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Abstract

A 2-rainbow domination function of a graph G is a function f that assigns to each vertex
a set of colors chosen from the set {1,2}, such that for any v € V(G), f(v) = 0 implies
UuEN(v) f(u) ={1,2}. The 2-rainbow domination number v,2(G) of a graph G is the minimum
w(f) = Tyev|f(v)| over all such functions f. Let G be a connected graph of order [V (G)| = n >
3. We prove that v,2(G) < 3n/4 and we characterize the graphs achieving equality. We also
prove a lower bound for 2-rainbow domination number of a tree using its domination number.
Some other lower and upper bounds of v,2(G) in terms of diameter are also given.
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1 Introduction

We follow the notation of [I] in this paper. Specifically, let G = (V, E') be a graph with vertex set
V and edge set E. P, and C} denote a path and a cycle of order k, respectively. For any vertex
v € V, the open neighborhood of v is the set N(v) = {u € V | uv € E} and the closed neighborhood
is the set N[v] = N(v) U {v}. For a set S C V, the open neighborhood is N(S) = (J,cg N(v) and
the closed neighborhood is N[S] = N(S)US. The diameter of G is the maximum distance between
vertices of G, denoted by diam(G). A penultimate vertez is any neighbor of a vertex with degree
one (the vertex of degree one is also called a leaf in a tree), and a pendent edge is an edge incident
with a vertex of degree one. A star is a tree isomorphic to a bipartite graph K for £ > 1. A
double-star DS, s is a tree with diameter 3 in which there are exactly two penultimate vertices with
degrees 7 + 1 and s + 1, respectively. A set S C V is a dominating set of G if every vertex not in
S is adjacent to a vertex in S. The domination number of G, denoted by +(G), is the minimum
cardinality of a dominating set. A thorough study of domination concepts appears in [§]. For a
pair of graphs G and H, the Cartesian product GOH of G and H is the graph with vertex set
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V(G) x V(H), where two vertices are adjacent if and only if they are equal in one coordinate and
adjacent in the other.

Let f be a function that assigns to each vertex a set of colors chosen from the set {1,--- , k};
that is, f: V(G) — Z({1,--- ,k}). If for each vertex v € V(G) such that f(v) = (. we have

U f(u):{lv"' 7k}

ueN (v)

Then f is called a k-rainbow dominating function (kRDF) of G. The weight, w(f), of a function
[ is defined as w(f) = Xycv ()l f(v)]. The minimum weight of a k-rainbow dominating function is
called the k-rainbow domination number of G, which we denote by ~,1(G). We say that a function
fis a v,(G)-function if it is a kRDF and w(f) = 7,%(G). The concept of rainbow domination
was introduced in [4], and used in obtaining some bounds on the paired-domination number of
Cartesian products of graphs, see also [3]. A more ambitious motivation for the introduction of
this invariant was inspired by the following famous open problem [10]:

Vizing’s Conjecture. For any graphs G and H, v(GOH) > v(G)v(H).

In the language of domination of Cartesian products, Hartnell and Rall [7] obtained a couple of
observations about rainbow domination, for instance, min{|V (G)|,7(G)+k—2} < vx(G) < kv(G).
Rainbow domination of a graph G coincides with the ordinary domination of the Cartesian product
of G with the complete graph, in particular v,2(G) = v(GOK3) for any graph G [4]. Notably a
lower bound for the 2-rainbow domination number of a graph expressed in terms of its ordinary
domination could bring a new approach to the much desired proof of Vizing’s conjecture. In
particular, Bresar, Henning and Rall [4] proposed the following problem:

Problem 1. (Bresar, Henning and Rall [4]). For any graphs G and H, v,o(GOH) > ~(G)y(H).

A Roman domination function of a graph G is a function g : V' — {0,1,2} such that every
vertex with 0 has a neighbor with 2. The Roman domination number vyr(G) is the minimum of
g(V(G)) = Xyevg(v) over all such functions. In [12], the authors showed the following result:

Theorem 1. (Wu and Xing [12])Let G be a graph. Then v(G) < v2(G) < vr(G) < 2v(G).
In [I1], Wu showed the following weaker form of Problem [Il by Theorem [T}
Theorem 2. (Wu [I1]) For any graphs G and H, yr(GOH) > ~(G)y(H).

In fact, Both Problem [Ml and Theorem [2] are improvements of the result given by Clark and
Suen [2]:

Theorem 3. (Clark and Suen [2]) For any graphs G and H, 2v(GOH) > ~(G)v(H).

Nevertheless the concept of rainbow domination seems to be of independent interest as well
and it attracted several authors who provided structural and algorithmic results on this invariant
[5, [6, @, 13]. In particular, it was shown that the problem of deciding if a graph has a 2-rainbow
dominating function of a given weight is NP-complete even when restricted to bipartite graphs or
chordal graphs [5]. Also a few exact values and bounds for the 2-rainbow domination number were
given for some special classes of graphs, including generalized Petersen graphs [5l [13].



For a graph G, let f: V(G) — 2({1,2}) be a 2RDF of G and (Vp, Vi, V2, V2) be the ordered
partition of V(G) induced by f, where Vo = {v € V(G) | f(v) =0}, Vit = {v € V(GQ) | f(v) = {1}},
VE={v e V(@G| flv) ={2}} and Vo = {v € V(G) | f(v) = {1,2}}. Note that there exists
a 1-1 correspondence between the functions f : V(G) — Z2({1,2}) and the ordered partitions
(Vo, Vi, V2, Va) of V(G). Thus we will write f = (Vp, Vit, Vi, V) for simplicity.

In this paper we present some general bounds on the 2-rainbow domination number of a graph
that are expressed in terms of the order and domination number of a graph. More specifically, we
show that v,2(G) < 3|V(G)|/4 and we characterize the graphs achieving equality. We also prove
a lower bound for the 2-rainbow domination number of a tree using its domination number. The
latter lower bound goes in the direction of the original goal, mentioned above, to obtain a new
approach for establishing Vizing’s conjecture. Some other lower and upper bounds of v,2(G) in
terms of diameter are also given.

2 Main results

Our aim in this section is to determine some bounds on the 2-rainbow domination number of graphs.

2.1 Upper bounds

We first recall a few definitions. A subdivision of an edge uv is obtained by removing edge uwv,
adding a new vertex w, and adding edges uw and vw. Let ¢t > 2. A spider (wounded spider) is the
graph formed by subdividing some edges (at most t — 1 edges) of a star K;;. The unique center
of Ky, is also called the center of the spider. Only one vertex of the spider P, can be called the
center.

Proposition 1. Let G be a spider of order |V(G)| = n > 3, then v,2(G) < 3n/4. Moreover, the
equality only holds for a path of order four.

Proof. Let u be the center of G. Suppose u has z penultimate neighbors and y non-penultimate
neighbors. Then n =2z + y + 1.
If x >3 o0ry>2 we set

{1,2} v =u,
flv) = {1} or {2} v is at distance two to u,
0 otherwise.

Ifx=2and y <1, we set

{1} v=u,
fv)=1¢ {2} wvisaleaf,

0 otherwise.

In both cases, ,2(G) < w(f) < 3n/4.
If z =y =1, then G is a path of order four. Clearly, v,2(G) = 3 = 3n/4. |



Theorem 4. Let T be a tree of order n > 3, then v.o(T) < 3n/4.

Proof. We use induction on n. The base step handles trees with few vertices or small diameter. If
diam(T') = 2, then T has a dominating vertex, and ~,o(7") < 2. This beats n > 3. If diam(T) = 3,
then T has a dominating set of size two, which yields v,2(7") < 4. This handles the desired bound
for such trees with at least six vertices. When n =4 or n =5, then T is a spider and the theorem
holds by Proposition [l Moreover, if T is a path of order four, then it achieves this bound.

Hence we may assume that diam(T) > 4. Given a subtree 7" with n’ vertices, where n’ > 3,
the induction hypothesis yields a 2RDF f’ of 77 with weight at most 3n’/4. We find such 7" and
add a bit more weight to obtain a 2RDF f of T'. Let P be a longest path in 7" chosen to maximize
the degree of the penultimate vertex v on it, and let u be the non-leaf neighbor of v.

Case 1. dp(v) > 2.

We obtain T” by deleting v and its leaf neighbors. Define f on V(T) by letting f(z) = f'(z)
except for f(v) = {1,2} and f(z) = 0 for each leaf x adjacent to v. Since color set {1,2} on
v takes care of its neighbors, f is a 2RDF for T. Since diam(T) > 4, we have n’ > 3, and
w(f)=w(f)+2<3n'/4+2=3(n—-3)/4+2 < 3n/4.

Case 2. dp(v) =dp(u) = 2.

We obtain 7" by deleting u and v and the leaf neighbor [ of v. If n’ = 2, then T is a path
of order five and has a 2RDF of weight 3 < 3n/4. Otherwise, the induction hypothesis applies.
Define f on V(T) by letting f(z) = f'(z) except for f(v) ={1,2} and f(u) = f(I) = 0. Again f is
a 2RDF, and the computation w(f) < 3n/4 is the same as in Case 1.

Case 3. dp(v) =2 and dp(u) > 2.

By the choice of path P, every penultimate neighbor of u has degree 2.

Subcase 3.1.  Every neighbor of u is penultimate or a leaf.

Then diam(T) = 4 and T is a spider. By Proposition [Il v,2(T") < 3n/4, since T is not a path
of order four.

Subcase 3.2. There exists a neighbor t of uw which is neither penultimate nor a leaf.

Then T — tu contains two components 7’ and T” such that T” is a spider containing u. Now
[V(T")] = n’ > 3 and the induction hypothesis applies that v,2(7") < 3|V(1")|/4 = 3n’/4. By
Proposition [ v,2(7") < 3|V(T")|/4. Hence v2(T) < vp2(T") + vr2(T") < 3n/4. ]

Let Lj consist of the disjoint union of k£ copies of P, plus a path through the center vertices
of these copies, as illustrated in Figure Il Let G be a graph having an induced subgraph P, such
that only the center of Py can be adjacent to the vertices in G — Py, then every 2RDF of G must
have weight at least 3 on Pj. In Ly, there are k disjoint Py of this form, so v,2(Lg) > 3k = 3n/4.
Indeed, we can assemble such copies of P, in many ways, and this allows us to characterize the
trees achieving equality in Theorem [l

Theorem 5. Let T' be a tree of order n > 3. Then ~,2(T) = 3n/4 if and only if V(T) can be
partitioned into sets inducing Py such that the subgraph induced by the center vertices of these Py
is connected.



Figure 1: The tree Ls.

Proof. We have observed that if an induced subgraph H of G is isomorphic to Py, and its noncenter
vertices have no neighbors outside H in G, then every 2RDF of G must have weight at least 3 on
V(H). Thus in any tree with the structure described, weight at least 3 is needed on every P in
the specified partition. To show that equality requires this structure, we examine the cases more
closely in the proof of Theorem @l The proof is by induction on n. In the base cases and Cases 1
and 2, we produce a 2RDF with weight less than 3n/4 except for Py. Define w, T', T”, n’, t as in
the inductive part of Case 3. The equality holds only if n’ = n —4 and T” is a P, path. Equality
also requires y,2(T") = 3n’ /4, so by the induction hypothesis 7" has the specified form.

Next we show no copy of P, in T such that both the two penultimate vertices on P, with degree
at least three in T. Suppose there is a spanning subgraph H’ isomorphic to the graph shown in
Figure 2 then we give a 2RDF f for H' as follows:

{1,2} wv==xory,

flo)y=< {1} v & N[z]U N[y],
0 otherwise.
' Y

Figure 2: A spanning subgraph H’ of T'.

By Theorem [ v,2(T) < vpo(H') + vr2(T — H') < 8+ 3(n — 12)/4 < 3n/4, a contradiction. W

Recall that the corona HoK; of a graph H is obtained by attaching one pendent edge at each
vertex of H. Since the rainbow domination number does not increase when edges are added to a
graph, we infer from Theorem @ and [l the following general upper bound.



Corollary 1. Let G be a connected graph of order n > 3. Then ~,2(G) < 3n/4. Moreover, the
equality holds if and only if G is Py or C40Ky or V(G) can be partitioned into k copies of Py (k > 3)
and all the copies of Py can only be connected by their centers.

Proof. If G has the specified form, then for each copy of P; in the partition of V(G), every 2RDF
of G puts weight at least 3 on it.

Suppose 7,2(G) = 3n/4 and G is not a tree. Since adding edges can not increase the 2-rainbow
domination number, every spanning tree of G has the form specified in Theorem Bl If n = 4, then
G is Py. If n = 8, then it is easy to check that the only extremal graph is CyoK7. If n > 12, let
T be a spanning tree of G has the form specified in Theorem Bl G is not a tree, so there exists an
edge e € E(G) — E(T) such that T'U e contains a cycle C. Without loss of generality, assume e is
not an edge connecting two centers in T'. If C' contains no edge joining the centers in T, i.e., C' is
formed by some vertices of a copy Py, then a 2RDF with weight 3n/4 — 1 can be found, since we
only need to put weight 2 on the vertices of this copy of P, to take care of this copy of P;. If C
goes through an edges €’ joining the centers of two copies of Py in T, then v.o(T'Ue —€') < 3n/4
since tree T'U e — €’ is not the form specified in Theorem [l Hence ~,2(G) < 3n/4. The proof is
complete. [ |

The Vfollowing result for the 2-rainbow domination number of paths is given by Bresar and
Kraner Sumenjak.
Proposition 2. ([5]) v2(Py) = [ 5] + 1.

We conclude this subsection with an upper bound in terms of diameter.
Theorem 6. For any connected graph G on n vertices,

diam(G) — 1

2 J:

’Yr2(G) <n-— {

Furthermore, this bound is sharp.

Proof. Let P = vivg - Vgiqm(a)+1 be a diametral path in G and f be a vqo-function of P. By
Proposition 2] the weight of f is LWJ + 1. Define g : V(G) — Z({1,2}) by g(z)=f(x) for
x € V(P) and g(z) = {1} for z € V(G) — V(P). Obviously g is a 2RDF for G. Hence,

. diam(G) — 1
Y2(G) <w(f) 4+ (n — diam(G) — 1) =n — L%J
The family of all paths of even order achieves the bound, and the proof is complete. |

2.2 Lower bounds

We present a lower bound on the 2-rainbow domination number of a tree expressed in terms of
its domination number, maximum degree, and the number of its leaves and penultimate vertices.
Given a tree, T we denote by ¢(T") the number of leaves in T', and by p(7") the number of penultimate
vertices in T'.



Theorem 7. For any tree T on at least three vertices, v2(T) > v(T) + (%], where A(T)
denotes the maximum degree in T .

Proof. The proof is by induction on the order of T'. First we handle trees with small diameter. If
diam(T) < 2 then (T) = 1, v,2(T) = 2, and one can easily find that the required inequality holds.
Moreover, we have y,2(G) = ~(T) + [%1 precisely when T is isomorphic to Ky, for r > 1.
If diam(T') = 3 then another simple analysis shows that the inequality holds, and the equality is
achieved for DK, ¢ with r > s > 4 and DK, ; with r > 2.

Let T be a tree. By the above we may assume that diam(T) > 4. Let P be a diametral
path with the leaf w as one of its ends. Suppose v is the neighbor of w and wu is the neighbor
of v that is not a leaf (hence u also lies on P). Let L denote the vertex set containing v and all
leaves adjacent to v and F'(u) be all the possible color sets among all y,o-function of 7' — L. Then
YT —L)<~A(T)<~A(T—-L)+1,A(T)-1 < A(T—-L) < A(T)and p(T—L) < p(T) < p(T'—L)+1.

Case 1. dr(v) =2 and F(u) = {{1},{2},{1,2}}.

In this case v,2(T) = v2(T — L) + 1. By induction hypothesis vo(T' — L) > v(T — L) +
(%] We finally get

Yr2(T) = ~o(T —L)+1
0T —-L)—p(T-1L)

> (7 - 1)+ [
> o)+ DI
> o)+ D)

Since if p(T'— L) = p(T), then /(T — L) = ¢(T). Otherwise p(T'— L) = p(T) — 1 and {(T' — L) =
¢(T) — 1. The last inequality is obtained.

Case 2. dp(v) >3 or dp(v) =2 and F(u) = {0}.
In this case v,2(T) = Yp2(T — L) + 2. Then we get

Yr2(T) = (T —L)+2
T — L) —p(T — L)

> —
(T —1L)—p(T— L)
>
UT) —p(T)
> —_— .
In the last inequality we use that the excess of leaves in T" with respect to 1" — L does not go beyond
A(T). |

In the above proof we mentioned several examples of trees with diameter at most 3 that achieve
the bound in Theorem [[I We pose a characterization of all these extremal graphs as an open
problem.



Next we give a lower bound of the 2-rainbow domination number of an arbitrary graph in terms
of its diameter.

Theorem 8. For any connected graph G, v,2(G) > [W}

Proof. Let f = (Vp, V', Vi, V2) be a 2RDF of G. Consider an arbitrary path of length diam(G).
This diametral path includes at most two edges from the induced subgraph (N[v]) for each vertex
v € VPUV2UV;. Furthermore, if vertex v € Vj, then it is adjacent to a vertex with color set {1, 2},
or adjacent to two different vertices with color set {1} and {2}, respectively. Hence excluding the
edges mentioned above, the diametral path includes at most min{|Vi!|,|V2|} +|Vz2| — 1 other edges
joining the neighborhoods of the vertices of Vll U V12 U V5. Therefore

diam(G) < 2(|V]'[+ V2| + [Va]) + min{|V}!|, [V} + |Va| — 1
< 2V + VR + [Val) + IV + [V2])/2 + Vo — 1
= 5/2(Vi' 1+ VP2 +2V2]) — 2|Va| — 1
< 5/2’7r2(G) - L
Then the desired result follows. [ |

Clearly, the bound of Theorem [ is sharp, e.g. for GG isomorphic to P3 or Cy.
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