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Silver block intersection graphs of Steiner 2-designs
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Abstract

For a block design D, a series of block intersection graphs G;, or i-BIG(D), ¢ =
0,...,k is defined in which the vertices are the blocks of D, with two vertices adjacent
if and only if the corresponding blocks intersect in exactly ¢ elements. A silver graph
G is defined with respect to a maximum independent set of GG, called an a-set. Let
G be an r-regular graph and ¢ be a proper (r + 1)-coloring of G. A vertex z in G is
said to be rainbow with respect to c if every color appears in the closed neighborhood
N[z] = N(x)U{z}. Given an a-set I of G, a coloring c is said to be silver with respect
to I if every x € I is rainbow with respect to c. We say G is silver if it admits a silver
coloring with respect to some I. Finding silver graphs is of interest, for a motivation
and progress in silver graphs see [7] and [15]. We investigate conditions for 0-BIG(D)
and 1-BIG(D) of Steiner 2-designs D = S(2, k,v) to be silver.

keywords: Silver coloring, Block intersection graph, Steiner 2-design, and Steiner

triple system

Subject class: 05C15, 056B05, 05B07, and 05C69

1 Introduction and preliminaries

We follow standard notations and concepts from design theory. For these, one may refer to,

for example, [5] and [14].
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A 2-(v,k, \) design (2 < k < v) is a pair (V,B) where V is a v-set and B is a collection
of b k-subsets of V' (blocks) such that any 2-subset of V' is contained in exactly A blocks.
A 2-(v,k,1) design is called Steiner 2-design and is denoted by S(2,k,v). An S(2,3,v) is
a Steiner triple system or STS(v). A design with b = v is a symmetric (v, k, \)-design. A
symmetric S(2, k,v) is called a projective plane. If k is the size of the blocks then n :=k — 1
is called the order of the plane. This design is usually denoted by PG(2,n). A 2-(n%n,1)

design is called an affine plane. For such design we use the notation AG(2,n).

A partial parallel class is a set of blocks that contains no element of the design more than
once. A parallel class (PC) or a resolution class in a design is a set of blocks that partition
the set of elements V. A near parallel class is a partial parallel class missing a single element.
A resolvable balanced incomplete block design is a 2-(v,k, ) design whose blocks can be
partitioned into parallel classes. The notation RBIBD(v, k, A) is commonly used. An affine
plane of order n is an RBIBD(n? n,1). A resolvable STS(v) together with a resolution of
its blocks is called a Kirkman triple system, KTS(v).

Given a design D, a series of block intersection graphs G;, or i-BIG, ¢ = 0,...,k can be
defined in which the vertices are the blocks of D, with two vertices are adjacent if and only

if the corresponding blocks intersect in exactly i elements.

Example 1 For STS(7), 0-BIG is empty graph and 1-BIG is K;. For STS(9), 0-BIG is

disconnected and consists of four disjoint K3’s and 1-BIG s K3333.

The study of i-BIG(D) is useful in characterizing block designs. Some researchers have
studied properties of various kinds of block intersection graphs, see for example [I], [2], [4],
), [9], [10), [16], and [17.

A graph of order v is strongly regular, denoted by SRG(v, k, A, i), whenever it is not complete
or edgeless and, (i) each vertex is adjacent to k vertices, (ii) for each pair of adjacent vertices
there are X vertices adjacent to both, (iii) for each pair of non-adjacent vertices there are
vertices adjacent to both.

Remark 1 Let G; be the i-block intersection graph of an S(2,k,v). Then for each i =
2,3,...,k, the graph G; is empty. So we consider only Gy and G,. Graphs Gog and Gy are
complements of each other. Gy is an SRG(b,k(r — 1),r — 2+ (k — 1)%,k?) and Gy is an
SRG(b,b—k(r—1)—1,b—2k(r—1)+k*—2,b—2kr + k*+r — 1) (see Chapter 21 of [1])]).

In a graph G = (V, E') an independent set is a subset of vertices no two of which are adjacent.
The independence number a(G) is the cardinality of a largest set of independent vertices. We
refer to any maximum independent set of a graph as an a-set. Let ¢ be a proper (r + 1)-

coloring of an r-regular graph G. A vertex x in G is said to be rainbow with respect to c if
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every color appears in the closed neighborhood Nz] = N(x) U {z}. Given an a-set I of G
the coloring c¢ is said to be silver with respect to [ if every x € [ is rainbow with respect to
c. We say G is silver if it admits a silver coloring with respect to some a-set. If all vertices
of GG are rainbow, then c is called a totally silver coloring of G and G is said to be totally
silver. Note that the definition of silver coloring depends on the chosen a-set. For example
in Figure [I, a graph G is shown which is silver when the a-set (the bold vertices) is taken

as in the left, but it does not have any silver coloring with the a-set taken as on the right
hand side.

Figure 1: A silver coloring of a graph

There are many different version of rainbow colorings in the literature, for example see [3],
[11], [12], and [13]. For a motivation and progress in silver graphs see [7] and [15]. In fact
silver graphs are closely related to a concept in graph coloring, called defining set. Let ¢ be
a proper k-coloring of a graph G and let S C V(G). If ¢ is the only extension of ¢|s to a
proper k-coloring of GG, then S is called a defining set of ¢. The minimum size of a defining
set among all k-colorings of G is called a defining number and denoted by def(G, k). A more
general survey of defining sets in combinatorics appears in [6]. Let G be an r-regular graph,
then G is silver if and only if def(G,r + 1) = |V(G)| — a(G). In [15] an open problem is
raised:

Question 1 Find classes of r-regular graphs G, for which def(G,r + 1) = |V(G)| — a(G),

i.e. determine classes of all silver graphs.

A silver cube is a silver graph G = K¢ the Cartesian power of the complete graph K,,.
Silver cubes are generalizations of silver matrices, which are n xn matrices where each symbol
in {1,2,...,2n — 1} appears in either the i-th row or the i-th column of the matrix. In [7]
some algebraic constructions and a product construction of silver cubes are given. They
show the relation of these cubes to codes over finite fields, dominating sets of a graph, Latin
squares, and finite geometry. In particular the Hamming codes are used to produce a totally
silver cube and the bound for the best binary codes is used to prove the non-existence of

silver cubes for a large class of parameters with n = 2.

To study Question [I here we consider i-BIGs of designs. First we give some examples of
designs with silver -BIGs.



Example 2 In any symmetric (v, k, \)-design D, every two distinct blocks have exactly \
elements in common, so for 0 < i < k, i # X, i-BIG(D) is empty graph, and A\-BIG(D)
is complete graph. Hence all of these graphs are totally silver. Specifically for each k and
0<i<k+1, -BIG(S(2,k+1,k* + k + 1)) is totally silver.

If D is an AG(2,n), then Gy = 0-BIG(D) consists of (n + 1) disjoint K,,’s, so it is totally
silver, and G = 1-BIG(D) = K, n, ... n, is silver.
———

n+1

In this paper we prove the following results: If an S(2, k,v) contains a parallel class, then a
necessary condition for 1-BIG(S(2, k,v)) to be silver is k? | v. For each admissible v = 9m
we construct a Dy= KTS(v), such that 1-BIG(D,) is silver. And in general for each k and v
where an AG(2, k) and an RBIBD(v, k, 1) exist we construct a D* = RBIBD(kv, k, 1) such
that 1-BIG(D*) is silver. Also a lower bound for a(G) is given in order for a 1-BIG(S(2, k, v))
to be silver. For any admissible v, the existence of a silver 1-BIG(S(2, k, v)) which possesses
a maximum possible independent set, i.e. of size 7 or ”;kl, is settled. We prove that for
v > k3 —2k%+ 2k there is no silver 0-BIG(S(2, k,v)). Also we settle the question of existence

of silver 0-BIG(STS(v)) for all admissible v.

Since every vertex of i-BIG(D) corresponds to a block of D, we will mostly refer to them
as “blocks” rather than vertices. The following notation will be used in our discussion. Let

G be a graph and I be an a-set of G. For each i = 1,...,|I|, we let

X; = A{ulu e V(G)\ I, u is adjacent to exactly i vertices of I}.

2 One block intersection graphs

The following is a necessary condition for 1-BIG(D) of a Steiner system D = S(2, k,v) with

a(Gy) = 7, to be silver.

Theorem 1 Let D be an S(2,k,v), which has a parallel class, and let Gy be 1-BIG(D). A

necessary condition for Gy to be silver is k? | v.

Proof. G, is a k(”_k)fregular graph. Let I be an a-set, and assume that G; has a silver

(k—1)
coloring with respect to I with C' as the set of colors. We have |I| = 7, and |C| = % +1.

Since |C| > |I], a color like ¢ exists that is not used in /. The vertices of I are rainbow,
and each vertex with color ¢« from V(G;) \ I, must be adjacent to k distinct vertices of 1.

Therefore |I| must be a multiple of k, which implies k2 | v. u



Example 3 There are 80 nonisomorphic STS(15)s, where 70 of them have parallel class (see [5],
page 32). So by Theorem[d, none of those 70 has silver G;.

By Theorem [I] if v is not a multiple of 9, then no silver 1-BIG(KTS(v)) exists. In the next
lemma we show that for the case 9 | v, when a KTS(v) exists, i.e. v = 18¢ + 9, there exists
a silver 1-BIG(KTS(v)). This lemma is an illustration of a general structure which will be

discussed in Theorem (2]
Lemma 1 Ifv=3 (mod 6), then a K = KTS(3v) exists such that 1-BIG(K) is silver.

Proof. Let A = AG(2,3) = STS(9) with V(A) = {(7,7) | 1 <i,j < 3}, and denote its
parallel classes by:

72)7(1?3)} a4 = {(1’1)7(
2)7(2a3)} as = {(1’3)7(
372>7(373>} ag = {(172>7(

Consider a KTS(v) D = (V,B), V = {x1, 22, ...,x,} with parallel classes my,ms, ..., To-1.
Using its blocks we construct K = (V*,B*), a KTS(3v) in the following manner.

The set of elements of K is V* = {1,2,3} x V', and the blocks are introduced in the following
4 types of parallel classes, g, 21 3, (225 and Q3 3.

o Qg {{(Lm), (2), (3,2)} 1<i <wv}.

We denote every block of D by {z;, z;,z;}, where i < j < k. In the following a label (m, ()
for each block is its color, the block with label (m, ) is obtained by using the block a,, of A.

LRVWE {{(1,%),(1,%),(1,%)}(1,/3), {(2,20), (2,25), (2, 28) ba,p), {3, 20), (3, 25),
(3, z1) .8 | {7, 75, 21} € Wﬁ}, for 1 < g <2

i Q2,5: {{(LIi)a (2>Ij)a (3>Ik)}(4,ﬁ)’ {(1>Ik)a (2,1’2) ( Z; )} {(ij), (2axk)>
(3,2i) Yo | {@i,zj ai} € Wﬁ}, <




hd gl&ﬁ: {{(laa%)’(2>$k)’(3917)}(Zﬁ)’{(1>aﬁ)a(271%)’(Baxk)}(&ﬁ)a{(lﬁxk)>(2’xj%
(3>$i)}(9,6) | {xi, x5, 01} € 71'5}, for1<p < R

Figures 2l and [3l demonstrate the 4 types of blocks.

(1<75L'101 332) (17;1"7)(17;[/']6117;["3) (17$Z) (17$7)<17$k)

I |
|\ L\ >

BoBa)  Goo)G.nEo) G BB

Figure 2: Blocks of )y 3 and €2; g

(L) (Lag)(Loa) (L) (Lag)(Lay)
N yaN—i AN A /"
L) N (2.21)
C </ /> ) <
(37xj) (37xj)

Figure 3: Blocks of {2y g and €23 5

We note that there is only one parallel class in Qg g, but there are

2
each of other types, so we have % parallel classes and each class has v blocks.

parallel classes in

Clearly, K is a KTS(3v). The number of colors needed in a silver coloring of 1-BIG(K) is
equal to %. We color 0 the vertices corresponding to the blocks in g s class. The label
of each block in other classes, which is shown as its index, is the color of its corresponding
vertex in 1-BIG(K): (m,f), 1 <m <9, 1< < ”;21 It is easy to check that this is a

proper coloring and all vertices in 2y 5 class, i.e. the a-set, are rainbow. [ ]

Next theorem is a generalization of the construction introduced in Lemma [Il

Theorem 2 Assume there exist an affine plane A = AG(2,k), and a resolvable balanced
incomplete block design D = RBIBD(v, k,1). Then there exists a D* = RBIBD(kv, k, 1)
where 1-BIG(D*) is silver.

Proof. Let V(A) ={(4,j) | 1 <1i,5 < k} and denote its parallel classes by ©g, 01, ..., O.
Specifically we let

00 = {{(1.5).(2.4), ... (k, )} j=1.2,... . k}.
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Also we let V(D) = {x1, 22, ...,z,} with parallel classes 7, m, ... ) Tuzt.

For each block b = {z,,%s,,...,2s, } of D we consider an ordering on b such that
Ts, < Ts; — §; < Sy,

and define a function:
Uy V(A) = {1,2,... k} x {xs,, Tsp, ..., Ts, }

\Ijb(zaj) = (Z.axsj-)'
We extend ¥, for each block a of A as Wy(a) = {W(4,7)| (4,)) € a}.

Now we construct a design D* = (V*, B*), as in the following:
V*={1,2,...,k} x V(D).
B* = {¥,(a)| b and a are blocks of D and A, respectively}.

See Figure [4]

C [ ] [ ) e o [ ] )
D
(17[{;) (17:552)
° C e )
° C ) )
o ‘Ijb ( ® )
° = D
~3% C ——y
(k. k) (k,zs,)
D*

Figure 4: Blocks of D* are constructed by using blocks of A

D* is an RBIBD with the following parallel classes:
Qap ={U(a)] a € O4,b € ms}, foreach 0 <a<kand1<f <=,

Note that:

Q1= Qs ="=Qe = {(1,2,),(2,2),.... (k,2)} s = 1,2,...,0}.
We show that 1-BIG(D*) is silver with respect to the a-set
I = {¥y(a)la €Oy and b is a block of D}

= {2, 220, (kz)} s =1,2,... v},



by the following coloring;:

B — {0} U {(a, B)]

0 if a € O,
Uy(a) —
(a,p) ifa¢ O, and b € ms.

We show that ¢ is a proper coloring and any vertex b* € I* is rainbow. Note that all the
vertices of I* have color 0. Let Wy, (a1) and ¥y, (as) be two blocks of D* with the same color
(a, ). Then we have by, by € mg. Therefore b; and by are disjoint blocks of D, so Wy, (a;)

and Wy, (ag) are disjoint. Thus ¢ is proper.

To show silverness, for a fixed s let b% = {(1,z5), (2,z5),...,(k,zs)} be a block of I*. By
definition, for any given nonzero color like (a, 3) we have a ¢ ©g, and there exists a unique
block b of m3 which contains x; and the color of Wy(a) is (a, ). Since in A, the block a
intersects each block of ©g, thus by definition of B*, ¥;(a) intersects b% in D*, so the color
(a, B) appears in the neighborhood of b?. [ |

In the next theorem for any D = S(2,k,v), we show a lower bound for a(G1), in order
G1 = 1-BIG(D) to be silver.

Theorem 3 Let D be an S(2,k,v), and G; = 1-BIG(D). If a(Gy) > kvaij then

v—k31k2—k
G4 is not silver.

Z(k 1)

Proof. G, is a k((” k)fregular graph with vertices. Let I be an a-set, and assume

that G has a silver coloring with respect to I with C' as the set of colors, |C| = ) + 1.
A color like ¢ exists that is used in the coloring of at most L%J = L%J vertlces

of G;. For a set X C V(G;) we denote the set of vertices with color ¢ in X by X (). By

counting the number of appearances of color ¢ in I and in the neighborhood of I we obtain,

a(Gy) = [I(0)] + [ X1 ()] + 2[ X ()] + - - - + K[ Xi(0)]
S K@)+ [ X))+ [ X ()] 4+ -+ + [ Xk (0)])
<kl )
< a(Gh).

A contradiction. -

Example 4 It is easy to check that for any of two STS(13)s, a(G1) = 4. For 80 nonisomor-
phic STS(15)s, we have a(G1) =4 or 5 (see [5], page 32). Also there are 18 nonisomorphic
S(2,4,25) (see [5], page 34), by a computer search they have a(G1) = 5 or 6. So by Theorem[3

none of them has a silver G.



Remark 2 Let Gy be the 1-block intersection graph of an S(2,k,v) with a parallel class.
Then a(G1) = £, and all the elements of V' appear in the blocks corresponding to each a-set.
Let I be an a-set for Gy, therefore any vertex of V(G1) \ I is adjacent to k wvertices of I.

v(v—k
Thus | Xi| = |Xa| = -+ = [Xpa| = 0, | X3 = 25
If an S(2,k,v) has a near parallel class, then a(G1) = ”;kl, and each a-set contains all the
elements of V' except one. Hence in this case any vertex of V(Gy) \ I is adjacent to either
(k — 1) or k vertices of I, and |X1| = |X5| = -+ = |Xpa| = 0, [Xpma| = 55, [ X =
(v—1)(v—2k+1)
k(k—1)

Theorem 4 Let D be an S(2,k,v), with a near parallel class. Then G = 1-BIG(D) is not

stlver.

Proof. Let I be an a-set for G;. Assume that G has a silver coloring with respect to I and
C' is the set of colors. G is %fregular, |C| = % + 1 and |I| = %, By Remark 2
| Xj—1] = &5 and |X] = % Since |C| > |I U Xj_1], a color like ¢ exists that is
used only in the coloring of vertices of Xj;. The vertices of I are rainbow, so each of the
vertices of X} that have color ¢, must be adjacent to k different vertices of I. Thus |I] is a

multiple of k, say |I| = mk.

Since | Xj_1| = ¥=1 > |1], a color like / exists that is used in the coloring of vertices of Xj,_;
but is not used in I. The induced subgraph on Xj_; is a clique, so ¢ appears only in one
vertex of Xj_; and it has (k — 1) neighbors in I. Thus |I| — k + 1 vertices of I, each must
have a neighbor in X}, with color //. Again vertices from X}, that have color ¢/, each must be
adjacent to k different vertices of I. Therefore |I| —k+ 1= (m — 1)k + 1 is also a multiple
of k. This is impossible. [ ]

Example 5 The 1-block intersection graph of any Hanani triple system (see [B], page 67 for

the definition) is not silver.

Note that by Theorems [, 2, Bl and M for any admissible v the problem of existence of a

silver 1-BIG(S(2, k,v)) which possesses maximum possible independent set is settled.

3 Zero block intersection graphs

In this section we discuss 0-block intersection graphs of S(2, k,v).



Notation 1 Let x be a given element of S(2,k,v), and denote by T'(x) the set of 7= blocks

containing .

It is trivial that 7°(z) is an independent set for Gy, thus a(Gp) > 2=

Lemma 2 Let D be an S(2,k,v), and Gy = 0-BIG(D). If v > k3 — 2k* + 2k then any

v—1
k—1°

mazimum independent set of Gy is of the form T(x), therefore a(Gg) =

Proof. Let I be an a-set of Gy. Suppose [ is not of the form 7'(z). There exists an
element o of D which appears in at least two blocks of I. Let I} = {By, Bs,...,B,} =
{B| BeINT(x)}, and I \ Iy = {Bps1, Bpi2,...,Bpiq}. Since A =1, for 1 <i < j <p,
(Bi \ {zo}) N (B;\{z0}) = 0. Every two blocks in I have one intersection. So, for each block
BeI\I, wehave BNB; ={a;},i=1,2,...,p. Sop < |B|=k.

Now suppose By, By € I;. There exist exactly (k —1)? pairs {z,y} where z € By \ {x¢} and
y € By \ {70}, and each of these pairs appears at most in one of the blocks of I\ I;. Thus
g < (k—1)%

So Il =p+q<k+(k—1)2 But since v > k* — 2k? + 2k, for each x we have |T(z)| =
(k — 1) > |I]. Hence the statement follows. u

Theorem 5 Let D be an S(2,k,v). Forv > k% —2k? + 2k, Gy = 0-BIG(D) is not silver.

Proof. Gy is a ”2+k3_”(k2+1)_k2+k7regular graph (Remark [Il). Let I be any a-set for Gj.

R(k—1)
By Lemma 2, I = T'(z) and |I| = a(Gy) = ¥=1. Since each block out of I intersects exactly
k blocks of I, each vertex of V(Gyg) \ [ is adjacent to ;= —k = % vertices of I. Then
V(GO) — [UXU 1 k2+k: and ‘Xv 1 k:2+k:| - %vl)k)

To the contrary, Gy has a s11ver coloring with respect to I. Let C' be the set of colors,

|IC| = % Since |C| > = 1,

The vertices of I are rainbow, and the vertices from X bl that have color ¢, each must

a color like ¢ exists that is not used in the coloring of I.

v—1—k*+k

% different vertices of I. Therefore |I | must be divisible by *——-=,

be adjacent to
then (v —k*+k —1) | (v — 1) which is impossible, since v > k? — 2k? + 2k. Therefore graph
Gy is not silver with respect to any a-set. [ ]
3.1 0-BIG for Steiner triple systems

Both 0-BIG(STS(v)) for v =7 and v = 9, by Example 2] are totally silver.

Theorem 6 For any admissible v > 9, Gy = 0-BIG(STS(v)) is not silver.
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Proof. For v > 15, it follows by Theorem

If v < 15, then suppose [ is an a-set of Gy, and [ is not of the form T'(z). Then it is easy
to check that, each element of STS(v) appears at most in 3 blocks of I. If it has 3 blocks
containing an element x, then such a set has at most 7 blocks, and they are contained in I,

where:

L = {{x,a,b},{z,c,d},{zx,e, f},{a,c, f}, {a,d e}, {b,c,e}, {bd, f}} ~ STS(7).

Now we discuss possible cases.

v = 15:

For v = 15 an a-set, I, may be of the form 7T'(x) or it may come from a subsystem STS(7),
in either case a(Gp) = 7. From 80 non-isomorphic STS(15)s, 23 of them have a subsystem
STS(7) ([5], page 32). It is straightforward to check that in all of STS(15)s for any a-set
I, each block out of I has intersection with exactly three blocks of I. So each vertex in
V(Go) \ I is adjacent to exactly four vertices of I. In any silver coloring with C' as the set
of colors of Gy, we have |C| =17 > 7 = |I|. So there exists a color ¢ which is not used in I.
Every vertex with the color ¢« has exactly 4 neighbors in I, therefore 7 must be a multiple of

4. So Gy does not have a silver coloring.

v=13:

For v = 13 there are two non-isomorphic STS(13)s. No STS(13) has a subsystem of STS(7),
even no STS(13) has 6 blocks of an STS(7). So, in Gy for both of them, the sets of the form
T'(z), are the only a-sets and a(Gy) = 6. Suppose [ is any a-set.

First, we show that it is always possible to find three vertices in I with no common neighbor:

e One of two STS(13)s, Type 1, has a cyclic automorphism, and we can construct its
blocks on {1,2,...,13} by the following base blocks:

{1,2,5}, {1,3,8} mod 13.

If I =T(1), then B, = {1,2,5}, By = {1,3,8}, and B3 = {1,10,11} do not have
common neighbor. Let = # 1 be a given element of STS(v), and I = T'(x). Three
vertices of I, B}, Bj, B} are obtained by adding (z — 1) to all members of blocks

By, By, B3, do not have common neighbor.

e The other STS(13) is non-cyclic and we can construct its blocks from Type 1 by

11



replacing four blocks of trade 77 with four blocks of trade T3 as follows:

1 25 1 2 8
1 3 8 1

T1 . T2 : 35
10 2 8 10 2 5
10 3 5 10 3 8

Let I = T'(x) for some z. If x is an element of Ty, i.e. x € {1,2,3,5,8,10}, then there
are two blocks say By and B, of T, which contain x. There exists one element y, such
that y € T but y ¢ B; U By. We consider Bs, the block containing x and y. Then
these three blocks do not have common neighbor. If z is not in 75, then we consider
several cases for I = T'(z), and show that there exist three vertices of I, which do not

have common neighbor.

Now, assume for some STS(13), Gy = 0-BIG(STS(13)) is silver with respect to some a-set
I =T(z) = {By, By, Bs, By, Bs, Bg}. The color of all neighbors of B;, i = 1,...,6, must be
distinct. Assume {Bj, By, B3} C I do not have common neighbor. Let N(B;) be the set of
neighbors of B;. Gy = SRG(26,10,3,4), so |[N(B1) N N(Bs)| 4+ |N(B2) " N(Bs)| 4+ |N(B1) N

N(Bs)| = 12. Thus the color of these vertices must be distinct, while we have only 11 colors.

Therefore Gy does not have a silver coloring. |
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