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Abstract

A 2-rainbow domination function of a graph G is a function f that assigns to each vertex
a set of colors chosen from the set {1, 2}, such that for any v ∈ V (G), f(v) = ∅ implies
⋃

u∈N(v) f(u) = {1, 2}. The 2-rainbow domination number γr2(G) of a graph G is the minimum

w(f) = Σv∈V |f(v)| over all such functions f . Let G be a connected graph of order |V (G)| = n ≥
3. We prove that γr2(G) ≤ 3n/4 and we characterize the graphs achieving equality. We also
prove a lower bound for 2-rainbow domination number of a tree using its domination number.
Some other lower and upper bounds of γr2(G) in terms of diameter are also given.
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1 Introduction

We follow the notation of [1] in this paper. Specifically, let G = (V,E) be a graph with vertex set
V and edge set E. Pk and Ck denote a path and a cycle of order k, respectively. For any vertex
v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E} and the closed neighborhood

is the set N [v] = N(v) ∪ {v}. For a set S ⊆ V , the open neighborhood is N(S) =
⋃

v∈S N(v) and
the closed neighborhood is N [S] = N(S)∪S. The diameter of G is the maximum distance between
vertices of G, denoted by diam(G). A penultimate vertex is any neighbor of a vertex with degree
one (the vertex of degree one is also called a leaf in a tree), and a pendent edge is an edge incident
with a vertex of degree one. A star is a tree isomorphic to a bipartite graph K1,k for k ≥ 1. A
double-star DSr,s is a tree with diameter 3 in which there are exactly two penultimate vertices with
degrees r + 1 and s + 1, respectively. A set S ⊆ V is a dominating set of G if every vertex not in
S is adjacent to a vertex in S. The domination number of G, denoted by γ(G), is the minimum
cardinality of a dominating set. A thorough study of domination concepts appears in [8]. For a
pair of graphs G and H, the Cartesian product G�H of G and H is the graph with vertex set
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V (G) × V (H), where two vertices are adjacent if and only if they are equal in one coordinate and
adjacent in the other.

Let f be a function that assigns to each vertex a set of colors chosen from the set {1, · · · , k};
that is, f : V (G) → P({1, · · · , k}). If for each vertex v ∈ V (G) such that f(v) = ∅. we have

⋃

u∈N(v)

f(u) = {1, · · · , k}.

Then f is called a k-rainbow dominating function (kRDF) of G. The weight, w(f), of a function
f is defined as w(f) = Σv∈V (G)|f(v)|. The minimum weight of a k-rainbow dominating function is
called the k-rainbow domination number of G, which we denote by γrk(G). We say that a function
f is a γrk(G)-function if it is a kRDF and w(f) = γrk(G). The concept of rainbow domination
was introduced in [4], and used in obtaining some bounds on the paired-domination number of
Cartesian products of graphs, see also [3]. A more ambitious motivation for the introduction of
this invariant was inspired by the following famous open problem [10]:

Vizing’s Conjecture. For any graphs G and H, γ(G�H) ≥ γ(G)γ(H).

In the language of domination of Cartesian products, Hartnell and Rall [7] obtained a couple of
observations about rainbow domination, for instance, min{|V (G)|, γ(G)+k−2} ≤ γrk(G) ≤ kγ(G).
Rainbow domination of a graph G coincides with the ordinary domination of the Cartesian product
of G with the complete graph, in particular γr2(G) = γ(G�K2) for any graph G [4]. Notably a
lower bound for the 2-rainbow domination number of a graph expressed in terms of its ordinary
domination could bring a new approach to the much desired proof of Vizing’s conjecture. In
particular, Brešar, Henning and Rall [4] proposed the following problem:

Problem 1. (Brešar, Henning and Rall [4]). For any graphs G and H, γr2(G�H) ≥ γ(G)γ(H).

A Roman domination function of a graph G is a function g : V → {0, 1, 2} such that every
vertex with 0 has a neighbor with 2. The Roman domination number γR(G) is the minimum of
g(V (G)) = Σv∈V g(v) over all such functions. In [12], the authors showed the following result:

Theorem 1. (Wu and Xing [12])Let G be a graph. Then γ(G) ≤ γr2(G) ≤ γR(G) ≤ 2γ(G).

In [11], Wu showed the following weaker form of Problem 1 by Theorem 1:

Theorem 2. (Wu [11])For any graphs G and H, γR(G�H) ≥ γ(G)γ(H).

In fact, Both Problem 1 and Theorem 2 are improvements of the result given by Clark and
Suen [2]:

Theorem 3. (Clark and Suen [2]) For any graphs G and H, 2γ(G�H) ≥ γ(G)γ(H).

Nevertheless the concept of rainbow domination seems to be of independent interest as well
and it attracted several authors who provided structural and algorithmic results on this invariant
[5, 6, 9, 13]. In particular, it was shown that the problem of deciding if a graph has a 2-rainbow
dominating function of a given weight is NP-complete even when restricted to bipartite graphs or
chordal graphs [5]. Also a few exact values and bounds for the 2-rainbow domination number were
given for some special classes of graphs, including generalized Petersen graphs [5, 13].
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For a graph G, let f : V (G) → P({1, 2}) be a 2RDF of G and (V0, V
1
1 , V

2
1 , V2) be the ordered

partition of V (G) induced by f , where V0 = {v ∈ V (G) | f(v) = ∅}, V 1
1 = {v ∈ V (G) | f(v) = {1}},

V 2
1 = {v ∈ V (G) | f(v) = {2}} and V2 = {v ∈ V (G) | f(v) = {1, 2}}. Note that there exists

a 1-1 correspondence between the functions f : V (G) → P({1, 2}) and the ordered partitions
(V0, V

1
1 , V

2
1 , V2) of V (G). Thus we will write f = (V0, V

1
1 , V

2
1 , V2) for simplicity.

In this paper we present some general bounds on the 2-rainbow domination number of a graph
that are expressed in terms of the order and domination number of a graph. More specifically, we
show that γr2(G) ≤ 3|V (G)|/4 and we characterize the graphs achieving equality. We also prove
a lower bound for the 2-rainbow domination number of a tree using its domination number. The
latter lower bound goes in the direction of the original goal, mentioned above, to obtain a new
approach for establishing Vizing’s conjecture. Some other lower and upper bounds of γr2(G) in
terms of diameter are also given.

2 Main results

Our aim in this section is to determine some bounds on the 2-rainbow domination number of graphs.

2.1 Upper bounds

We first recall a few definitions. A subdivision of an edge uv is obtained by removing edge uv,
adding a new vertex w, and adding edges uw and vw. Let t ≥ 2. A spider (wounded spider) is the
graph formed by subdividing some edges (at most t − 1 edges) of a star K1,t. The unique center
of K1,t is also called the center of the spider. Only one vertex of the spider P4 can be called the
center.

Proposition 1. Let G be a spider of order |V (G)| = n ≥ 3, then γr2(G) ≤ 3n/4. Moreover, the

equality only holds for a path of order four.

Proof. Let u be the center of G. Suppose u has x penultimate neighbors and y non-penultimate
neighbors. Then n = 2x+ y + 1.

If x ≥ 3 or y ≥ 2, we set

f(v) =















{1, 2} v = u,

{1} or {2} v is at distance two to u,

∅ otherwise.

If x = 2 and y ≤ 1, we set

f(v) =















{1} v = u,

{2} v is a leaf,

∅ otherwise.

In both cases, γr2(G) ≤ w(f) < 3n/4.
If x = y = 1, then G is a path of order four. Clearly, γr2(G) = 3 = 3n/4.
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Theorem 4. Let T be a tree of order n ≥ 3, then γr2(T ) ≤ 3n/4.

Proof. We use induction on n. The base step handles trees with few vertices or small diameter. If
diam(T ) = 2, then T has a dominating vertex, and γr2(T ) ≤ 2. This beats n ≥ 3. If diam(T ) = 3,
then T has a dominating set of size two, which yields γr2(T ) ≤ 4. This handles the desired bound
for such trees with at least six vertices. When n = 4 or n = 5, then T is a spider and the theorem
holds by Proposition 1. Moreover, if T is a path of order four, then it achieves this bound.

Hence we may assume that diam(T ) ≥ 4. Given a subtree T ′ with n′ vertices, where n′ ≥ 3,
the induction hypothesis yields a 2RDF f ′ of T ′ with weight at most 3n′/4. We find such T ′ and
add a bit more weight to obtain a 2RDF f of T . Let P be a longest path in T chosen to maximize
the degree of the penultimate vertex v on it, and let u be the non-leaf neighbor of v.

Case 1. dT (v) > 2.

We obtain T ′ by deleting v and its leaf neighbors. Define f on V (T ) by letting f(x) = f ′(x)
except for f(v) = {1, 2} and f(x) = ∅ for each leaf x adjacent to v. Since color set {1, 2} on
v takes care of its neighbors, f is a 2RDF for T . Since diam(T ) ≥ 4, we have n′ ≥ 3, and
w(f) = w(f ′) + 2 ≤ 3n′/4 + 2 = 3(n − 3)/4 + 2 < 3n/4.

Case 2. dT (v) = dT (u) = 2.

We obtain T ′ by deleting u and v and the leaf neighbor l of v. If n′ = 2, then T is a path
of order five and has a 2RDF of weight 3 < 3n/4. Otherwise, the induction hypothesis applies.
Define f on V (T ) by letting f(x) = f ′(x) except for f(v) = {1, 2} and f(u) = f(l) = ∅. Again f is
a 2RDF, and the computation w(f) < 3n/4 is the same as in Case 1.

Case 3. dT (v) = 2 and dT (u) > 2.

By the choice of path P , every penultimate neighbor of u has degree 2.

Subcase 3.1. Every neighbor of u is penultimate or a leaf.

Then diam(T ) = 4 and T is a spider. By Proposition 1, γr2(T ) < 3n/4, since T is not a path
of order four.

Subcase 3.2. There exists a neighbor t of u which is neither penultimate nor a leaf.

Then T − tu contains two components T ′ and T ′′ such that T ′′ is a spider containing u. Now
|V (T ′)| = n′ ≥ 3 and the induction hypothesis applies that γr2(T

′) ≤ 3|V (T ′)|/4 = 3n′/4. By
Proposition 1, γr2(T

′′) ≤ 3|V (T ′′)|/4. Hence γr2(T ) ≤ γr2(T
′) + γr2(T

′′) ≤ 3n/4.

Let Lk consist of the disjoint union of k copies of P4 plus a path through the center vertices
of these copies, as illustrated in Figure 1. Let G be a graph having an induced subgraph P4 such
that only the center of P4 can be adjacent to the vertices in G − P4, then every 2RDF of G must
have weight at least 3 on P4. In Lk, there are k disjoint P4 of this form, so γr2(Lk) ≥ 3k = 3n/4.
Indeed, we can assemble such copies of P4 in many ways, and this allows us to characterize the
trees achieving equality in Theorem 4.

Theorem 5. Let T be a tree of order n ≥ 3. Then γr2(T ) = 3n/4 if and only if V (T ) can be

partitioned into sets inducing P4 such that the subgraph induced by the center vertices of these P4

is connected.
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Figure 1: The tree L5.

Proof. We have observed that if an induced subgraph H of G is isomorphic to P4, and its noncenter
vertices have no neighbors outside H in G, then every 2RDF of G must have weight at least 3 on
V (H). Thus in any tree with the structure described, weight at least 3 is needed on every P4 in
the specified partition. To show that equality requires this structure, we examine the cases more
closely in the proof of Theorem 4. The proof is by induction on n. In the base cases and Cases 1
and 2, we produce a 2RDF with weight less than 3n/4 except for P4. Define u, T ′, T ′′, n′, t as in
the inductive part of Case 3. The equality holds only if n′ = n − 4 and T ′′ is a P4 path. Equality
also requires γr2(T

′) = 3n′/4, so by the induction hypothesis T ′ has the specified form.
Next we show no copy of P4 in T such that both the two penultimate vertices on P4 with degree

at least three in T . Suppose there is a spanning subgraph H ′ isomorphic to the graph shown in
Figure 2, then we give a 2RDF f for H ′ as follows:

f(v) =















{1, 2} v = x or y,

{1} v /∈ N [x] ∪N [y],

∅ otherwise.

r r r

r r r

r r r

r r r

x

y

Figure 2: A spanning subgraph H ′ of T .

By Theorem 4, γr2(T ) ≤ γr2(H
′) + γr2(T −H ′) ≤ 8 + 3(n − 12)/4 < 3n/4, a contradiction.

Recall that the corona HoK1 of a graph H is obtained by attaching one pendent edge at each
vertex of H. Since the rainbow domination number does not increase when edges are added to a
graph, we infer from Theorem 4 and 5 the following general upper bound.
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Corollary 1. Let G be a connected graph of order n ≥ 3. Then γr2(G) ≤ 3n/4. Moreover, the

equality holds if and only if G is P4 or C4oK1 or V (G) can be partitioned into k copies of P4 (k ≥ 3)
and all the copies of P4 can only be connected by their centers.

Proof. If G has the specified form, then for each copy of P4 in the partition of V (G), every 2RDF
of G puts weight at least 3 on it.

Suppose γr2(G) = 3n/4 and G is not a tree. Since adding edges can not increase the 2-rainbow
domination number, every spanning tree of G has the form specified in Theorem 5. If n = 4, then
G is P4. If n = 8, then it is easy to check that the only extremal graph is C4oK1. If n ≥ 12, let
T be a spanning tree of G has the form specified in Theorem 5. G is not a tree, so there exists an
edge e ∈ E(G) − E(T ) such that T ∪ e contains a cycle C. Without loss of generality, assume e is
not an edge connecting two centers in T . If C contains no edge joining the centers in T , i.e., C is
formed by some vertices of a copy P4, then a 2RDF with weight 3n/4 − 1 can be found, since we
only need to put weight 2 on the vertices of this copy of P4 to take care of this copy of P4. If C
goes through an edges e′ joining the centers of two copies of P4 in T , then γr2(T ∪ e − e′) < 3n/4
since tree T ∪ e − e′ is not the form specified in Theorem 5. Hence γr2(G) < 3n/4. The proof is
complete.

The following result for the 2-rainbow domination number of paths is given by Brešar and
Kraner Šumenjak.

Proposition 2. ([5]) γr2(Pn) = ⌊n2 ⌋+ 1.

We conclude this subsection with an upper bound in terms of diameter.

Theorem 6. For any connected graph G on n vertices,

γr2(G) ≤ n− ⌊
diam(G) − 1

2
⌋.

Furthermore, this bound is sharp.

Proof. Let P = v1v2 · · · vdiam(G)+1 be a diametral path in G and f be a γr2-function of P . By

Proposition 2, the weight of f is ⌊diam(G)+1
2 ⌋ + 1. Define g : V (G) → P({1, 2}) by g(x)=f(x) for

x ∈ V (P ) and g(x) = {1} for x ∈ V (G)− V (P ). Obviously g is a 2RDF for G. Hence,

γr2(G) ≤ w(f) + (n− diam(G) − 1) = n− ⌊
diam(G) − 1

2
⌋

The family of all paths of even order achieves the bound, and the proof is complete.

2.2 Lower bounds

We present a lower bound on the 2-rainbow domination number of a tree expressed in terms of
its domination number, maximum degree, and the number of its leaves and penultimate vertices.
Given a tree, T we denote by ℓ(T ) the number of leaves in T , and by p(T ) the number of penultimate
vertices in T .
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Theorem 7. For any tree T on at least three vertices, γr2(T ) ≥ γ(T ) + ⌈ ℓ(T )−p(T )
∆(T ) ⌉, where ∆(T )

denotes the maximum degree in T .

Proof. The proof is by induction on the order of T . First we handle trees with small diameter. If
diam(T ) ≤ 2 then γ(T ) = 1, γr2(T ) = 2, and one can easily find that the required inequality holds.

Moreover, we have γr2(G) = γ(T ) + ⌈ ℓ(T )−p(T )
∆(T ) ⌉ precisely when T is isomorphic to K1,r for r > 1.

If diam(T ) = 3 then another simple analysis shows that the inequality holds, and the equality is
achieved for DKr,s with r ≥ s ≥ 4 and DKr,1 with r ≥ 2.

Let T be a tree. By the above we may assume that diam(T ) ≥ 4. Let P be a diametral
path with the leaf w as one of its ends. Suppose v is the neighbor of w and u is the neighbor
of v that is not a leaf (hence u also lies on P ). Let L denote the vertex set containing v and all
leaves adjacent to v and F (u) be all the possible color sets among all γr2-function of T − L. Then
γ(T −L) ≤ γ(T ) ≤ γ(T −L)+1, ∆(T )−1 ≤ ∆(T −L) ≤ ∆(T ) and p(T −L) ≤ p(T ) ≤ p(T−L)+1.

Case 1. dT (v) = 2 and F (u) = {{1}, {2}, {1, 2}}.

In this case γr2(T ) = γr2(T − L) + 1. By induction hypothesis γr2(T − L) ≥ γ(T − L) +

⌈ ℓ(T−L)−p(T−L)
∆(T−L) ⌉. We finally get

γr2(T ) = γr2(T − L) + 1

≥ γ(T − L) + ⌈
ℓ(T − L)− p(T − L)

∆(T − L)
⌉+ 1

≥ γ(T ) + ⌈
ℓ(T − L)− p(T − L)

∆(T − L)
⌉

≥ γ(T ) + ⌈
ℓ(T )− p(T )

∆(T )
⌉.

Since if p(T − L) = p(T ), then ℓ(T − L) = ℓ(T ). Otherwise p(T − L) = p(T ) − 1 and ℓ(T − L) =
ℓ(T )− 1. The last inequality is obtained.

Case 2. dT (v) ≥ 3 or dT (v) = 2 and F (u) = {∅}.

In this case γr2(T ) = γr2(T − L) + 2. Then we get

γr2(T ) = γr2(T − L) + 2

≥ γ(T − L) + ⌈
ℓ(T − L)− p(T − L)

∆(T − L)
⌉+ 2

≥ γ(T ) + ⌈
ℓ(T − L)− p(T − L)

∆(T − L)
⌉+ 1

≥ γ(T ) + ⌈
ℓ(T )− p(T )

∆(T )
⌉.

In the last inequality we use that the excess of leaves in T with respect to T −L does not go beyond
∆(T ).

In the above proof we mentioned several examples of trees with diameter at most 3 that achieve
the bound in Theorem 7. We pose a characterization of all these extremal graphs as an open
problem.
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Next we give a lower bound of the 2-rainbow domination number of an arbitrary graph in terms
of its diameter.

Theorem 8. For any connected graph G, γr2(G) ≥ ⌈2diam(G)+2
5 ⌉.

Proof. Let f = (V0, V
1
1 , V

2
1 , V2) be a 2RDF of G. Consider an arbitrary path of length diam(G).

This diametral path includes at most two edges from the induced subgraph 〈N [v]〉G for each vertex
v ∈ V 1

1 ∪V 2
1 ∪V2. Furthermore, if vertex v ∈ V0, then it is adjacent to a vertex with color set {1, 2},

or adjacent to two different vertices with color set {1} and {2}, respectively. Hence excluding the
edges mentioned above, the diametral path includes at most min{|V 1

1 |, |V
2
1 |}+ |V2| − 1 other edges

joining the neighborhoods of the vertices of V 1
1 ∪ V 2

1 ∪ V2. Therefore

diam(G) ≤ 2(|V 1
1 |+ |V 2

1 |+ |V2|) + min{|V 1
1 |, |V

2
1 |}+ |V2| − 1

≤ 2(|V 1
1 |+ |V 2

1 |+ |V2|) + (|V 1
1 |+ |V 2

1 |)/2 + |V2| − 1

= 5/2(|V 1
1 |+ |V 2

1 |+ 2|V2|)− 2|V2| − 1

≤ 5/2γr2(G)− 1.

Then the desired result follows.

Clearly, the bound of Theorem 8 is sharp, e.g. for G isomorphic to P3 or C4.
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