Skip to main content
Log in

[r, s, t]-Colorings of Graph Products

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let G =  (V, E) be a graph with vertex set V and edge set E. Given non negative integers r, s and t, an [r, s, t]-coloring of a graph G is a proper total coloring where the neighboring elements of G (vertices and edges) receive colors with a certain difference r between colors of adjacent vertices, a difference s between colors of adjacent edges and a difference t between colors of a vertex and an incident edge. Thus [r, s, t]-colorings generalize the classical colorings of graphs and can have applications in different fields like scheduling, channel assignment problem, etc. The [r, s, t]-chromatic number χ r,s,t (G) of G is the minimum k such that G admits an [r, s, t]-coloring. In our paper we propose several bounds for the [r, s, t]-chromatic number of the cartesian and direct products of some graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazzaro F., Montassier M., Raspaud A.: (d,1)-total labelling of planar graphs with large girth and high maximum degree. Discrete Math. 307, 2141–2151 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bottreau A., Métivier Y.: Some remarks on the Kronecker product of graphs. Inf. Process. Lett. 68, 55–61 (1998)

    Article  Google Scholar 

  3. Chang C.Y., Clark W.E., Hare E.O.: Domination numbers of complete grid graphs I. Ars Combinatoria 36, 97–111 (1994)

    MathSciNet  Google Scholar 

  4. Čižek N., Klavžar S.: On the chromatic number of the lexicographic product and the cartesian sum of graphs. Discrete Math. 134(1–3), 17–24 (1994)

    MATH  MathSciNet  Google Scholar 

  5. Dekar L., Effantin B., Kheddouci H.: [r, s, t]-colorings of Trees and Bipartite graphs. Discrete Math. 310, 260–269 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Effantin B., Kheddouci H.: Grundy number of graphs. Discussiones Mathematicae Graph Theory 27(1), 5–18 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gravier S.: Total domination number of grid graphs. Discrete Appl. Math. 121(1–3), 119–128 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Horton J.D., Wallis W.D.: Factoring the cartesian product of a cubic graph and a triangle. Discrete Math. 259(1–3), 137–146 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jha P.K., Agnihotri N., Kumar R.: Long cycles and long paths in the Kronecker product of a cycle and a tree. Discrete Appl. Math. 74, 101–121 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jha P.K.: Kronecker product of paths and cycles: decomposition, factorization and bi-pancyclicity. Discrete Math. 182, 153–167 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jha P.K.: Smallest independent dominating sets in Kronecker product of cycles. Discrete Appl. Math. 113, 303–306 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Jha P.K.: Perfect r-domination in the Kronecker product of two cycles, with an application to diagonal/toroidal mesh. Inf. Process. Lett. 87, 163–168 (2003)

    Article  MATH  Google Scholar 

  13. Kemnitz A., Marangio M.: [r, s, t]-colorings of graphs. Discrete Math. 307(2), 199–207 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kemnitz A., Marangio M., Mihók P.: [r, s, t]-Chromatic numbers and hereditary properties of graphs. Discrete Math. 307(7–8), 916–922 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kemnitz A., Lehmann J.: [r, s, t]-Colorings of stars. Congressus Numerantium 185, 65–80 (2007)

    MATH  MathSciNet  Google Scholar 

  16. Kouider M., Mahéo M.: Some bound for the b-chromatic number of a graph. Discrete Math. 256, 267–277 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ruskey, F., Sawada, J.: Bent Hamilton cycles in d-dimensional grid graphs. Electron. J. Comb. 10, #R1 (2003)

  18. Schiermeyer I., Villà à M.S.: [r, s, t]-Colourings of paths. Opuscula Mathematica 27, 131–149 (2007)

    MATH  MathSciNet  Google Scholar 

  19. Tigrine F., Kheddouci H.: The minimum feedback vertex set for Kronecker product of graphs. Utilitas Mathematica 74, 207–238 (2007)

    MATH  MathSciNet  Google Scholar 

  20. Villà à, M.S.: [r, s, t]-Colourings of Paths, Cycles and Stars. Doctoral thesis, TU Bergakademie, Freiberg (2005)

  21. Zhu X.: Star chromatic numbers and products of graphs. J. Graph Theory 16, 557–569 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhu X.: The fractional chromatic number of the direct product of graphs. Glasg. Math. J. 44, 103–115 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brice Effantin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekar, L., Effantin, B. & Kheddouci, H. [r, s, t]-Colorings of Graph Products. Graphs and Combinatorics 30, 1135–1147 (2014). https://doi.org/10.1007/s00373-013-1338-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-013-1338-4

Keywords

Mathematics Subject Classification (2000)

Navigation