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A NOTE ON THE COPS & ROBBER GAME ON GRAPHS EMBEDDED
IN NON-ORIENTABLE SURFACES

NANCY E. CLARKE, SAMUEL FIORINI1, GWENAËL JORET1,2,
AND DIRK OLIVER THEIS3

ABSTRACT. We consider the two-player, complete information game of Cops
and Robber played on undirected, finite, reflexive graphs. A number of cops and
one robber are positioned on vertices and take turns in sliding along edges. The
cops win if, after a move, a cop and the robber are on the same vertex. The
minimum number of cops needed to catch the robber on a graph iscalled the cop
number of that graph.

Let c(g) be the supremum over all cop numbers of graphs embeddable in a
closed orientable surface of genusg, and likewisec̃(g) for non-orientable sur-
faces. It is known (Andreae, 1986) that, for a fixed surface, the maximum over
all cop numbers of graphs embeddable in this surface is finite. More precisely,
Quilliot (1985) showed thatc(g) ≤ 2g + 3, and Schröder (2001) sharpened this
to c(g) ≤ 3

2
g + 3. In his paper, Andreae gave the boundc̃(g) ∈ O(g) with a

weak constant, and posed the question whether a stronger bound can be obtained.
Nowakowski & Schröder obtained̃c(g) ≤ 2g + 1.

In this short note, we show̃c(g) ≤ c(g − 1), for anyg ≥ 1. As a corollary,
using Schröder’s results, we obtain the following: the maximum cop number
of graphs embeddable in the projective plane is 3; the maximum cop number
of graphs embeddable in the Klein Bottle is at most 4,c̃(3) ≤ 5, and c̃(g) ≤
3

2
g + 3/2 for all otherg.

For an integerk ≥ 1, theCops and Robber game withk copsis a pursuit game
played on a reflexive graph, i.e. a graph with a loop at every vertex. There are
two opposing sides, a set ofk cops and a single robber. The cops begin the game
by each choosing a (not necessarily distinct) vertex to occupy, and then the robber
chooses a vertex. The two sides move alternately, where a move is to slide along
an edge or along a loop. The latter is equivalent to passing were the game played
on a loopless graph. There is perfect information, and the cops win if any of the
cops and the robber occupy the same vertex at the same time, after a finite number
of moves. Graphs on which one cop suffices to win are calledcopwingraphs. In
general, we say that a graphG is k-copwinif k cops can win onG. The minimum

2000Mathematics Subject Classification.05C99, 05C10; 91A43.
Key words and phrases.Games on graphs, cops and robber game, cop number, graphs on

surfaces.
1 This work was supported in part by the Actions de Recherche Concertées (ARC) fund of the
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number of cops that suffice to win onG is the cop number ofG, denotedc(G).
The game has been considered on infinite graphs but, here, we only consider finite
graphs.

Nowakowski & Winkler [9] and Quilliot [10] have characterized the class of
copwin graphs. The class ofk-copwin graphs,k > 1, has been characterized by
Clarke and MacGillivray [6]. Families of graphs with unbounded cop number have
been constructed [1], even families ofd-regular graphs, for eachd ≥ 3 [2].

By a surface, we mean a closed surface, i.e. a compact two dimensional topo-
logical manifold without boundary. For any non-negative integerg, we denote by
c(g) the supremum over allc(G), with G ranging over all graphs embeddable in
an orientable surface of genusg, and we call this the cop number of the surface.
Similarly, we define the cop numberc̃(g) of a non-orientable surface of genusg to
be the supremum over allc(G), with G ranging over all graphs embeddable in this
surface.

Aigner & Fromme [1] proved that the cop number of the sphere isequal to three;
i.e. c(0) = 3. Quilliot [12] gave an inductive argument to the effect thatthe cop
number of an orientable surface of genusg is at most2g + 3. Schröder [13] was
able to sharpen this result toc(g) ≤ 3

2
g + 3. He also proved that the cop number

of the double torus is at most 5.
Andreae [3] generalized the work of Aigner & Fromme. He proved that, for any

graphH satisfying a mild connectivity assumption, the class of graphs which do
not containH as a minor has cop number bounded by a constant depending onH.
Using this, and the well known formula for the non-orientable genus of a complete
graph, he obtained an upper bound for the cop number of a non-orientable surface
of genusg, namely

c̃(g) ≤

(

⌊7/2 +
√

6g + 1/4⌋

2

)

.

In an unpublished note, Nowakowski & Schröder [8], use a series of technically
challenging arguments to prove a much stronger bound:c̃(g) ≤ 2g + 1.

In this short note, we prove the following.

Theorem 1. For a non-negative integerg, c(⌊g/2⌋) ≤ c̃(g) ≤ c(g − 1).

This immediately improves the best known upper bound for thenon-orientable
surface of genusg to c̃(g) ≤ 3

2
(g − 1) + 3 = 3

2
(g + 1). The following table gives

the new and status quo for the concrete upper bounds.

N/o genus 1 2 3 4 5 6 7
N. & S. [8] 3 5 7 9 11 13 15
Here 3 4 51 7 9 10 12

TABLE 1. Comparison of the new and status quo upper bounds forc̃(g).
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We say that aweak coverof H byG is a surjective mappingp : V (G) → V (H)
which maps vertex neighborhoods onto vertex neighborhoods; i.e. for every vertex
u of G, we havep(N(u)) = N(p(u)). (This terminology lends on the classical
definition of a “cover” without weak, where the restriction to the vertex neighbor-
hoodp : N(u) → N(p(u)) is required to be a bijection.) Using the same technique
as for the inequality “≤” in the proof of Theorem 1, it is possible to show the fol-
lowing:

Lemma 2. If G is a weak cover ofH, thenc(H) ≤ c(G).

This is similar in spirit to the seminal result of Berarducci& Ingrigila [4], saying
that if H is a retract ofG, then the same inequality holds. Note, however, that
neither of the two notions generalizes the other. We will notprove Lemma 2; the
proof is only slightly more technical than the geometric proof of Theorem 1.

PROOF

Familiarity with the classification of combinatorial surfaces is assumed. See
any standard textbook on topology, such as [5]. We will make use of the standard
representation of surfaces as quotients of polygonal discswith labelled and directed
edges. Each label occurs twice, and the two edges with the same label are identified
according to their orientations. Reading the labels of the edges in counterclockwise
(i.e. positive) order and adding an exponent−1 whenever the orientation of the
edges is negative (i.e. clockwise) gives theword of the surface.

For a graphG, let γ(G) denote the smallest integerg such thatG can be em-
bedded in an orientable surface of genusg; similarly defineγ̃(G) as the smallest
integerg such thatG can be embedded in an non-orientable surface of genusg.
For the proof of Theorem 1, we use the following well-known fact. Its proof can
be found in [7].

Lemma 3 (Folklore). For any graphG, γ̃(G) ≤ 2γ(G) + 1.

In the proof of the inequalityc(g) ≤ c(g − 1), we make use of the well-known
fact that every manifoldX has a 2-sheeted coveringX ′ → X by an orientable
manifold. If X is a non-orientable surface of genusg, it is easy to see that the
standard construction (again, see [5]) yields a surface of genusg − 1. This is
Lemma 4. The proof is straightforward (consider Figure 1), and is thus omitted.

Lemma 4. A non-orientable surface of genusg has an orientable surface of genus
g − 1 as a 2-sheeted covering space.

We are now ready for the proof of our main result.

Proof of Theorem 1. Lemma 3 immediately implies thatc(g) ≤ c̃(2g + 1), and
hencẽc(g) ≥ c(⌊g/2⌋).

For the proof of the remaining inequalitỹc(g) ≤ c(g − 1), let X be the non-
orientable surface of genusg on which a graphG is embedded. We identify the
graphG with its embedding; i.e. we think of the vertex setV (G) as a set of points
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FIGURE 1. A figure to accompany Lemma 4.

of X and the edge set ofE(G) as a set of internally disjoint injective curves con-
necting the respective end vertices of the edge.

By Lemma 4, there exists a coveringp : X ′ → X of X by an orientable surface
X ′ with genusg′ := g−1. Consider the graphG′ whose vertex set is{p−1(V (G))}
and whose edge set consists of the curves obtained by liftingthe edges ofG. By
construction,G′ is embedded in the orientable surfaceX ′ of genusg′.

We now give a strategy fork := c(g′) cops to win the Cops and Robber game
onG, by “simulating” a game onG′ and using any winning strategy fork cops on
this graph, who chase an “imaginary” robber. In such a strategy, thek cops first
choose their starting verticesu1, . . . , uk ∈ V (G′). In the strategy forG, we let
the starting vertices bep(u1), . . . , p(uk). Suppose now that, in the game onG, the
robber chooses a starting vertexr. We choose an arbitrary starting vertex for an
imaginary robber onG′ arbitrarily in the fibrep−1(r).

Throughout the game, the position of each player inG′ will be in the fibre
p−1(x) of the positionx of the corresponding player inG. Moreover, the move-
ments of the players onG describe curves onX, which can be lifted (uniquely,
although this is not essential) to curves onX ′ forming walks inG′.

Now, whenever it be the cops’ turn in any game onG, the robber is at a certain
vertexs of G′, and thek cops are on verticesv1, . . . , vk. The strategy for the cops
onG′ now prescribes moves for the cops. The corresponding moves in G are then
given as images underp.

Since we have a winning strategy, after a finite number of moves, the “imaginary
robber” onG′ will be on the same vertex as a cop inG′. Consequently, the same
holds onG, and thus the cops have won the game onG. �

CONCLUSION

We conclude with a conjecture.
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Conjecture. For a non-negative integerg, c̃(g) = c(⌊g/2⌋).

One might wonder whether it is possible to improve Theorem 1 by taking a
different covering, or possibly a branched covering. This is impossible: It is a
well-known fact that, wheneverp : X ′ → X is a (branched) covering withX ′

orientable andX non-orientable, thenp lifts to a (branched) covering̃p : X ′ → X̃ ,
whereX̃ is the orientable double cover constructed in Lemma 4.
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