the two-terminal graph (G, s1, tk)
obtained by identifying, for every i ∈ {1, . . . , k−1} the vertex ti with the vertex
si+1. The parallelization of the sequence of two-terminal graph is the two-
terminal graph (H, s, t) obtained by identifying all the sources si into a single
vertex s and all the sources ti into a single vertex t. Whenever we perform
parallelization of a sequence of graphs, we assume that at most one graph of
the sequence contains the edge from source to sink. Thus, the result of a paral-
lelization is again a simple graph. Serialization and parallelization will be jointly
called SP-operations.

A two-terminal graph (G, s, t) is called series-parallel graph or SP-graph for
short, if it either consist of a single edge connecting the vertices s and t, or if it
can be obtained from smaller SP-graphs by an SP-operation.

If follows from the definition, that SP-graphs can be constructed from single
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edges by repeated serializations and parallelizations. In general, this construc-
tion is not unique. E.g., a path of length four whose endpoints are the terminals
can be constructed as a serialization of four edges, or as a serialization of two
paths of length two.

It is often convenient to employ special type of SP-operation that makes
the construction of an SP-graph unique. To this end, we say that an SP-graph
(G, s, t) is obtained by a reduced serialization if it is obtained as a serialization of
a sequence of SP-graphs (G1, s1, t1), . . . , (Gk, sk, tk) where none of the operands
(Gi, si, ti) can be expressed as a serialization of smaller graphs. Similarly, a
reduced parallelization is a parallelization whose operands are SP-graphs that
cannot be expressed as parallelizations of smaller SP-graphs. It is not difficult
to see that every SP-graph that is not a single edge can be uniquely expressed
as a result of a reduced SP-operation.

Before proving the theorem, we give some useful definitions. For a pair of
integers j and k, we say that a series-parallel graph (G, s, t) is a (j, k)-graph if
G has maximum degree three, and furthermore, the vertex s has degree at most
j and the vertex t has degree at most k.

Let us begin by a simple but useful lemma.

Lemma 4.1. Let (G, s, t) be a (1, 1)-graph. Then G is either a single edge, a
serialization of two edges, or a (not necessarily reduced) serialization of three
graphs G1, G2 and G3, where G1 and G3 consist of a single edge and G2 is a
(2, 2)-graph.

Proof. Assume G is not a single edge. Then G must have been obtained by
a reduced serialization H1, H2, . . . ,Hk in which H1 and Hk consist of a single
edge. If k = 2, then G is a serialization of two edges. If k > 2, we let G1 = H1,
G2 is the serialization of H2, . . . ,Hk−1, and G3 = Hk. The last case of the
lemma then applies.

We proceed with more terminology. An up-triangle abc is a right isosceles
triangle whose hypotenuse ab is horizontal and whose vertex c is above the
hypotenuse. We say that a series parallel graph (G, s, t) has an up-triangle
embedding if it can be embedded inside an up-triangle abc using the slopes from
S, in such a way that the two vertices s and t coincide with the two endpoints
of the hypotenuse of abc, and all the remaining vertices are either inside or on
the boundary of abc.

The concept of up-triangle embedding is motivated by the following lemma.

Lemma 4.2. Every (2, 2)-graph has an up-triangle embedding.

Proof. Let (G, s, t) be a (2, 2)-graph. We proceed by induction on the size of G.
If G is a single edge, it obviously has an up-triangle embedding. Assume now
that G has been obtained by serialization of a sequence of graphs G1, G2, . . . , Gk.
Since G has maximum degree 3, all the graphs Gi are necessarily (2, 2)-graphs.
By induction, all the graphs Gi have an up-triangle embedding. We can join
all these embeddings into a chain to obtain an up-triangle embedding of G (see
Figure 10).
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Figure 10: Serialization of up-triangle embeddings yields an up-triangle embed-
ding.
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Figure 11: Possible construction of a (2, 2)-graph G by parallelization of two
(1, 1)-graphs G1 and G2.

Assume now that G has been obtained by parallelization. Since G is a (2, 2)-
graph, it must have been obtained by parallelizing two (1, 1)-graphs G1 and G2.
By Lemma 4.1, for each of the two graphs Gi one of the following possibilities
holds:

• Gi is a single edge,

• Gi is a serialization of two edges G1
i and G2

i , or

• Gi is a serialization of three graphs G1
i , G

2
i and G3

i , where both G1
i and

G3
i are single edges, and G2

i is a (2, 2)-graph. By induction, we know that
G2
i has an up-triangle embedding.

In all the cases that may occur, we can obtain an up-triangle embedding of G
from the up-triangle embeddings of its subgraphs, as shown in Figure 11.

To deal with (3, 2)-graphs, we need a more general concept than up-triangle
embeddings. To this end, we introduce the following definitions.

An up-spade is a convex pentagon with vertices a, b, c, d, e in counterclockwise
order, such that the segment ab is decreasing, the segment bc is horizontal,
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Figure 12: An up-spade.

the segment cd is increasing, the segment ed is decreasing and the segment
ae is increasing. We say that a series-parallel graph (G, s, t) has an up-spade
embedding if it can be embedded into an up-spade abcde using the slopes from S,
in such a way that the vertex s coincides with the point a, the vertex t coincides
either with the point b or with the point c, and all the remaining vertices of
G are inside or on the boundary of the up-spade. Analogously, a reverse up-
spade embedding is an embedding of a series-parallel graph (G, s, t) in which s
coincides with b or c and t coincides with d. See Figure 12.

Lemma 4.3. Every (3, 2)-graph (G, s, t) has an up-spade embedding or an up-
triangle embedding. Similarly, every (2, 3)-graph (G, s, t) has a reverse up-spade
embedding or an up-triangle embedding.

Proof. It suffices to prove just the first part of the lemma; the other part is
symmetric. We again proceed by induction.

Let (G, s, t) be a (3, 2)-graph. If G is also a (2, 2)-graph, then G has an
up-triangle embedding by Lemma 4.2. Assume that G is not a (2, 2)-graph.
It is easy to see that in such case G has no up-triangle embedding, since it is
impossible to embed three edges into an up-triangle in such a way that they
meet in the endpoint of its hypotenuse.

Assume that G has been obtained by a reduced serialization of a sequence
of graphs G1, G2, . . . , Gk. It follows that the graph G2 is a single edge, because
otherwise the two graphs G1 and G2 would share a vertex of degree at least 4.
Let G+

3 be the (possibly empty) serialization of G3, . . . , Gk. If G+
3 is nonempty,

it has an up-triangle embedding by Lemma 4.2. The graph G1 has an up-spade
embedding by induction. We may combine these embeddings as shown in Fig-
ure 13 to obtain an up-spade embedding of G. If G+

3 is empty, the construction
is even simpler.

Assume now that G has been obtained by parallelization. Necessarily, it
was a parallelization of a (1, 1)-graph G1 and a (2, 1)-graph G2. The graph G2

can then be obtained by a (not necessarily reduced) serialization of a (2, 2)-
graph G1

2 and a single edge G2
2. The graph G1

2 has an up-triangle embed-
ding. Combining these embeddings, we obtain an up-spade embedding of G, as
shown in Figure 14. Note that we distinguish the possible structure of G1 using
Lemma 4.1.
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Figure 13: Constructing an up-spade embedding of a (3, 2)-graph by serialization
of a (3, 2)-graph G1, an edge G2, and a (2, 2)-graph G+
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Figure 14: Constructing an up-spade embedding of a (3, 2)-graph by paralleliza-
tion of a (1, 1)-graph G1, and a (2, 1)-graph G2.

We are now ready to give the proof of the main theorem of this section.

Proof of Theorem 1.2. Let (G, s, t) be a series-parallel graph of maximum de-
gree at most 3. We may assume that both s and t have degree 3, otherwise we
obtain the required embedding of G directly from Lemma 4.3.

Let us distinguish the possible constructions of G.
Assume first that G was obtained by a parallelization of three graphs G1, G2

and G3. Then all the three graphs Gi are (1, 1)-graphs. By Lemma 4.1, each Gi
is a single edge, a series of two edges, or a series of an edge G1

i , a (2, 2)-graph G2
i

and an edge G3
i . Since at most one of the three graphs G1, G2 and G3 consists

of a single edge, we may easily construct an embedding of G. A typical case is
shown in Figure 15, where G1 is assumed to be a path of length 2, G2 is a single
edge, and G3 is a serialization of an edge, a (2, 2)-graph, and another edge. The
remaining possibilities for the Gi’s are analogous.

Next, let us deal with the case when G is a reduced parallelization of a
(1, 1)-graph G1 and a (2, 2)-graph G2. Since the parallelization is reduced, we
know that G2 is obtained by serialization. Necessarily, at least one graph in the
reduced serialization of G2 consists of a single edge. From this, we conclude that
G2 can be obtained by a (not necessarily reduced) serialization of a (2, 2)-graph
G1

2, an edge G2
2, and a (2, 2)-graph G3

2. Using the fact that each (2, 2)-graph
has an up-triangle embedding, we construct the embedding of G as shown in
Figure 16.

Now consider the situation when G is obtained by a parallelization of a
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Figure 15: Example of a (3, 3)-graph obtained by a parallelization of three
graphs.
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Figure 16: Embedding of a (3, 3)-graph obtained by a reduced parallelization
of a (1, 1)-graph G1 and a (2, 2)-graph G2. The three cases correspond to the
three possible decompositions of G1 by Lemma 4.1.

(1, 2)-graph G1 and a (2, 1)-graph G2. We see that G1 must be a series of an
edge G1

1 and a (2, 2)-graph G2
1, while G2 is a series of a (2, 2)-graph G1

2 and an
edge G2

2. We then obtain an embedding of G by the construction depicted in
Figure 17.

It remains to consider the situation when G is obtained by serialization.
Necessarily, at least one graph in the reduced serialization of G consists of a
single edge. We then conclude that G can be expressed as a serialization of a
(3, 2)-graph G1, an edge G2, and a (2, 3)-graph G3. We know by Lemma 4.3
that G1 has an up-spade embedding and that G3 has a reverse up-spade em-
bedding. Furthermore, we may flip the embedding of G3 upside down, since
this operation preserves the set of slopes S. With the embedding of G1 and
the flipped embedding of G3, we easily obtain an embedding of G, as shown in
Figure 18.

This completes the proof of the main result of this section.
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Figure 17: Embedding of a (3, 3)-graph obtained by a reduced parallelization of
a (1, 2)-graph G1 and a (2, 1)-graph G2.
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Figure 18: Embedding of a (3, 3)-graph obtained by a serialization of a (3, 2)-
graph, an edge, and a (2, 3)-graph.

5 Conclusion and open problems

We have presented an upper bound of O(∆5) for the planar slope number of
planar partial 3-trees of maximum degree ∆. It is not obvious to us if the used
methods can be generalized to a larger class of graphs, such as planar partial k-
trees of bounded degree. Since a partial k-tree is a graph of tree-width at most
k, it would mean generalizing our result to graphs of a larger, yet constant,
tree-width.

In view of the results of Keszegh et al. [7] and Mukkamala and Szegedy [10]
for the slope number of (sub)cubic planar graphs, it would also be interesting
to find analogous bounds for the planar slope number.

This paper does not address lower bounds for the planar slope number in
terms of ∆; this might be another direction worth pursuing.
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most five slopes., Graph Drawing 2006, LNCS 4372 (2007), 114–125.

[8] B. Keszegh, J. Pach, D. Pálvölgyi: Drawing planar graphs of bounded degree
with few slopes, Graph Drawing 2010, to appear.

[9] J. Kratochv́ıl, M. Vaner: Planar and projective planar embeddings of partial
3-trees, in preparation (2010).

[10] Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with
four directions, Computational Geometry 42 (2009), 842–851.

[11] J. Pach, D. Pálvölgyi: Bounded-degree graphs can have arbitrarily large
slope numbers, Electr. J. Combin. 13 (2006), N1.

[12] G. A. Wade, J.-H. Chu: Drawability of complete graphs using a minimal
slope set, The Computer J. 37 (1994), 139–142.

34


	1 Introduction
	2 Preliminaries
	3 Plane partial 3-trees
	3.1 Proof of Proposition 3.3
	3.2 Proof of Proposition 3.4

	4 Series-parallel graphs of maximum degree 3
	5 Conclusion and open problems

