Silver block intersection graphs of Steiner 2-designs

A. Ahadi, Nazli Besharati, ${ }^{\dagger}$ E.S. Mahmoodian ${ }^{\ddagger}$ M. Mortezaeefar ${ }^{\S}$

Abstract

For a block design \mathcal{D}, a series of block intersection graphs G_{i}, or i - $\operatorname{BIG}(\mathcal{D}), i=$ $0, \ldots, k$ is defined in which the vertices are the blocks of \mathcal{D}, with two vertices adjacent if and only if the corresponding blocks intersect in exactly i elements. A silver graph G is defined with respect to a maximum independent set of G, called an α-set. Let G be an r-regular graph and c be a proper $(r+1)$-coloring of G. A vertex x in G is said to be rainbow with respect to c if every color appears in the closed neighborhood $N[x]=N(x) \cup\{x\}$. Given an α-set I of G, a coloring c is said to be silver with respect to I if every $x \in I$ is rainbow with respect to c. We say G is silver if it admits a silver coloring with respect to some I. Finding silver graphs is of interest, for a motivation and progress in silver graphs see [7] and [15]. We investigate conditions for $0-\operatorname{BIG}(\mathcal{D})$ and 1-BIG (\mathcal{D}) of Steiner 2-designs $\mathcal{D}=S(2, k, v)$ to be silver. keywords: Silver coloring, Block intersection graph, Steiner 2-design, and Steiner triple system

Subject class: 05C15, 05B05, 05B07, and 05C69

1 Introduction and preliminaries

We follow standard notations and concepts from design theory. For these, one may refer to, for example, [5] and [14].

[^0]A 2- (v, k, λ) design $(2<k<v)$ is a pair (V, \mathcal{B}) where V is a v-set and \mathcal{B} is a collection of $b \quad k$-subsets of V (blocks) such that any 2 -subset of V is contained in exactly λ blocks. A 2- $(v, k, 1)$ design is called Steiner 2-design and is denoted by $S(2, k, v)$. An $S(2,3, v)$ is a Steiner triple system or $\operatorname{STS}(v)$. A design with $b=v$ is a symmetric (v, k, λ)-design. A symmetric $S(2, k, v)$ is called a projective plane. If k is the size of the blocks then $n:=k-1$ is called the order of the plane. This design is usually denoted by $\operatorname{PG}(2, n)$. A $2-\left(n^{2}, n, 1\right)$ design is called an affine plane. For such design we use the notation $\operatorname{AG}(2, n)$.

A partial parallel class is a set of blocks that contains no element of the design more than once. A parallel class (PC) or a resolution class in a design is a set of blocks that partition the set of elements V. A near parallel class is a partial parallel class missing a single element. A resolvable balanced incomplete block design is a $2-(v, k, \lambda)$ design whose blocks can be partitioned into parallel classes. The notation $\operatorname{RBIBD}(v, k, \lambda)$ is commonly used. An affine plane of order n is an $\operatorname{RBIBD}\left(n^{2}, n, 1\right)$. A resolvable $\operatorname{STS}(v)$ together with a resolution of its blocks is called a Kirkman triple system, $\operatorname{KTS}(v)$.

Given a design \mathcal{D}, a series of block intersection graphs G_{i}, or i-BIG, $i=0, \ldots, k$ can be defined in which the vertices are the blocks of \mathcal{D}, with two vertices are adjacent if and only if the corresponding blocks intersect in exactly i elements.

Example 1 For STS(7), 0-BIG is empty graph and 1-BIG is K_{7}. For $\operatorname{STS}(9)$, 0-BIG is disconnected and consists of four disjoint K_{3} 's and 1-BIG is $K_{3,3,3,3}$.

The study of $i-\operatorname{BIG}(\mathcal{D})$ is useful in characterizing block designs. Some researchers have studied properties of various kinds of block intersection graphs, see for example [1], [2], 4], [8], 9], [10], [16], and [17].

A graph of order v is strongly regular, denoted by $\operatorname{SRG}(v, k, \lambda, \mu)$, whenever it is not complete or edgeless and, (i) each vertex is adjacent to k vertices, (ii) for each pair of adjacent vertices there are λ vertices adjacent to both, (iii) for each pair of non-adjacent vertices there are μ vertices adjacent to both.

Remark 1 Let G_{i} be the i-block intersection graph of an $S(2, k, v)$. Then for each $i=$ $2,3, \ldots, k$, the graph G_{i} is empty. So we consider only G_{0} and G_{1}. Graphs G_{0} and G_{1} are complements of each other. G_{1} is an $\operatorname{SRG}\left(b, k(r-1), r-2+(k-1)^{2}, k^{2}\right)$ and G_{0} is an $\operatorname{SRG}\left(b, b-k(r-1)-1, b-2 k(r-1)+k^{2}-2, b-2 k r+k^{2}+r-1\right)$ (see Chapter 21 of (14)).

In a graph $G=(V, E)$ an independent set is a subset of vertices no two of which are adjacent. The independence number $\alpha(G)$ is the cardinality of a largest set of independent vertices. We refer to any maximum independent set of a graph as an α-set. Let c be a proper $(r+1)$ coloring of an r-regular graph G. A vertex x in G is said to be rainbow with respect to c if
every color appears in the closed neighborhood $N[x]=N(x) \cup\{x\}$. Given an α-set I of G the coloring c is said to be silver with respect to I if every $x \in I$ is rainbow with respect to c. We say G is silver if it admits a silver coloring with respect to some α-set. If all vertices of G are rainbow, then c is called a totally silver coloring of G and G is said to be totally silver. Note that the definition of silver coloring depends on the chosen α-set. For example in Figure 1, a graph G is shown which is silver when the α-set (the bold vertices) is taken as in the left, but it does not have any silver coloring with the α-set taken as on the right hand side.

Figure 1: A silver coloring of a graph

There are many different version of rainbow colorings in the literature, for example see [3], [11], [12], and [13]. For a motivation and progress in silver graphs see [7] and [15]. In fact silver graphs are closely related to a concept in graph coloring, called defining set. Let c be a proper k-coloring of a graph G and let $S \subseteq V(G)$. If c is the only extension of $\left.c\right|_{S}$ to a proper k-coloring of G, then S is called a defining set of c. The minimum size of a defining set among all k-colorings of G is called a defining number and denoted by $\operatorname{def}(G, k)$. A more general survey of defining sets in combinatorics appears in [6]. Let G be an r-regular graph, then G is silver if and only if $\operatorname{def}(G, r+1)=|V(G)|-\alpha(G)$. In [15] an open problem is raised:

Question 1 Find classes of r-regular graphs G, for which $\operatorname{def}(G, r+1)=|V(G)|-\alpha(G)$, i.e. determine classes of all silver graphs.

A silver cube is a silver graph $G=K_{n}^{d}$, the Cartesian power of the complete graph K_{n}. Silver cubes are generalizations of silver matrices, which are $n \times n$ matrices where each symbol in $\{1,2, \ldots, 2 n-1\}$ appears in either the i-th row or the i-th column of the matrix. In [7] some algebraic constructions and a product construction of silver cubes are given. They show the relation of these cubes to codes over finite fields, dominating sets of a graph, Latin squares, and finite geometry. In particular the Hamming codes are used to produce a totally silver cube and the bound for the best binary codes is used to prove the non-existence of silver cubes for a large class of parameters with $n=2$.

To study Question 1, here we consider i-BIGs of designs. First we give some examples of designs with silver i-BIGs.

Example 2 In any symmetric (v, k, λ)-design \mathcal{D}, every two distinct blocks have exactly λ elements in common, so for $0 \leq i \leq k, i \neq \lambda$, i - $\operatorname{BIG}(\mathcal{D})$ is empty graph, and $\lambda-\operatorname{BIG}(\mathcal{D})$ is complete graph. Hence all of these graphs are totally silver. Specifically for each k and $0 \leq i \leq k+1, i-\operatorname{BIG}\left(S\left(2, k+1, k^{2}+k+1\right)\right)$ is totally silver.

If \mathcal{D} is an $\operatorname{AG}(2, n)$, then $G_{0}=0-\operatorname{BIG}(\mathcal{D})$ consists of $(n+1)$ disjoint K_{n} 's, so it is totally silver, and $G_{1}=1-\mathrm{BIG}(\mathcal{D})=K_{\underbrace{n, n, \ldots, n}_{n+1}}^{n,}$, is silver.

In this paper we prove the following results: If an $S(2, k, v)$ contains a parallel class, then a necessary condition for $1-\operatorname{BIG}(S(2, k, v))$ to be silver is $k^{2} \mid v$. For each admissible $v=9 m$ we construct a $\mathcal{D}_{1}=\operatorname{KTS}(v)$, such that $1-\operatorname{BIG}\left(\mathcal{D}_{1}\right)$ is silver. And in general for each k and v where an $\operatorname{AG}(2, k)$ and an $\operatorname{RBIBD}(v, k, 1)$ exist we construct a $\mathcal{D}^{*}=\operatorname{RBIBD}(k v, k, 1)$ such that $1-\operatorname{BIG}\left(\mathcal{D}^{*}\right)$ is silver. Also a lower bound for $\alpha\left(G_{1}\right)$ is given in order for a $1-\operatorname{BIG}(S(2, k, v))$ to be silver. For any admissible v, the existence of a silver $1-\operatorname{BIG}(S(2, k, v))$ which possesses a maximum possible independent set, i.e. of size $\frac{v}{k}$ or $\frac{v-1}{k}$, is settled. We prove that for $v>k^{3}-2 k^{2}+2 k$ there is no silver $0-\operatorname{BIG}(S(2, k, v))$. Also we settle the question of existence of silver 0-BIG(STS $(v))$ for all admissible v.

Since every vertex of i - $\operatorname{BIG}(\mathcal{D})$ corresponds to a block of \mathcal{D}, we will mostly refer to them as "blocks" rather than vertices. The following notation will be used in our discussion. Let G be a graph and I be an α-set of G. For each $i=1, \ldots,|I|$, we let

$$
X_{i}:=\{u \mid u \in V(G) \backslash I, u \text { is adjacent to exactly } i \text { vertices of } I\}
$$

2 One block intersection graphs

The following is a necessary condition for $1-\operatorname{BIG}(\mathcal{D})$ of a Steiner system $\mathcal{D}=S(2, k, v)$ with $\alpha\left(G_{1}\right)=\frac{v}{k}$, to be silver.

Theorem 1 Let \mathcal{D} be an $S(2, k, v)$, which has a parallel class, and let G_{1} be 1-BIG(D). A necessary condition for G_{1} to be silver is $k^{2} \mid v$.

Proof. G_{1} is a $\frac{k(v-k)}{(k-1)}$-regular graph. Let I be an α-set, and assume that G_{1} has a silver coloring with respect to I with C as the set of colors. We have $|I|=\frac{v}{k}$, and $|C|=\frac{k(v-k)}{k-1}+1$. Since $|C|>|I|$, a color like ι exists that is not used in I. The vertices of I are rainbow, and each vertex with color ι from $V\left(G_{1}\right) \backslash I$, must be adjacent to k distinct vertices of I. Therefore $|I|$ must be a multiple of k, which implies $k^{2} \mid v$.

Example 3 There are 80 nonisomorphic $\operatorname{STS}(15)$ s, where 70 of them have parallel class (see [5], page 32). So by Theorem 1, none of those 70 has silver G_{1}.

By Theorem 1, if v is not a multiple of 9 , then no silver $1-\operatorname{BIG}(\operatorname{KTS}(v))$ exists. In the next lemma we show that for the case $9 \mid v$, when a $\operatorname{KTS}(v)$ exists, i.e. $v=18 q+9$, there exists a silver $1-\operatorname{BIG}(\operatorname{KTS}(v))$. This lemma is an illustration of a general structure which will be discussed in Theorem 2.

Lemma 1 If $v \equiv 3(\bmod 6)$, then a $\mathcal{K}=\operatorname{KTS}(3 v)$ exists such that $1-\operatorname{BIG}(\mathcal{K})$ is silver.

Proof. Let $\mathcal{A}=\operatorname{AG}(2,3)=\operatorname{STS}(9)$ with $V(\mathcal{A})=\{(i, j) \mid 1 \leq i, j \leq 3\}$, and denote its parallel classes by:
Θ_{0}
$\{(1,1),(2,1),(3,1)\}$
$\{(1,2),(2,2),(3,2)\}$
$\{(1,3),(2,3),(3,3)\}$

$$
\begin{aligned}
& \Theta_{1} \\
& a_{1}=\{(1,1),(1,2),(1,3)\} \\
& a_{2}=\{(2,1),(2,2),(2,3)\} \\
& a_{3}=\{(3,1),(3,2),(3,3)\}
\end{aligned}
$$

Θ_{2}

$$
a_{4}=\{(1,1),(2,2),(3,3)\}
$$

$$
a_{7}=\{(1,1),(2,3),(3,2)\}
$$

$$
a_{5}=\{(1,3),(2,1),(3,2)\}
$$

$$
a_{8}=\{(1,2),(2,1),(3,3)\}
$$

$$
a_{6}=\{(1,2),(2,3),(3,1)\}
$$

$$
a_{9}=\{(1,3),(2,2),(3,1)\}
$$

Consider a $\operatorname{KTS}(v) \mathcal{D}=(V, \mathcal{B}), V=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$ with parallel classes $\pi_{1}, \pi_{2}, \ldots, \pi_{\frac{v-1}{2}}$. Using its blocks we construct $\mathcal{K}=\left(V^{*}, \mathcal{B}^{*}\right)$, a $\operatorname{KTS}(3 v)$ in the following manner.

The set of elements of \mathcal{K} is $V^{*}=\{1,2,3\} \times V$, and the blocks are introduced in the following 4 types of parallel classes, $\Omega_{0, \beta}, \Omega_{1, \beta}, \Omega_{2, \beta}$ and $\Omega_{3, \beta}$.

$$
\text { - } \Omega_{0, \beta}:\left\{\left\{\left(1, x_{i}\right),\left(2, x_{i}\right),\left(3, x_{i}\right)\right\} \mid 1 \leq i \leq v\right\} .
$$

We denote every block of \mathcal{D} by $\left\{x_{i}, x_{j}, x_{k}\right\}$, where $i<j<k$. In the following a label (m, β) for each block is its color, the block with label (m, β) is obtained by using the block a_{m} of \mathcal{A}.

$$
\begin{aligned}
&-\Omega_{1, \beta}:\left\{\left\{\left(1, x_{i}\right),\left(1, x_{j}\right),\left(1, x_{k}\right)\right\}_{(1, \beta)},\left\{\left(2, x_{i}\right),\left(2, x_{j}\right),\left(2, x_{k}\right)\right\}_{(2, \beta)},\left\{\left(3, x_{i}\right),\left(3, x_{j}\right),\right.\right. \\
&\left.\left.\left(3, x_{k}\right)\right\}_{(3, \beta)} \mid\left\{x_{i}, x_{j}, x_{k}\right\} \in \pi_{\beta}\right\}, \text { for } 1 \leq \beta \leq \frac{v-1}{2}, \\
& \text { - } \Omega_{2, \beta}:\left\{\left\{\left(1, x_{i}\right),\left(2, x_{j}\right),\left(3, x_{k}\right)\right\}_{(4, \beta)},\left\{\left(1, x_{k}\right),\left(2, x_{i}\right),\left(3, x_{j}\right)\right\}_{(5, \beta)},\left\{\left(1, x_{j}\right),\left(2, x_{k}\right),\right.\right. \\
&\left.\left.\left(3, x_{i}\right)\right\}_{(6, \beta)} \mid\left\{x_{i}, x_{j}, x_{k}\right\} \in \pi_{\beta}\right\}, \text { for } 1 \leq \beta \leq \frac{v-1}{2},
\end{aligned}
$$

- $\Omega_{3, \beta}:\left\{\left\{\left(1, x_{i}\right),\left(2, x_{k}\right),\left(3, x_{j}\right)\right\}_{(7, \beta)},\left\{\left(1, x_{j}\right),\left(2, x_{i}\right),\left(3, x_{k}\right)\right\}_{(8, \beta)},\left\{\left(1, x_{k}\right),\left(2, x_{j}\right)\right.\right.$,

$$
\left.\left.\left(3, x_{i}\right)\right\}_{(9, \beta)} \mid\left\{x_{i}, x_{j}, x_{k}\right\} \in \pi_{\beta}\right\}, \text { for } 1 \leq \beta \leq \frac{v-1}{2}
$$

Figures 2 and 3 demonstrate the 4 types of blocks.

Figure 2: Blocks of $\Omega_{0, \beta}$ and $\Omega_{1, \beta}$

Figure 3: Blocks of $\Omega_{2, \beta}$ and $\Omega_{3, \beta}$
We note that there is only one parallel class in $\Omega_{0, \beta}$, but there are $\frac{v-1}{2}$ parallel classes in each of other types, so we have $\frac{3 v-1}{2}$ parallel classes and each class has v blocks.
Clearly, \mathcal{K} is a $\operatorname{KTS}(3 v)$. The number of colors needed in a silver coloring of $1-\operatorname{BIG}(\mathcal{K})$ is equal to $\frac{9 v-7}{2}$. We color 0 the vertices corresponding to the blocks in $\Omega_{0, \beta}$ class. The label of each block in other classes, which is shown as its index, is the color of its corresponding vertex in $1-\operatorname{BIG}(\mathcal{K}):(m, \beta), 1 \leq m \leq 9,1 \leq \beta \leq \frac{v-1}{2}$. It is easy to check that this is a proper coloring and all vertices in $\Omega_{0, \beta}$ class, i.e. the α-set, are rainbow.

Next theorem is a generalization of the construction introduced in Lemma 1 .
Theorem 2 Assume there exist an affine plane $\mathcal{A}=\mathrm{AG}(2, k)$, and a resolvable balanced incomplete block design $\mathcal{D}=\operatorname{RBIBD}(v, k, 1)$. Then there exists a $\mathcal{D}^{*}=\operatorname{RBIBD}(k v, k, 1)$ where $1-\operatorname{BIG}\left(\mathcal{D}^{*}\right)$ is silver.

Proof. Let $V(\mathcal{A})=\{(i, j) \mid 1 \leq i, j \leq k\}$ and denote its parallel classes by $\Theta_{0}, \Theta_{1}, \ldots, \Theta_{k}$. Specifically we let

$$
\Theta_{0}=\{\{(1, j),(2, j), \ldots,(k, j)\} \mid j=1,2, \ldots, k\} .
$$

Also we let $V(\mathcal{D})=\left\{x_{1}, x_{2}, \ldots, x_{v}\right\}$ with parallel classes $\pi_{1}, \pi_{2}, \ldots, \pi_{\frac{v-1}{k-1}}$.
For each block $b=\left\{x_{s_{1}}, x_{s_{2}}, \ldots, x_{s_{k}}\right\}$ of \mathcal{D} we consider an ordering on b such that

$$
x_{s_{i}} \prec x_{s_{j}} \Longleftrightarrow s_{i}<s_{j},
$$

and define a function:

$$
\begin{aligned}
\Psi_{b}: V(\mathcal{A}) \rightarrow & \{1,2, \ldots, k\} \times\left\{x_{s_{1}}, x_{s_{2}}, \ldots, x_{s_{k}}\right\} \\
& \Psi_{b}(i, j)=\left(i, x_{s_{j}}\right)
\end{aligned}
$$

We extend Ψ_{b} for each block a of \mathcal{A} as $\Psi_{b}(a)=\left\{\Psi_{b}(i, j) \mid(i, j) \in a\right\}$.
Now we construct a design $\mathcal{D}^{*}=\left(V^{*}, \mathcal{B}^{*}\right)$, as in the following:

$$
\begin{aligned}
& V^{*}=\{1,2, \ldots, k\} \times V(\mathcal{D}) . \\
& \mathcal{B}^{*}=\left\{\Psi_{b}(a) \mid b \text { and } a \text { are blocks of } \mathcal{D} \text { and } \mathcal{A}, \text { respectively }\right\} .
\end{aligned}
$$

See Figure 4.

Figure 4: Blocks of \mathcal{D}^{*} are constructed by using blocks of \mathcal{A}
\mathcal{D}^{*} is an RBIBD with the following parallel classes:

$$
\Omega_{\alpha, \beta}=\left\{\Psi_{b}(a) \mid a \in \Theta_{\alpha}, b \in \pi_{\beta}\right\}, \text { for each } 0 \leq \alpha \leq k \text { and } 1 \leq \beta \leq \frac{v-1}{k-1} .
$$

Note that:

$$
\Omega_{0,1}=\Omega_{0,2}=\cdots=\Omega_{0, \frac{v-1}{k-1}}=\left\{\left\{\left(1, x_{s}\right),\left(2, x_{s}\right), \ldots,\left(k, x_{s}\right)\right\} \mid s=1,2, \ldots, v\right\} .
$$

We show that $1-\operatorname{BIG}\left(\mathcal{D}^{*}\right)$ is silver with respect to the α-set

$$
\begin{aligned}
I^{*} & =\left\{\Psi_{b}(a) \mid a \in \Theta_{0} \text { and } b \text { is a block of } \mathcal{D}\right\} \\
& =\left\{\left\{\left(1, x_{s}\right),\left(2, x_{s}\right), \ldots,\left(k, x_{s}\right)\right\} \mid s=1,2, \ldots, v\right\},
\end{aligned}
$$

by the following coloring:

$$
\begin{gathered}
c: \mathcal{B}^{*} \longrightarrow\{0\} \cup\left\{(a, \beta) \mid a \text { is a block of } \mathcal{A} \backslash \Theta_{0} \text { and } 1 \leq \beta \leq \frac{v-1}{k-1}\right\} \\
\Psi_{b}(a) \longmapsto \begin{cases}0 & \text { if } a \in \Theta_{0}, \\
(a, \beta) & \text { if } a \notin \Theta_{0}, \text { and } b \in \pi_{\beta} .\end{cases}
\end{gathered}
$$

We show that c is a proper coloring and any vertex $b^{*} \in I^{*}$ is rainbow. Note that all the vertices of I^{*} have color 0 . Let $\Psi_{b_{1}}\left(a_{1}\right)$ and $\Psi_{b_{2}}\left(a_{2}\right)$ be two blocks of \mathcal{D}^{*} with the same color (a, β). Then we have $b_{1}, b_{2} \in \pi_{\beta}$. Therefore b_{1} and b_{2} are disjoint blocks of \mathcal{D}, so $\Psi_{b_{1}}\left(a_{1}\right)$ and $\Psi_{b_{2}}\left(a_{2}\right)$ are disjoint. Thus c is proper.

To show silverness, for a fixed s let $b_{s}^{*}=\left\{\left(1, x_{s}\right),\left(2, x_{s}\right), \ldots,\left(k, x_{s}\right)\right\}$ be a block of I^{*}. By definition, for any given nonzero color like (a, β) we have $a \notin \Theta_{0}$, and there exists a unique block b of π_{β} which contains x_{s} and the color of $\Psi_{b}(a)$ is (a, β). Since in \mathcal{A}, the block a intersects each block of Θ_{0}, thus by definition of $\mathcal{B}^{*}, \Psi_{b}(a)$ intersects b_{s}^{*} in \mathcal{D}^{*}, so the color (a, β) appears in the neighborhood of b_{s}^{*}.

In the next theorem for any $\mathcal{D}=S(2, k, v)$, we show a lower bound for $\alpha\left(G_{1}\right)$, in order $G_{1}=1-\operatorname{BIG}(\mathcal{D})$ to be silver.

Theorem 3 Let \mathcal{D} be an $S(2, k, v)$, and $G_{1}=1-\operatorname{BIG}(\mathcal{D})$. If $\alpha\left(G_{1}\right)>k\left\lfloor\frac{v(v-1)}{k^{2} v-k^{3}+k^{2}-k}\right\rfloor$, then G_{1} is not silver.

Proof. G_{1} is a $\frac{k(v-k)}{(k-1)}$-regular graph with $\frac{v(v-1)}{k(k-1)}$ vertices. Let I be an α-set, and assume that G_{1} has a silver coloring with respect to I with C as the set of colors, $|C|=\frac{k(v-k)}{k-1}+1$. A color like ι exists that is used in the coloring of at most $\left\lfloor\frac{\left\lfloor V\left(G_{1}\right)\right\rfloor}{|C|}\right\rfloor=\left\lfloor\frac{v(v-1)}{k^{2} v-k^{3}+k^{2}-k}\right\rfloor$ vertices of G_{1}. For a set $X \subseteq V\left(G_{1}\right)$ we denote the set of vertices with color ι in X by $X(\iota)$. By counting the number of appearances of color ι in I and in the neighborhood of I we obtain,

$$
\begin{aligned}
\alpha\left(G_{1}\right) & =|I(\iota)|+\left|X_{1}(\iota)\right|+2\left|X_{2}(\iota)\right|+\cdots+k\left|X_{k}(\iota)\right| \\
& \leq k\left(|I(\iota)|+\left|X_{1}(\iota)\right|+\left|X_{2}(\iota)\right|+\cdots+\left|X_{k}(\iota)\right|\right) \\
& \leq k\left\lfloor\frac{v(v-1)}{k^{2} v-k^{3}+k^{2}-k}\right\rfloor \\
& <\alpha\left(G_{1}\right) .
\end{aligned}
$$

A contradiction.

Example 4 It is easy to check that for any of two $\operatorname{STS}(13) s, \alpha\left(G_{1}\right)=4$. For 80 nonisomorphic $\operatorname{STS}(15) s$, we have $\alpha\left(G_{1}\right)=4$ or 5 (see [5], page 32). Also there are 18 nonisomorphic $S(2,4,25)$ (see [5], page 34), by a computer search they have $\alpha\left(G_{1}\right)=5$ or 6. So by Theorem 3 none of them has a silver G_{1}.

Remark 2 Let G_{1} be the 1-block intersection graph of an $S(2, k, v)$ with a parallel class. Then $\alpha\left(G_{1}\right)=\frac{v}{k}$, and all the elements of V appear in the blocks corresponding to each α-set. Let I be an α-set for G_{1}, therefore any vertex of $V\left(G_{1}\right) \backslash I$ is adjacent to k vertices of I. Thus $\left|X_{1}\right|=\left|X_{2}\right|=\cdots=\left|X_{k-1}\right|=0,\left|X_{k}\right|=\frac{v(v-k)}{k(k-1)}$.
If an $S(2, k, v)$ has a near parallel class, then $\alpha\left(G_{1}\right)=\frac{v-1}{k}$, and each α-set contains all the elements of V except one. Hence in this case any vertex of $V\left(G_{1}\right) \backslash I$ is adjacent to either $(k-1)$ or k vertices of I, and $\left|X_{1}\right|=\left|X_{2}\right|=\cdots=\left|X_{k-2}\right|=0,\left|X_{k-1}\right|=\frac{v-1}{k-1},\left|X_{k}\right|=$ $\frac{(v-1)(v-2 k+1)}{k(k-1)}$.

Theorem 4 Let \mathcal{D} be an $S(2, k, v)$, with a near parallel class. Then $G_{1}=1-\operatorname{BIG}(\mathcal{D})$ is not silver.

Proof. Let I be an α-set for G_{1}. Assume that G_{1} has a silver coloring with respect to I and C is the set of colors. G_{1} is $\frac{k(v-k)}{k-1}$-regular, $|C|=\frac{k(v-k)}{k-1}+1$ and $|I|=\frac{v-1}{k}$. By Remark 2, $\left|X_{k-1}\right|=\frac{v-1}{k-1}$ and $\left|X_{k}\right|=\frac{(v-1)(v-2 k+1)}{k(k-1)}$. Since $|C|>\left|I \cup X_{k-1}\right|$, a color like ι exists that is used only in the coloring of vertices of X_{k}. The vertices of I are rainbow, so each of the vertices of X_{k} that have color ι, must be adjacent to k different vertices of I. Thus $|I|$ is a multiple of k, say $|I|=m k$.

Since $\left|X_{k-1}\right|=\frac{v-1}{k-1}>|I|$, a color like ι^{\prime} exists that is used in the coloring of vertices of X_{k-1} but is not used in I. The induced subgraph on X_{k-1} is a clique, so ι^{\prime} appears only in one vertex of X_{k-1} and it has $(k-1)$ neighbors in I. Thus $|I|-k+1$ vertices of I, each must have a neighbor in X_{k} with color ι^{\prime}. Again vertices from X_{k} that have color ι^{\prime}, each must be adjacent to k different vertices of I. Therefore $|I|-k+1=(m-1) k+1$ is also a multiple of k. This is impossible.

Example 5 The 1-block intersection graph of any Hanani triple system (see [5], page 67 for the definition) is not silver.

Note that by Theorems 1, 2, 3, and 4, for any admissible v the problem of existence of a silver 1-BIG $(S(2, k, v))$ which possesses maximum possible independent set is settled.

3 Zero block intersection graphs

In this section we discuss 0 -block intersection graphs of $S(2, k, v)$.

Notation 1 Let x be a given element of $S(2, k, v)$, and denote by $T(x)$ the set of $\frac{v-1}{k-1}$ blocks containing x.

It is trivial that $T(x)$ is an independent set for G_{0}, thus $\alpha\left(G_{0}\right) \geq \frac{v-1}{k-1}$.
Lemma 2 Let \mathcal{D} be an $S(2, k, v)$, and $G_{0}=0-\operatorname{BIG}(\mathcal{D})$. If $v>k^{3}-2 k^{2}+2 k$ then any maximum independent set of G_{0} is of the form $T(x)$, therefore $\alpha\left(G_{0}\right)=\frac{v-1}{k-1}$.

Proof. Let I be an α-set of G_{0}. Suppose I is not of the form $T(x)$. There exists an element x_{0} of \mathcal{D} which appears in at least two blocks of I. Let $I_{1}=\left\{B_{1}, B_{2}, \ldots, B_{p}\right\}=$ $\left\{B \mid B \in I \cap T\left(x_{0}\right)\right\}$, and $I \backslash I_{1}=\left\{B_{p+1}, B_{p+2}, \ldots, B_{p+q}\right\}$. Since $\lambda=1$, for $1 \leq i<j \leq p$, $\left(B_{i} \backslash\left\{x_{0}\right\}\right) \cap\left(B_{j} \backslash\left\{x_{0}\right\}\right)=\emptyset$. Every two blocks in I have one intersection. So, for each block $B \in I \backslash I_{1}$ we have $B \cap B_{i}=\left\{a_{i}\right\}, i=1,2, \ldots, p$. So $p \leq|B|=k$.
Now suppose $B_{1}, B_{2} \in I_{1}$. There exist exactly $(k-1)^{2}$ pairs $\{x, y\}$ where $x \in B_{1} \backslash\left\{x_{0}\right\}$ and $y \in B_{2} \backslash\left\{x_{0}\right\}$, and each of these pairs appears at most in one of the blocks of $I \backslash I_{1}$. Thus $q \leq(k-1)^{2}$.
So $|I|=p+q \leq k+(k-1)^{2}$. But since $v>k^{3}-2 k^{2}+2 k$, for each x we have $|T(x)|=$ $\frac{v-1}{k-1}>k+(k-1)^{2} \geq|I|$. Hence the statement follows.

Theorem 5 Let \mathcal{D} be an $S(2, k, v)$. For $v>k^{3}-2 k^{2}+2 k, G_{0}=0-\operatorname{BIG}(\mathcal{D})$ is not silver.
Proof. G_{0} is a $\frac{v^{2}+k^{3}-v\left(k^{2}+1\right)-k^{2}+k}{k(k-1)}$ regular graph (Remark (1). Let I be any α-set for G_{0}. By Lemma 2, $I=T(x)$ and $|I|=\alpha\left(G_{0}\right)=\frac{v-1}{k-1}$. Since each block out of I intersects exactly k blocks of I, each vertex of $V\left(G_{0}\right) \backslash I$ is adjacent to $\frac{v-1}{k-1}-k=\frac{v-1-k^{2}+k}{k-1}$ vertices of I. Then $V\left(G_{0}\right)=I \cup X_{\frac{v-1-k^{2}+k}{k-1}}$ and $\left|X_{\frac{v-1-k^{2}+k}{k-1}}\right|=\frac{(v-1)(v-k)}{k(k-1)}$.
To the contrary, G_{0} has a silver coloring with respect to I. Let C be the set of colors, $|C|=\frac{v^{2}-v-k^{2} v+k^{3}}{k(k-1)}$. Since $|C|>\frac{v-1}{k-1}$, a color like ι exists that is not used in the coloring of I. The vertices of I are rainbow, and the vertices from $X_{\frac{v-1-k^{2}+k}{k-1}}$ that have color ι, each must be adjacent to $\frac{v-1-k^{2}+k}{k-1}$ different vertices of I. Therefore $|I|$ must be divisible by $\frac{v-1-k^{2}+k}{k-1}$, then $\left(v-k^{2}+k-1\right) \mid(v-1)$ which is impossible, since $v>k^{3}-2 k^{2}+2 k$. Therefore graph G_{0} is not silver with respect to any α-set.

3.1 0-BIG for Steiner triple systems

Both $0-\operatorname{BIG}(\operatorname{STS}(v))$ for $v=7$ and $v=9$, by Example 2, are totally silver.
Theorem 6 For any admissible $v>9, G_{0}=0-\operatorname{BIG}(\operatorname{STS}(v))$ is not silver.

Proof. For $v>15$, it follows by Theorem 5.
If $v \leq 15$, then suppose I is an α-set of G_{0}, and I is not of the form $T(x)$. Then it is easy to check that, each element of $\operatorname{STS}(v)$ appears at most in 3 blocks of I. If it has 3 blocks containing an element x, then such a set has at most 7 blocks, and they are contained in I_{1}, where:

$$
I_{1}=\{\{x, a, b\},\{x, c, d\},\{x, e, f\},\{a, c, f\},\{a, d, e\},\{b, c, e\},\{b, d, f\}\} \approx \operatorname{STS}(7)
$$

Now we discuss possible cases.
$v=15:$
For $v=15$ an α-set, I, may be of the form $T(x)$ or it may come from a subsystem $\operatorname{STS}(7)$, in either case $\alpha\left(G_{0}\right)=7$. From 80 non-isomorphic $\operatorname{STS}(15) \mathrm{s}, 23$ of them have a subsystem $\operatorname{STS}(7)$ ([5], page 32). It is straightforward to check that in all of STS(15)s for any α-set I, each block out of I has intersection with exactly three blocks of I. So each vertex in $V\left(G_{0}\right) \backslash I$ is adjacent to exactly four vertices of I. In any silver coloring with C as the set of colors of G_{0}, we have $|C|=17>7=|I|$. So there exists a color ι which is not used in I. Every vertex with the color ι has exactly 4 neighbors in I, therefore 7 must be a multiple of 4. So G_{0} does not have a silver coloring.
$v=13:$
For $v=13$ there are two non-isomorphic STS(13)s. No $\operatorname{STS}(13)$ has a subsystem of $\operatorname{STS}(7)$, even no $\operatorname{STS}(13)$ has 6 blocks of an $\operatorname{STS}(7)$. So, in G_{0} for both of them, the sets of the form $T(x)$, are the only α-sets and $\alpha\left(G_{0}\right)=6$. Suppose I is any α-set.
First, we show that it is always possible to find three vertices in I with no common neighbor:

- One of two STS(13)s, Type 1, has a cyclic automorphism, and we can construct its blocks on $\{1,2, \ldots, 13\}$ by the following base blocks:

$$
\{1,2,5\}, \quad\{1,3,8\} \quad \bmod 13
$$

If $I=T(1)$, then $B_{1}=\{1,2,5\}, B_{2}=\{1,3,8\}$, and $B_{3}=\{1,10,11\}$ do not have common neighbor. Let $x \neq 1$ be a given element of $\operatorname{STS}(v)$, and $I=T(x)$. Three vertices of $I, B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}$ are obtained by adding $(x-1)$ to all members of blocks B_{1}, B_{2}, B_{3}, do not have common neighbor.

- The other $\operatorname{STS}(13)$ is non-cyclic and we can construct its blocks from Type 1 by
replacing four blocks of trade T_{1} with four blocks of trade T_{2} as follows:

$T_{1}:$| 1 | 2 | 5 |
| :---: | :---: | :---: |
| 1 | 3 | 8 |
| 10 | 2 | 8 |
| 10 | 3 | 5 |$\quad T_{2}:$| 1 | 2 | 8 |
| :---: | :---: | :---: |
| 1 | 3 | 5 |
| 10 | 2 | 5 |
| 10 | 3 | 8 |

Let $I=T(x)$ for some x. If x is an element of T_{2}, i.e. $x \in\{1,2,3,5,8,10\}$, then there are two blocks say B_{1} and B_{2} of T_{2} which contain x. There exists one element y, such that $y \in T_{2}$ but $y \notin B_{1} \cup B_{2}$. We consider B_{3}, the block containing x and y. Then these three blocks do not have common neighbor. If x is not in T_{2}, then we consider several cases for $I=T(x)$, and show that there exist three vertices of I, which do not have common neighbor.

Now, assume for some $\operatorname{STS}(13), G_{0}=0-\operatorname{BIG}(\operatorname{STS}(13))$ is silver with respect to some α-set $I=T(x)=\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\}$. The color of all neighbors of $B_{i}, i=1, \ldots, 6$, must be distinct. Assume $\left\{B_{1}, B_{2}, B_{3}\right\} \subset I$ do not have common neighbor. Let $N\left(B_{i}\right)$ be the set of neighbors of $B_{i} . G_{0}=S R G(26,10,3,4)$, so $\left|N\left(B_{1}\right) \cap N\left(B_{2}\right)\right|+\left|N\left(B_{2}\right) \cap N\left(B_{3}\right)\right|+\mid N\left(B_{1}\right) \cap$ $N\left(B_{3}\right) \mid=12$. Thus the color of these vertices must be distinct, while we have only 11 colors. Therefore G_{0} does not have a silver coloring.

References

[1] Alspach, B., Hare, D.: Edge-pancyclic block-intersection graphs. Discrete Math. 97(13), 17-24 (1991)
[2] Alspach, B., Heinrich, K., Mohar, B.: A note on Hamilton cycles in block-intersection graphs. In: Finite geometries and combinatorial designs (Lincoln, NE, 1987), Contemp. Math., vol. 111, pp. 1-4. Amer. Math. Soc., Providence, RI (1990)
[3] Amini, O., Esperet, L., van den Heuvel, J.: A unified approach to distance-two colouring of planar graphs. In: SODA '09: Proceedings of the twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 273-282. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2009)
[4] Behzad, M., Mahmoodian, E.S.: Graphs versus designs-a quasisurvey. In: Graph theory, combinatorics, and applications, Vol. 1 (Kalamazoo, MI, 1988), Wiley-Intersci. Publ., pp. 125-142. Wiley, New York (1991)
[5] Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of combinatorial designs. Discrete Mathematics and its Applications (Boca Raton), second edn. Chapman \& Hall/CRC, Boca Raton, FL (2007)
[6] Donovan, D., Mahmoodian, E.S., Ramsay, C., Street, A.P.: Defining sets in combinatorics: a survey. In: Surveys in combinatorics, 2003 (Bangor), London Math. Soc. Lecture Note Ser., vol. 307, pp. 115-174. Cambridge Univ. Press, Cambridge (2003)
[7] Ghebleh, M., Goddyn, L.A., Mahmoodian, E.S., Verdian-Rizi, M.: Silver cubes. Graphs Combin. 24(5), 429-442 (2008)
[8] Hare, D.R.: Cycles in the block-intersection graph of pairwise balanced designs. Discrete Math. 137(1-3), 211-221 (1995)
[9] Hare, D.R., McCuaig, W.: The connectivity of the block-intersection graphs of designs. Des. Codes Cryptogr. 3(1), 5-8 (1993)
[10] Horák, P., Pike, D.A., Raines, M.E.: Hamilton cycles in block-intersection graphs of triple systems. J. Combin. Des. 7(4), 243-246 (1999)
[11] Kant, G., van Leeuwen, J.: The file distribution problem for processor networks. In: SWAT 90 (Bergen, 1990), Lecture Notes in Comput. Sci., vol. 447, pp. 48-59. Springer, Berlin (1990)
[12] Kant, G., Leeuwen, J.v.: Strong colorings of graphs (1990). URL http://igitur-archive.library.uu.nl/math/2006-1214-202846/UUindex.html
[13] Kramer, F., Kramer, H.: A survey on the distance-colouring of graphs. Discrete Math. 308(2-3), 422-426 (2008)
[14] van Lint, J.H., Wilson, R.M.: A course in combinatorics. Second edn. Cambridge University Press, Cambridge (2001)
[15] Mahdian, M., Mahmoodian, E.S.: The roots of an IMO97 problem. Bull. Inst. Combin. Appl. 28, 48-54 (2000)
[16] Mamut, A., Pike, D.A., Raines, M.E.: Pancyclic BIBD block-intersection graphs. Discrete Math. 284(1-3), 205-208 (2004)
[17] Pike, D.A.: Hamilton decompositions of block-intersection graphs of Steiner triple systems. Ars Combin. 51, 143-148 (1999)

[^0]: *Department of Mathematical Sciences, Sharif University of Technology, P. O. Box 11155-9415, Tehran, I. R. Iran arash_ahadi5@yahoo.com
 ${ }^{\dagger}$ Department of Mathematical Sciences, Payame Noor University, P.O. Box 19395-3697, Tehran, I. R. Iran n_besharati@yahoo.com
 ${ }^{\ddagger}$ Department of Mathematical Sciences, Sharif University of Technology, P. O. Box 11155-9415, Tehran, I. R. Iran emahmood@sharif.edu, Corresponding author
 ${ }^{\S}$ Department of Mathematical Sciences, Sharif University of Technology, P. O. Box 11155-9415, Tehran, I. R. Iran m.mortezaeefar@gmail.com

