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Abstract

A rainbow subgraph in an edge-coloured graph is a subgraph such that its edges have
distinct colours. The minimum colour degree of a graph is the smallest number of distinct
colours on the edges incident with a vertex over all vertices. Kostochka, Pfender, and Yancey
showed that every edge-coloured graph on n vertices with minimum colour degree at least k
contains a rainbow matching of size at least k, provided n ≥ 17

4
k2. In this paper, we show

that n ≥ 4k − 4 is sufficient for k ≥ 4.

1 Introduction

Let G be a simple graph, that is, no loops or multiple edges. We write V (G) for the vertex set of
G and δ(G) for the minimum degree of G. An edge-coloured graph is a graph in which each edge
is assigned a colour. We say such an edge-coloured G is proper if no two adjacent edges have
the same colour. A subgraph H of G is rainbow if all its edges have distinct colours. Rainbow
subgraphs are also called totally multicoloured, polychromatic, or heterochromatic subgraphs.

For a vertex v of an edge-coloured graph G, the colour degree of v is the number of distinct
colours on the edges incident with v. The smallest colour degree of all vertices in G is the
minimum colour degree of G and is denoted by δc(G). Note that a properly edge-coloured graph
G with δ(G) ≥ k has δc(G) ≥ k.

In this paper, we are interested in rainbow matchings in edge-coloured graphs. The study of
rainbow matchings began with a conjecture of Ryser [11], which states that every Latin square of
odd order contains a Latin transversal. Equivalently, for n odd, every properly n-edge-colouring
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of Kn,n, the complete bipartite graph with n vertices on each part, contains a rainbow copy
of perfect matching. In a more general setting, given a graph H, we wish to know if an edge-
coloured graph G contains a rainbow copy of H. A survey on rainbow matchings and other
rainbow subgraphs in edge-coloured subgraph can be found in [4]. From now onwards, we often
refer to G for an edge-coloured graph G (not necessarily proper) of order n.

Li and Wang [9] showed that if δc(G) = k, then G contains a rainbow matching of size
⌈

5k−3

12

⌉

.

They further conjectured that if k ≥ 4, then G contains a rainbow matching of size
⌈

k
2

⌉

. This
bound is tight for properly edge-coloured complete graphs. LeSaulnier et al. [8] proved that
if δc(G) = k, then G contains a rainbow matching of size

⌊

k
2

⌋

. Furthermore, if G is properly

edge-coloured with G 6= K4 or |V (G)| 6= δ(G) + 2, then there is a rainbow matching of size
⌈

k
2

⌉

.
The conjecture was later proved in full by Kostochka and Yancey [7].

What happens if we have a larger graph? Wang [12] proved that every properly edge-coloured
graph G with δ(G) = k and |V (G)| ≥ 8k

5
contains a rainbow matching of size at least

⌊

3k
5

⌋

. He
then asked if there is a function, f(k), such that every properly edge-coloured graph G with
δ(G) ≥ k and |V (G)| ≥ f(k) contains a rainbow matching of size k. The bound on the size
of rainbow matching is sharp, as shown for example by any k-edge-coloured k-regular graph.
If f(k) exists, then we trivially have f(k) ≥ 2k. In fact, f(k) > 2k for even k as there exists
k × k Latin square without any Latin transversal (see [1, 13]). Diemunsch et at. [2] gave an
affirmative answer to Wang’s question and showed that f(k) ≤ 13

5
k. The bound was then

improved to f(k) ≤ 9

2
k in [10], and shortly thereafter, to f(k) ≤ 98

23
k in [3].

Kostochka, Pfender and Yancey [6] considered a similar problem with δc(G) instead of properly
edge-coloured graphs. They showed that if G is such that δc(G) ≥ k and n > 17

4
k2, then G

contains a rainbow matching of size k. Kostochka [5] then asked: can n be improved to a linear
bound in k? In this paper, we show that n ≥ 4k − 4 is sufficient for k ≥ 4. Furthermore, this
implies that f(k) ≤ 4k − 4 for k ≥ 4.

Theorem 1.1. If G is an edge-coloured graph on n vertices with δc(G) ≥ k, then G contains a

rainbow matching of size k, provided n ≥ 4k − 4 for k ≥ 4 and n ≥ 4k − 3 for k ≤ 3.

2 Main Result

We write [k] for {1, 2, . . . , k}. For an edge uv in G, we denote by c(uv) the colour of uv and let
the set of colours be N, the set of natural numbers.

The idea of the proof is as follows. By induction, G contains a rainbow matching M of size
k−1. Suppose that G does not contain a rainbow matching of size k. We are going to show that
there exists another rainbow matching M ′ of size k− 1 in V (G) \ V (M). Clearly, the colours of
M equal to the colours of M ′. If n ≥ 4k − 3, then there exists a vertex z not in M ∪M ′. Since
δc(G) ≥ k, z has a neighbour w such that zw does not use any colour of M . Hence, it is easy to
deduce that G contains a rainbow matching of size k.
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Proof of Theorem 1.1. We proceed by induction on k. The theorem is trivially true for k = 1.
So fix k > 1 and assume that the theorem is true for k − 1. Let G be an edge-coloured graph
with δc(G) ≥ k and n = |V (G)| ≥ 4k − 4 if k ≥ 4 and n ≥ 4k − 3 otherwise. Suppose that the
theorem is false and so G does not contain a rainbow matching of size k.

By induction, there exists a rainbow matching M = {xiyi : i ∈ [k−1]} in G, say with c(xiyi) = i
for each i ∈ [k − 1]. Let M ′ be another rainbow matching of size s (which could be empty) in
G vertex-disjoint from M . Clearly s ≤ k − 1 and the colours on M ′ is a subset of [k − 1], as
otherwise G contains a rainbow matching of size k. Without loss of generality, we may assume
thatM ′ = {ziwi : i ∈ [s]} with c(ziwi) = i for each i ∈ [s]. We further assume thatM andM ′ are
chosen such that s is maximal. Now, let W = V (G)\V (M ∪M ′) and S = {xi, yi, zi, wi : i ∈ [s]}.
Clearly, if there is an edge in W , it must have colour in [s], otherwise G contains a rainbow
matching of size k, or s is not maximal.

Fact A If uw is an edge in W , then c(uw) ∈ [s].

Furthermore, if uv is an edge with u ∈ S and v ∈ W , then c(uv) ∈ [k− 1], otherwise G contains
a rainbow matching of size k. First, we are going to show that s = k− 1. Suppose the contrary,
s < k − 1. We then claim the following.

Claim By relabeling the indices of i (in the interval {s+ 1, s+2, . . . , k− 1}) and swapping the
roles of xi and yi if necessary, there exist distinct vertices zk−1, zk−2, . . . , zs+1 in W such that
for s+ 1 ≤ i ≤ k − 1 the following holds for s+ 1 ≤ i ≤ k − 1:

(a) yizi is an edge and c(yizi) /∈ [i].

(b) Let Ti be the vertex set {xj , yj , zj : i ≤ j ≤ k− 1}. For any colour j, there exists a rainbow
matching of size k − i on Ti which does not use any colour in [i− 1] ∪ {j}.

(c) Let Wi = W\{zi, zi+1, . . . , zk−1}. If xiw is an edge with w ∈ Wi, then c(xiw) ∈ [s].

(d) If uw is an edge with u ∈ S and w ∈ Wi, then c(uw) ∈ [i− 1].

(e) If uw is an edge with u ∈ S ∪Ti∪W and w ∈ Wi, then c(uw) ∈ [i− 1] or u ∈ {yi, . . . , yk−1}.

Proof of Claim. Let Wk = W and Tk = ∅. Observe that part (d) and (e) of the claim hold for
i = k. For each i = k − 1, k − 2, . . . , s + 1 in terms, we are going to find zi satisfying (a) – (e).
Suppose that we have already found zk−1, zk−1, . . . , zi+1.

Note that |Wi+1| ≥ n− 2(k− 1)− 2s− (k− i− 1) ≥ 1, so Wi+1 6= ∅. Let z be a vertex in Wi+1.
By the colour degree condition, z must incident with at least k edges of distinct colours, and
in particular, at least k − i distinct coloured edges not using colours in [i]. Then, there exists
a vertex u ∈ {xj , yj : s + 1 ≤ j ≤ i} such that uz is an edge with c(uz) /∈ [i] by part (e) of the
claim for the case i+ 1. Without loss of generality, u = yi and we set zi = z.

Part (b) of the claim is true for colour j 6= i, simply by taking the edge xiyi together with a
rainbow matching of size k− i− 1 on Ti+1 which does not use any colour in [i]∪{j}. For colour
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j = i, we take the edge yizi together with a rainbow matching of size k − i − 1 on Ti+1 which
does not use any colour in [i] ∪ {c(yizi)}.

To show part (c) of the claim, let xiw be an edge for some w ∈ Wi. By part (b) of the claim for
the case i+ 1, there exists a rainbow matching M ′′ of size k − i− 1 on Ti+1 which does not use
any colour in [i]∪ {c(yizi)}. Set M0 = {xjyj : j ∈ [i− 1]} ∪M ′′ ∪ {yizi}. Then, M0 is a rainbow
matching of size k − 1 vertex-disjoint from M ′. Now, by considering the pair (M0,M

′) instead
of (M,M ′), we must have c(xiw) ∈ [s]. Otherwise, G contains a rainbow matching of size k or
s is not maximal.

Let uw be an edge with u ∈ S, w ∈ Wi and c(uw) /∈ [i − 1]. Pick a rainbow matching Mu of
size s on S \ {u} with colours [s], and a rainbow matching M ′

u of size k− i on Ti which does not
contain any colour in [i− 1]∪ {c(uw)}. Then, {uw} ∪Mu ∪M ′

u ∪ {xjyj : s+ 1 ≤ j ≤ i− 1} is a
rainbow matching of size k in G, a contradiction. So c(uw) ∈ [i− 1] for any u ∈ S and w ∈ W ,
showing part (d) of the claim.

Part (e) of the claim follows easily from Fact A, (c) and (d). This completes the proof of the
claim.

Recall that s < k− 1. So we have |Ws+1| = n− 2(k− 1)− 2s− (k− 1− s) ≥ k− 1− s ≥ 1. Pick
a vertex w ∈ Ws+1. By part (e) of the claim, w adjacent to vertices in {ys+1, ys+2, . . . , yk−1}
or w incident with edges of colours in [s]. Hence, w has colour degree at most k − 1, which
contradicts δc(G) ≥ k. Thus, we must have s = k − 1 as claimed. In summary, we have
M = {xiyi : i ∈ [k − 1]} and M ′ = {ziwi : i ∈ [k − 1]} with c(xiyi) = i = c(ziwi) for i ∈ [k − 1].

Now, if n ≥ 4k − 3, then V (G) 6= V (M ∪M ′). Pick a vertex w /∈ V (M ∪M ′) and since w has
colour degree at least k, there exists a vertex u such that uw is an edge and c(uw) /∈ [k − 1].
It is easy to see that G contains a rainbow matching of size k, contradicting our assumption.
Therefore, we may assume n = 4k − 4 and k ≥ 4.

Since δc(G) ≥ k, any vertex u ∈ {x1, y1, z1, w1}must have a neighbour v such that c(uv) /∈ [k−1].
If v /∈ {x1, y1, z1, w1}, then G contains a rainbow matching of size k. So, without loss of
generality, x1z1 and y1w1 are edges in G with c(x1z1), c(y1w1) /∈ [k − 1]. By symmetry, we may
assume that for each i ∈ [k − 1], xizi and yiwi are edges in G with c(xizi), c(yiwi) /∈ [k − 1].
As δc(G) ≥ k ≥ 4, x1 must have a neighbour v /∈ {y1, z1, w1} with c(x1v) 6= 1. Without loss of
generality, we may assume v = zj for some j and c(x1zj) = 2. Now, {x1zj , z1w1, y2w2, }∪{xiyi :
i ∈ {3, 4, . . . , k − 1} is a rainbow matching of size k in G, which again is a contradiction. This
completes the proof of the theorem.

3 Remarks

In Theorem 1.1, the bound on n, the number of vertices, is sharp for k = 2, 3 (and trivially for
k = 1), as shown by properly 3-edge-coloured K4 for k = 2 and by properly 3-edge-coloured two
disjoint copies of K4 for k = 3. However, we do not know if the bound is sharp for k ≥ 4.

Question. Given k, what is the minimum n such that every edge-coloured graph G of order n
with δc(G) = k contains a rainbow matching of size k?
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