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Abstract

The notion of a competition graph was introduced by J. E. Cohen in 1968. The
competition graph C(D) of a digraphD is a (simple undirected) graph which has
the same vertex set asD and has an edge between two distinct verticesx andy if and
only if there exists a vertexv in D such that(x, v) and(y, v) are arcs ofD. For any
graphG, G together with sufficiently many isolated vertices is the competition graph
of some acyclic digraph. In 1978, F. S. Roberts defined thecompetition number k(G)

of a graphG as the minimum number of such isolated vertices. In general,it is hard
to compute the competition numberk(G) for a graphG and it has been one of the
important research problems in the study of competition graphs to characterize a
graph by its competition number. In 1982, R. J. Opsut gave twolower bounds for the
competition number of a graph. In this paper, we give a generalization of these two
lower bounds for the competition number of a graph.
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1. Introduction

Throughout this paper, all graphsG are finite, simple, and undirected. The notion of a
competition graph was introduced by J. E. Cohen [1] in connection with a problem in
ecology. Thecompetition graph C(D) of a digraphD is the graph which has the same
vertex set asD and has an edge between two distinct verticesx andy if and only if there
exists a vertexv in D such that(x, v) and (y, v) are arcs ofD. For any graphG, G
together with sufficiently many isolated vertices is the competition graph of an acyclic
digraph. From this observation, F. S. Roberts [14] defined the competition number k(G)
of a graphG to be the minimum numberk such thatG together withk isolated vertices is
the competition graph of an acyclic digraph:

k(G) := min{k ∈ Z≥0 | G ∪ Ik = C(D) for some acyclic digraphD}, (1.1)

whereIk denotes a set ofk isolated vertices.
A digraph is said to beacyclic if it contains no directed cycles. For a digraphD, an

orderingv1, v2, . . . , vn of the vertices ofD is called anacyclic ordering of D if (vi, vj) ∈
A(D) impliesi < j. It is well-known that a digraphD is acyclic if and only if there exists
an acyclic ordering ofD. For a vertexv in a digraphD, theout-neighborhood of v in D

is defined to be the set{w ∈ V (D) | (v, w) ∈ A(D)} and is denoted byN+
D (v), and the

in-neighborhood of v in D is defined to be the set{u ∈ V (D) | (u, v) ∈ A(D)} and is
denoted byN−

D (v).
For a vertexv in a graphG, the (open) neighborhood of v in G is defined to be the

set{u ∈ V (G) | uv ∈ E(G)} and is denoted byNG(v). A subsetS ⊆ V (G) of the
vertex set of a graphG is called aclique of G if the subgraphG[S] of G induced byS is
a complete graph. For a cliqueS of a graphG and an edgee of G, we saye is covered by
S if both of the endpoints ofe are contained inS. An edge clique cover of a graphG is a
family of cliques ofG such that each edge ofG is covered by some clique in the family
(see [15] for applications of edge clique covers). Theedge clique cover number θE(G) of
a graphG is the minimum size of an edge clique cover ofG. A vertex clique cover of a
graphG is a family of cliques ofG such that each vertex ofG is contained in some clique
in the family. Thevertex clique cover number θV (G) of a graphG is the minimum size
of a vertex clique cover ofG.

R. D. Dutton and R. C. Brigham [2] characterized the competition graphs of acyclic
digraphs in terms of edge clique covers. (F. S. Roberts and J.E. Steif [16] characterized
the competition graphs of loopless digraphs. J. R. Lundgrenand J. S. Maybee [9] gave a
characterization of graphs whose competition number is at mostm.)

However, R. J. Opsut [10] showed that the problem of determining whether a graph
is the competition graph of an acyclic digraph or not is NP-complete. It follows that
the computation of the competition number of a graph is an NP-hard problem, and thus
it does not seem to be easy in general to computek(G) for an arbitrary graphG (see
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[3] and [8] for graphs whose competition numbers are known).It has been one of the
important research problems in the study of competition graphs to characterize a graph
by its competition number.

R. J. Opsut gave the following two lower bounds for the competition number of a
graph.

Theorem 1.1(Opsut [10, Proposition 5]). For any graph G,

k(G) ≥ θE(G)− |V (G)|+ 2. (1.2)

Theorem 1.2(Opsut [10, Proposition 7]). For any graph G,

k(G) ≥ min{θV (NG(v)) | v ∈ V (G)}. (1.3)

These seem to be the only known sharp lower bounds for an arbitrary graphG.
In this paper, we give a generalization of these two lower bounds which contains

both as special cases. In particular, our main result contains both lower bounds given in
Theorems 1.1 and 1.2 as special cases. The proof of our main result is elementary, but the
new lower bound given in this paper would be a strong tool in the study of the competition
number of a graph.

2. Main Result

Let G be a graph andF ⊆ E(G) be a subset of the edge set ofG. An edge clique cover
of F in G is a family of cliques ofG such that each edge inF is covered by some clique
in the family. We define theedge clique cover number θE(F ;G) of F ⊆ E(G) in G as
the minimum size of an edge clique cover ofF in G:

θE(F ;G) := min{|S| | S is an edge clique cover ofF in G}. (2.1)

By definition, it follows that the edge clique cover numberθE(E(G);G) of E(G) in a
graphG is equal to the edge clique cover numberθE(G) of the graphG.

LetG be a graph andU ⊆ V (G) be a subset of the vertex set ofG. We define

NG[U ] := {v ∈ V (G) | v is adjacent to a vertex inU} ∪ U, (2.2)

EG[U ] := {e ∈ E(G) | e has an endpoint inU}. (2.3)

We denote by the same symbolNG[U ] the subgraph ofG induced byNG[U ]. Note that
EG[U ] is contained in the edge set of the subgraphNG[U ]. We denote by

(

V

m

)

the set of
all m-subsets of a setV .

Now we are ready to state our main result.
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Theorem 2.1.Let G = (V,E) be a graph. Then

k(G) ≥ max
m∈{1,...,|V |}

min
U∈(V

m
)

(

θE(EG[U ];NG[U ])− |U |+ 1
)

. (2.4)

To prove our main theorem, we show the following lemma.

Lemma 2.2. Let G = (V,E) be a graph. Let m be an integer such that 1 ≤ m ≤ |V |.
Then

k(G) ≥ min
U∈(V

m
)
θE(EG[U ];NG[U ])−m+ 1. (2.5)

Proof. Let k := k(G) for convenience. Fix an integerm such that1 ≤ m ≤ |V |. LetD
be a minimal acyclic digraph with respect to the number of arcs such thatC(D) = G∪Ik,
whereIk := {z1, . . . , zk} is a set ofk isolated vertices. Letv1, . . . , vn, z1, . . . , zk be an
acyclic ordering ofD, and letW := {vn−m+1, . . . , vn}. Note that|W | = m. Let

S := {N−
D(w) ∩NG[W ] | w ∈ (W ∪ Ik) \ {vn−m+1}}.

For eachw ∈ (W ∪ Ik) \ {vn−m+1}, sinceN−
D(w) forms a clique of the graphG, the set

N−
D (w)∩NG[W ] forms a clique of the induced subgraphNG[W ] of G. ThusS is a family

of cliques ofNG[W ].
Take any edgee = uv ∈ EG[W ], whereu ∈ W andv ∈ NG(u). Sinceu andv

are adjacent, there exists a common out-neighborw ∈ N+
D(u) ∩ N+

D (v). Then{u, v} ⊆
N−

D (w). Sincev1, . . . , vn, z1, . . . , zk is an acyclic ordering ofD, the out-neighborhood
N+

D (u) of u in D is contained in the set(W ∪ Ik) \ {vn−m+1} for each vertexu ∈ W .
ThereforeN+

D (u) ∩ N+
D (v) ⊆ (W ∪ Ik) \ {vn−m+1} and sow ∈ (W ∪ Ik) \ {vn−m+1}.

Then it follows that the edgee is covered byN−
D(w) ∩NG[W ] ∈ S.

Thus the familyS is an edge clique cover ofEG[W ] in NG[W ]. This implies that
θE(EG[W ];NG[W ]) ≤ |S| = m + k − 1, that is,θE(EG[W ];NG[W ]) − m + 1 ≤ k.
Hence

min
U∈(V

m
)
θE(EG[U ];NG[U ])−m+ 1 ≤ θE(EG[W ];NG[W ])−m+ 1 ≤ k(G),

and the lemma holds.

Proof of Theorem 2.1. Since the inequality (2.5) holds for anym ∈ {1, . . . , |V |}, it fol-
lows that the inequality (2.4) holds.

Remark 2.3. Consider the casem = 1 in the inequality (2.5). Then we obtain

k(G) ≥ min
v∈V (G)

θE(EG[v];NG[v]).
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Since a family{S1, . . . , Sr} of cliques is an edge clique cover ofEG[v] in G if and only
if {S1 ∩ NG[v], . . . , Sr ∩ NG[v]} is an edge clique cover ofEG[v] in NG[v], it holds that
θE(EG[v];NG[v]) = θE(EG[v];G). Since a family{S1, . . . , Sr} of cliques is an edge
clique cover ofEG[v] in G if and only if {S1 \ {v}, . . . , Sr \ {v}} is a vertex clique
cover ofNG(v) in G, it holds thatθE(EG[v];G) = θV (NG(v)). Therefore we have
θE(EG[v];NG[v]) = θV (NG(v)). Hence the above inequality coincides with the lower
bound (1.3) in Theorem 1.2.

Remark 2.4. Consider the casem = |V | − 1 in the inequality (2.5). Then we obtain

k(G) ≥ min
v∈V

θE(EG[V \ {v}];NG[V \ {v}])− |V |+ 2.

SinceG = (V,E) has no loops, it holds thatEG[V \ {v}] = E. If the vertexv is not
isolated inG, then we haveNG[V \ {v}] = V and thusθE(EG[V \ {v}];NG[V \ {v}]) =
θE(E;G) = θE(G). If v is an isolated vertex, then we haveNG[V \ {v}] = V \ {v} and
thusθE(EG[V \ {v}];NG[V \ {v}]) = θE(E;G−{v}) = θE(E;G) = θE(G). Hence the
above inequality coincides with the lower bound (1.2) in Theorem 1.1.

Remark 2.5. The new lower bound given in Theorem 2.1 is a strong tool to compute the
exact values of the competition numbers of graphs, especially for symmetric graphs such
as complete multipartite graphs, Johnson graphs, Hamming graphs, etc (see [4], [5], [6],
[7], [11], [12], [13], [17]).
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