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Abstract

An edge-colored graph G is rainbow connected if every pair of vertices of G are

connected by a path whose edges have distinct colors. The rainbow connection

number rc(G) of G is defined to be the minimum integer t such that there exists

an edge-coloring of G with t colors that makes G rainbow connected. For a graph

G without any cut vertex, i.e., a 2-connected graph, of order n, it was proved that

rc(G) ≤ ⌈n2 ⌉ and the bound is tight. In this paper, we prove that for a connected

graph G of order n with cut vertices, rc(G) ≤ n+r−1
2 , where r is the number of

blocks of G with even orders, and the upper bound is tight. Moreover, we also

obtain a tight upper bound for a bridgeless graph, i.e., a 2-edge-connected graph.

Keywords: rainbow edge-coloring, rainbow connection number, cut vertex, block

decomposition.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. For notation and

terminology not defined here, we refer to [2]. In an edge-colored graph G, a path is called a

rainbow path if the colors of its edges are distinct. The graph G is called rainbow connected

if every pair of vertices are connected by at least one rainbow path in G. An edge-coloring

of a connected graph G that makes G rainbow connected is called a rainbow edge-coloring

of G. The minimum number of colors required to rainbow color G is called the rainbow

connection number of G, denoted by rc(G). If a graph G has an edge-coloring c and G′ is

∗Supported by NSFC No.11071130.

1

http://arxiv.org/abs/1211.0141v2


a subgraph of G, c(G′) denotes the set of colors appeared in G′. An edge-coloring using

k colors is addressed as a k-edge-coloring. If P is a path, the length of P is denoted by

ℓ(P ).

Let G′ be a subgraph of a graph G. An ear of G′ in G is a nontrivial path in G whose

end vertices lie in G′ but whose internal vertices are not. An ear decomposition of a

2-connected graph G is a sequence of subgraphs G0, G1, · · · , Gk of G satisfying that (1)

G0 is a cycle of G; (2) Gi = Gi−1

⋃

Pi (1 ≤ i ≤ k), where Pi is an ear of Gi−1 in G; (3)

Gi−1(1 ≤ i ≤ k) is a proper subgraph of Gi; (4) Gk = G. If ℓ(P1) ≥ ℓ(P2) ≥ · · · ≥ ℓ(Pk),

we say that the ear decomposition is nonincreasing. From the above definition, every

graph Gi in an ear decomposition is 2-connected.

A block of a graph G is a maximal connected subgraph of G that does not have any

cut vertex. So every block of a nontrivial connected graph is either a K2 or a 2-connected

subgraph. All the blocks of a graph G form a block decomposition of G. A block B is

called an even (odd) block if the order of B is even (odd).

Let c be a rainbow k-edge-coloring of a connected graph G. If a rainbow path P in G

has length k, we call P a complete rainbow path; otherwise, it is an incomplete rainbow

path. A rainbow edge-coloring c of G is incomplete if for any vertex u ∈ V (G), G has

at most one vertex v such that all the rainbow paths between u and v are complete;

otherwise, it is complete.

The definition of a rainbow coloring was introduced by Chartrand et al. in [5]. For

more knowledge, we refer to [10, 11]. In [6], it was proved that computing the rainbow

connection number of a graph is NP -hard. Hence, tight upper bounds of the rainbow

connection number for a connected graph have been a subject of investigation. The

authors of [4] proved that rc(G) ≤ 3n/(δ + 1) + 3, where δ is the minimum degree of the

connected graph G, and the authors of [1, 7] obtained some upper bound of the rainbow

connection number in term of radius and bridges. For 2-connected graphs, there exist the

following results.

Lemma 1.1. [9] Let G be a Hamiltonian graph of order n (n ≥ 3). Then G has an

incomplete ⌈n
2
⌉-rainbow coloring, i.e., rc(G) ≤ ⌈n

2
⌉.

Lemma 1.2. [9] Let G be a 2-connected non-Hamiltonian graph of order n (n ≥ 4). If

G has at most one ear with length 2 in a nonincreasing ear decomposition, then G has a

incomplete ⌈n
2
⌉-rainbow coloring, i.e., rc(G) ≤ ⌈n

2
⌉.

Theorem 1.1. [9, 8] Let G be a 2-connected graph of order n (n ≥ 3). Then rc(G) ≤ ⌈n
2
⌉,

and the upper bound is tight for n ≥ 4.

Proposition 1.1. [3] If G is a connected bridgeless (2-edge-connected) graph with n

vertices, then rc(G) ≤ 4n/5− 1.

In this paper, we will study the rainbow connection number of a connected graph with

cut vertices and obtain a tight upper bound. Besides, a tight upper bound for a 2-edge-

connected (bridgeless) graph is also obtained.
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2 Main results

We first show that every 2-connected graphG with odd number of vertices has a rainbow

edge-coloring with a nice property.

Lemma 2.1. Let G be a 2-connected graph of order n (n ≥ 3) and v0 be any vertex of G.

If n is odd, then G has a rainbow ⌈n
2
⌉-edge-coloring c such that there exists a color x of

the edge-coloring satisfying that every vertex of G can be connected by a rainbow path P

to v0 with x /∈ c(P ).

Proof. Since G is 2-connected, G has a nonincreasing ear decomposition G0, G1, · · · ,

Gq(= G) (q ≥ 0) satisfying that (1) G0 is a cycle with v0 ∈ V (G0); (2) Gi = Gi−1

⋃

Pi,

where Pi (1 ≤ i ≤ q) is an ear of Gi−1 in G; (3) ℓ(P1) ≥ ℓ(P2) ≥ · · · ≥ ℓ(Pq). We consider

the following two cases.

Case 1. No ear of P1, · · · , Pq has an even length.

In this case, since G has an odd order, G0 must be an odd cycle. Assume that G0 =

v0v1 · · · v2kv2k+1(= v0) with k ≥ 1. Define a (k+1)-edge-coloring c0 ofG0 by c0(vi−1vi) = xi

for i with 1 ≤ i ≤ k + 1 and c0(vi−1vi) = xi−k−1 for i with k + 2 ≤ i ≤ 2k + 1. It can

be checked that c0 is a rainbow ⌈ |V (G0)|
2

⌉-edge-coloring of G0 such that every vertex of G0

can be connected by a rainbow path P in G0 to v0 with xk+1 /∈ c0(P ). If G0 = G, the

conclusion holds.

Now assume that G0 6= G and P1 = v′0v
′
1 · · · v

′
2sv

′
2s+1(s ≥ 0) with V (G0)

⋂

V (P1) =

{v′0, v
′
2s+1}. Define an edge-coloring c1 of G1 = G0

⋃

P1 by c1(e) = c0(e) for e ∈ E(G0),

c1(v
′
i−1v

′
i) = yi for i with 1 ≤ i ≤ s, c1(v

′
sv

′
s+1) = x′ and c1(v

′
i−1v

′
i) = yi−s−1 for i with

s+2 ≤ i ≤ 2s+1, where y1, · · · , ys are new colors and x′ is a color that already appeared

in G0. Here, if ℓ(P1) = 1, i.e., s = 0, we just color the only edge v′0v
′
1 of P1 by a color that

appeared in G0. It can be checked that c1 is a rainbow ⌈ |V (G1)|
2

⌉-edge-coloring of G1. From

the definition of c1, every vertex of G0 can be connected by a rainbow path P in G0 to v0
with xk+1 /∈ c1(P ). Let P ′ and P ′′ be the rainbow paths, respectively, from v′0 and v′2s+1

to v0 in G0 such that xk+1 /∈ c1(P
′) and xk+1 /∈ c1(P

′′). For any vertex v′j (1 ≤ j ≤ s),

v′jP1v
′
0P

′v0 is a rainbow path in G1 from v′j to v0 such that xk+1 /∈ c1(v
′
jP1v

′
0P

′v0). For any

vertex v′j (s+1 ≤ j ≤ 2s), we can choose v′jP1v
′
2s+1P

′′v0 as a rainbow path in G1 from v′j
to v0 such that xk+1 /∈ c1(v

′
jP1v

′
2s+1P

′′v0). Hence, c1 is a required rainbow edge-coloring

of G1.

If G1 = G, the conclusion holds. Otherwise, repeating the above process of defining

c1 from c0, we can obtain a rainbow ⌈ |V (Gi)|
2

⌉-edge-coloring of Gi (2 ≤ i ≤ q) such that

every vertex of Gi can be connected by a rainbow path P in Gi to v0 with xk+1 /∈ ci(P ).

Therefore, cq is a required rainbow ⌈n
2
⌉-edge-coloring of G.

Case 2. At least one of P1, · · · , Pq has an even length.

Suppose that Pt (1 ≤ t ≤ q) is the last added ear with an even length. So Pt+1, · · · , Ps

have odd lengths. From Case 1, we just need to show that Gt has a required rainbow

3



⌈ |V (Gt)|
2

⌉-edge-coloring. Now we will consider the following two cases:

Subcase 2.1. At most one of the ears P1, · · · , Pt−1 has length 2.

Assume that Pt = v′0v
′
1 · · · v

′
2s−1v

′
2s such that V (Pt)

⋂

V (Gt−1) = {v′0, v
′
2s}. It is obvious

that G0, G1, · · · , Gt−1 is a nonincreasing ear decomposition of Gt−1 with at most one ear

with length 2. From Lemmas 1.1 and 1.2, Gt−1 has an incomplete rainbow ⌈ |V (Gt−1)|
2

⌉-edge-

coloring ct−1. In Gt−1, there exists an incomplete rainbow path P ′ from v0 to one of v
′
0 and

v′2s (say v′2s). Assume that x′ is a color of the coloring ct−1 with x′ /∈ ct−1(P
′). Define an

edge-coloring ct of Gt = Gt−1

⋃

Pt by ct(e) = ct−1(e) for e ∈ E(Gt−1), ct(v
′
i−1v

′
i) = xi for

i with 1 ≤ i ≤ s, ct(v
′
sv

′
s+1) = x′ and ct(v

′
i−1v

′
i) = xi−s−1 for i with s+ 2 ≤ i ≤ 2s, where

x1, · · · , xs are new colors. It can be checked that ct is a rainbow ⌈ |V (Gt)|
2

⌉-edge-coloring

of Gt. From the definition of coloring ct, every vertex of Gt−1 has a rainbow path P in

Gt−1 to v0 with xs /∈ ct(P ). Let P ′′ be a rainbow path in Gt−1 from v′0 to v0. For any

vertex v′j (1 ≤ j ≤ s − 1), v′jPtv
′
0P

′′v0 is a rainbow path in Gt from v′j to v0 such that

xs /∈ ct(v
′
jPtv

′
0P

′′v0). For any vertex v′j (s ≤ j ≤ 2s−1), we have v′jPtv
′
2sP

′v0 is a rainbow

path in Gt from v′j to v0 such that xs /∈ ct(v
′
jPtv

′
2sP

′v0). So every vertex of Gt has a

rainbow path P in Gt to v0 with xs /∈ ct(P ). Hence, ct is a required rainbow edge-coloring

of Gt.

Subcase 2.2. At least two ears of P1, · · · , Pt−1 have length 2.

In this case, it is obvious that ℓ(Pt) = 2 and ℓ(Pt+1) = · · · = ℓ(Pq) = 1. Assume that

ℓ(P1) ≥ · · · ≥ ℓ(Ph) ≥ 3 and ℓ(Ph+1) = · · · = ℓ(Pt) = 2. Here at least three ears have

length 2, i.e., t− h ≥ 3. From Theorem 1.1, Gh has a rainbow ⌈ |V (Gh)|
2

⌉-edge-coloring ch.

Assume that Pj = ajvjbj (h+ 1 ≤ j ≤ t) such that V (Pj)
⋂

V (Gh) = {aj, bj}. Define an

edge-coloring ct of Gt by ct(e) = ch(e) for e ∈ E(Gh), ct(ajvj) = x1 for j with h+1 ≤ j ≤ t

and ct(vjbj) = x2 for j with h+1 ≤ j ≤ t, where x1, x2 are new colors. It is easy to check

that ct is a rainbow edge-coloring of Gt with at most ⌈ |V (Gt)|
2

⌉ colors and every vertex of

Gt has a rainbow path P to v0 with x2 /∈ ct(P ). Therefore, Gt has a required rainbow

⌈ |V (Gt)|
2

⌉-edge-coloring.

Theorem 2.1. Let G be a connected graph of order n (n ≥ 3) and G has a block decom-

position B1, · · · , Bq (q ≥ 2), where r blocks are even blocks and the others are odd ones.

Then rc(G) ≤ n+r−1
2

and the upper bound is tight.

Proof. Let G be a connected graph of order n with q (q ≥ 2) blocks in its block decom-

position. If G has at least one even block, we choose G1 = B1 being an even block of G;

otherwise, G1 = B1 being an odd block of G. Since q ≥ 2 and G is connected, G has

a block B2 such that V (G1)
⋂

V (B2) = {v1}. Let G2 = G1

⋃

B2. So G2 is a connected

graph which consists of two blocks B1, B2. Repeating the process of adding B2 to G1, we

obtain a sequence of subgraphs G1, G2, · · · , Gq such that Gi (1 ≤ i ≤ q) is a connected

graph and Gi = B1

⋃

B2

⋃

· · ·
⋃

Bi (2 ≤ i ≤ q) with V (Gi−1)
⋂

V (Bi) = {vi−1} for i with

2 ≤ i ≤ q. Denote the order of Bi (1 ≤ i ≤ q) by ni. From Theorem 1.1 and rc(K2) = 1,

every block B has a rainbow ⌈ |V (B)|
2

⌉-edge-coloring. We will consider the following two
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cases.

Case 1. r ≥ 1.

From the definition of G1, G1 = B1 is an even block and G1 has a rainbow ⌊n1

2
⌋-edge-

coloring c1. If B2 is an even block, color the edges of B2 with ⌊n2

2
⌋ new colors such that

B2 is rainbow connected. It is obvious that G2 is rainbow connected and the obtained

edge-coloring c2 of G2 uses ⌊
n1

2
⌋+ ⌊n2

2
⌋ colors. Consider the case that B2 is an odd block.

From Lemma 2.1, B2 has a rainbow edge-coloring c′2 with ⌈n2

2
⌉ new colors such that there

exists a color x′ of c′2 satisfying that every vertex of B2 has a rainbow path P in B2 to v1
with x′ /∈ c′2(P ). Replacing the color x′ of c′2 by a color x that already appeared in G1,

we obtain an edge-coloring c2 of G2 with ⌊n1

2
⌋+ ⌊n2

2
⌋ colors. It is obvious that G1 and B2

are rainbow connected, respectively. Consider two vertices v′ ∈ V (G1) and v′′ ∈ V (B2).

From the definition of c2, there are two rainbow paths P ′ in G1 from v′ to v1 and P ′′ in

B2 from v1 to v′′ such that x /∈ c2(P
′′). So v′P ′v1P

′′v′′ is a rainbow path from v′ to v′′ in

G2. Hence, c2 is a rainbow edge-coloring of G2 with ⌊n1

2
⌋+ ⌊n2

2
⌋ colors.

If q ≥ 3, we can repeat the process of defining c2 from c1 to obtain a rainbow edge-

coloring cq of Gq(= G) with ⌊n1

2
⌋+ ⌊n2

2
⌋+ · · ·+ ⌊nq

2
⌋ colors.

Case 2. r = 0.

In this case, G2 = B1

⋃

B2 consists of two odd blocks. From Lemma 2.1, Bi (i = 1, 2)

has a rainbow ⌈ni

2
⌉-edge-coloring c′i such that x′

i is a color of c′i satisfying that every

vertex of Bi (i = 1, 2) has a rainbow path P in Bi to v1 with x′
i /∈ c′i(P ). Note that

c′1(B1)
⋂

c′2(B2) = ∅. Assume that xi (i = 1, 2) is a color of c′i such that xi 6= x′
i.

Replacing x′
1 by x2 in B1 and x′

2 by x1 in B2, we obtain an edge-coloring c2 of G2 with

⌊n1

2
⌋ + ⌊n2

2
⌋ colors. It is obvious that Bi (i = 1, 2) is rainbow connected. Consider two

vertices v′ ∈ V (B1) and v′′ ∈ V (B2). From the definition of c2, there exist two rainbow

paths P ′ in B1 from v′ to v1 and P ′′ in B2 from v1 to v′′ such that x2 /∈ c2(P
′) and

x1 /∈ c2(P
′′). So v′P ′v1P

′′v′′ is a rainbow path in G2 from v′ to v′′. Hence, c2 is a rainbow

edge-coloring of G2 with ⌊n1

2
⌋+ ⌊n2

2
⌋ colors. If q ≥ 3, we can color the blocks B3, · · · , Bq

similar to Case 1 to obtain a rainbow edge-coloring of G with ⌊n1

2
⌋ + ⌊n2

2
⌋ + · · · + ⌊nq

2
⌋

colors.

Therefore, in any case we have that rc(G) ≤ ⌊n1

2
⌋+ ⌊n2

2
⌋+ · · ·+ ⌊nq

2
⌋ = n+r−1

2
.

Figure 1. Graphs for the tightness of Theorem 2.1.

In order to prove that the upper bound is tight, we will show that for any integers

n, r, q, if there exist graphs of order n with r even blocks and q − r odd blocks, then one

of such graphs has a rainbow connection number n+r−1
2

.

In fact, if there exists a connected graph of order n with r even blocks, then n + r

5



must be an odd number. The graph G of order n in Figure 1 consists of r even blocks

K2, q − r − 1 odd cycles K3 and one odd cycle Cn−2q+r+2. Since d(G) = n+r−1
2

and

d(G) ≤ rc(G) ≤ n+r−1
2

, we have rc(G) = n+r−1
2

.

In the following, we give a tight upper bound of the rainbow connection number for a

2-edge-connected graph which improves the result of Proposition 1.1.

Theorem 2.2. Let G be a 2-edge-connected graph of order n (n ≥ 3). Then

rc(G) ≤

{

2k if n = 3k + 1or 3k + 2

2k + 1 if n = 3k + 3
,

and the upper bound is tight.

Proof. Suppose that G has the block decomposition B1, B2, · · · , Bq. Since G is 2-edge-

connected, we have |Bi| ≥ 3, 1 ≤ i ≤ q. And if Bi is an even block, then |Bi| ≥ 4. If G has

r even blocks, then 3r + 1 ≤ n, i.e., r ≤ n−1
3
. From Theorem 2.1, rc(G) ≤ n+r−1

2
≤ 2n−2

3
.

Since rc(G) is an integer, rc(G) ≤

{

2k if n = 3k + 1 or 3k + 2

2k + 1 if n = 3k + 3
.

G1

G2

G3

Figure 2. Graphs for the tightness of Theorem 2.2.

The three graphs G1, G2, G3 in Figure 2 are 2-edge-connected. The order of Gi (i =

1, 2, 3) is 3k + i, and d(G1) = d(G2) = 2k and d(G3) = 2k + 1. From the above result

and d(G) ≤ rc(G), we have that rc(G1) = rc(G2) = 2k and rc(G3) = 2k + 1. Hence, the

upper bound is tight.
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