On a covering problem in the hypercube

Lale Özkahya
email: ozkahya@illinoisalumni.org

Brendon Stanton
The Citadel
Department of Mathematics
Charleston, SC 29409 USA
email: bstanton@citadel.edu

October 23, 2018

Abstract

In this paper, we address a particular variation of the Turán problem for the hypercube. Alon, Krech and Szabó (2007) asked "In an n-dimensional hypercube, Q_{n}, and for $\ell<d<n$, what is the size of a smallest set, S, of Q_{ℓ} 's so that every Q_{d} contains at least one member of S ?" Likewise, they asked a similar Ramsey type question: "What is the largest number of colors that we can use to color the copies of Q_{ℓ} in Q_{n} such that each Q_{d} contains a Q_{ℓ} of each color?" We give upper and lower bounds for each of these questions and provide constructions of the set S above for some specific cases.

1 Introduction

For graphs Q and P, let $\operatorname{ex}(Q, P)$ denote the generalized Turán number, i.e., the maximum number of edges in a P-free subgraph of Q. The n-dimensional hypercube, Q_{n}, is the graph whose vertex set is $\{0,1\}^{n}$ and whose edge set is the set of pairs that differ in exactly one coordinate. For a graph G, we use $n(G)$ and $e(G)$ to denote the number of vertices and the number of edges of G, respectively.

In 1984, Erdős 8] conjectured that

$$
\lim _{n \rightarrow \infty} \frac{\operatorname{ex}\left(Q_{n}, C_{4}\right)}{e\left(Q_{n}\right)}=\frac{1}{2}
$$

Note that this limit exists, because the function above is non-increasing for n and bounded. The best upper bound $\operatorname{ex}\left(Q_{n}, C_{4}\right) / e\left(Q_{n}\right) \leq 0.62256$ was obtained by Thomason and Wagner [16] by slightly improving the bound 0.62284 given by Chung [4]. Brass, Harborth and Nienborg [3] showed that the lower bound is $\frac{1}{2}(1+1 / \sqrt{n})$, when $n=4^{r}$ for integer r, and $\frac{1}{2}(1+0.9 / \sqrt{n})$, when $n \geq 9$.

Erdős [8] also asked whether $o\left(e\left(Q_{n}\right)\right)$ edges in a subgraph of Q_{n} would be sufficient for the existence of a cycle $C_{2 k}$ for $k>2$. The value of $\operatorname{ex}\left(Q_{n}, C_{6}\right) / e\left(Q_{n}\right)$ is between $1 / 3$ and 0.3941 given by Conder [6] and Lu [11, respectively. On the other hand, nothing is known for the cycle of length 10. Except C_{10}, the question of Erdős is answered positively by showing that $\operatorname{ex}\left(Q_{n}, C_{2 k}\right)=o\left(e\left(Q_{n}\right)\right)$ for $k \geq 4$ in [4], [7] and [10].

A generalization of Erdős' conjecture above is the problem of determining ex $\left(Q_{n}, Q_{d}\right)$ for $d \geq 3$. As for $d=2$, the exact value of $\operatorname{ex}\left(Q_{n}, Q_{3}\right)$ is still not known. The best lower bound for $\operatorname{ex}\left(Q_{n}, Q_{3}\right) / e\left(Q_{n}\right)$ has been $1-(5 / 8)^{0.25} \approx 0.11086$ due to Graham, Harary, Livingston and Stout [14] until recently Offner [12] improved it to 0.1165 . The best upper bound is $\operatorname{ex}\left(Q_{n}, Q_{3}\right) / e\left(Q_{n}\right) \leq 0.25$ due to Alon, Krech and Szabó [1]. They also gave the best bounds for $\operatorname{ex}\left(Q_{n}, Q_{d}\right), d \geq 4$, as

$$
\begin{equation*}
\Omega\left(\frac{\log d}{d 2^{d}}\right)=1-\frac{\operatorname{ex}\left(Q_{n}, Q_{d}\right)}{e\left(Q_{n}\right)} \leq \frac{\frac{4}{(d+1)^{2}}}{\frac{4}{d(d+2)}} \quad \text { if } d \text { is odd, }, \text { is even. } \tag{1}
\end{equation*}
$$

These Turán problems are also asked when vertices are removed instead of edges and most of these problems are also still open. In a very recent paper, Bollobás, Leader and Malvenuto [2] discuss open problems on the vertex-version and their relation to Turán problems on hypergraphs.

Here, we present results on a similar dual version of the hypercube Turán problem that is asked by Alon, Krech and Szabó in [1]. Let \mathcal{H}_{n}^{i} denote the collection of Q_{i} 's in Q_{n} for $1 \leq i \leq n-1$. Call a subset of \mathcal{H}_{n}^{ℓ} a (d, ℓ)-covering set if each member of \mathcal{H}_{n}^{d} contains some member of this set, i.e., \mathcal{H}_{n}^{d} is covered by this set. A smallest (d, ℓ)-covering set is called optimal. Alon, Krech and Szabó [1] asked what the size of the optimal (d, ℓ)-covering set of Q_{n} is for fixed $\ell<d$. Call this function $f^{(\ell)}(n, d)$. Determining this function when $\ell=1$ is equivalent to the determination of $\operatorname{ex}\left(Q_{n}, Q_{d}\right)$, since $\operatorname{ex}\left(Q_{n}, Q_{d}\right)+f^{(1)}(n, d)=e\left(Q_{n}\right)$ and the best bounds for $f^{(1)}(n, d)$ are given in [1] as (11). In [1], also the Ramsey version of this problem is asked as follows. A coloring of \mathcal{H}_{n}^{ℓ} is d, ℓ-polychromatic if all colors appear on each copy Q_{d} 's. Let $p c^{(\ell)}(n, d)$ be the largest number of colors for which there exists a d, ℓ-polychromatic coloring of \mathcal{H}_{n}^{ℓ}.

Let $c^{(\ell)}(n, d)$ be the ratio of $f^{(\ell)}(n, d)$ to the size of \mathcal{H}_{n}^{ℓ}, i.e.,

$$
\begin{equation*}
c^{(\ell)}(n, d)=\frac{f^{(\ell)}(n, d)}{2^{n-\ell}\binom{n}{\ell}} . \tag{2}
\end{equation*}
$$

One can observe that

$$
\begin{equation*}
c^{(\ell)}(n, d) \leq \frac{1}{p c^{(\ell)}(n, d)}, \tag{3}
\end{equation*}
$$

since any color class used in a d, ℓ-polychromatic coloring is a (d, ℓ)-covering set of Q_{n}. Note that the following limits exist, since $c^{(\ell)}(n, d)$ is non-decreasing, $p c^{(\ell)}(n, d)$ is non-increasing and both are bounded.

$$
c_{d}^{(\ell)}=\lim _{n \rightarrow \infty} c^{(\ell)}(n, d), \quad p_{d}^{(\ell)}=\lim _{n \rightarrow \infty} p c^{(\ell)}(n, d)
$$

In Section 2, we obtain bounds on the polychromatic number.
Theorem 1. For integers $n>d>\ell$, let $0<r \leq \ell+1$ such that $r=d+1(\bmod \ell+1)$. Then

$$
e^{\ell+1}\left(\frac{d+1}{\ell+1}\right)^{\ell+1} \geq\binom{ d+1}{\ell+1} \geq p_{d}^{(\ell)} \geq\left\lceil\left.\frac{d+1}{\ell+1}\right|^{r}\left\lfloor\frac{d+1}{\ell+1}\right\rfloor^{\ell+1-r} \approx\left(\frac{d+1}{\ell+1}\right)^{\ell+1}\right.
$$

In Section 3, we present the following bounds on $c_{d}^{(\ell)}$ and $c^{(\ell)}(n, d)$.
Theorem 2. For integers $n>d>\ell$ and $r=d-\ell(\bmod \ell+1)$,

$$
\left(2^{d-\ell}\binom{d}{\ell}\right)^{-1} \leq c_{d}^{(\ell)} \leq\left\lceil\left.\frac{d+1}{\ell+1}\right|^{-r}\left\lfloor\frac{d+1}{\ell+1}\right]^{-(\ell+1-r)}\right.
$$

The determination of the exact values of p_{d}^{ℓ} and c_{d}^{ℓ} remains open. The lower and upper bounds on $c^{(\ell)}(n, d)$ provided in Theorem 2 and Theorem 3, respectively, are a constant factor of each other when d and ℓ have a bounded difference from n.

Theorem 3. Let $n-d$ and $n-\ell$ be fixed finite integers, where $d>\ell$. Then, for sufficiently large n,

$$
c^{(\ell)}(n, d) \leq\left\lceil\frac{r \log (n-\ell)}{\log \left(\frac{r^{r}}{r^{r}-r!}\right)}\right\rceil \frac{1+o(1)}{2^{d-\ell}\binom{d}{l}},
$$

where $r=n-d$.
Finally, we show an exact result for $c^{(\ell)}(n, d)$ when $d=n-1$.
Theorem 4. For integers $n-1>\ell$,

$$
c^{(\ell)}(n, n-1)=\frac{\left\lceil\frac{2 n}{n-\ell}\right\rceil}{2^{n-\ell}\binom{n}{\ell}}
$$

In our proofs, we make use of the following terminology. The collection of i-subsets of $[n]=\{1, \ldots, n\}, 1 \leq i \leq n$, is denoted by $\binom{[n]}{i}$. For an edge $e \in E\left(Q_{n}\right)$, star (e) denotes the coordinate that is different at endpoints of e. The set of coordinates whose values are 0 (or 1 , resp.) at both endpoints of e are denoted by zero(e) (or one(e), resp.). For a subcube $F \subset Q_{n}$, $\operatorname{star}(F):=\cup_{e \subseteq E(F)} \operatorname{star}(e)$, one $(F):=\cap_{e \subseteq E(F)}$ one (e) and $\operatorname{zero}(F):=\cap_{e \subseteq E(F)} \operatorname{zero}(e)$. Note that E_{1} covers E_{2} for $E_{1} \in \mathcal{H}_{n}^{\ell}$ and $E_{2} \in \mathcal{H}_{n}^{d}(d>\ell)$ if and only if $\operatorname{zero}\left(E_{2}\right) \subset \operatorname{zero}\left(E_{1}\right)$ and one $\left(E_{2}\right) \subset$ one $\left(E_{1}\right)$.

Definition 5. For any $Q \in \mathcal{H}_{n}^{\ell}$ and $\operatorname{star}(Q)$ with coordinates $s_{1}<s_{2}<\ldots<s_{\ell}$, we define an $(\ell+1)$-tuple $w(Q)=\left(w_{1}, w_{2}, \ldots, w_{\ell+1}\right)$ as $-w_{1}=\left|\left\{x \in \operatorname{one}(Q): x<s_{1}\right\}\right|$,

- $w_{j}=\mid\left\{x \in\right.$ one $\left.(Q): s_{j-1}<x<s_{j}\right\} \mid$, for $2 \leq j \leq \ell$,
$-w_{\ell+1}=\left|\left\{x \in \operatorname{one}(Q): x>s_{\ell}\right\}\right|$.

2 Polychromatic Coloring of Subcubes

Proof of Theorem 1. The lower bound:
For any $Q \in \mathcal{H}_{n}^{\ell}$ with $w(Q)=\left(w_{1}, w_{2}, \ldots, w_{\ell+1}\right)$, we define the color of each $Q \in \mathcal{H}_{n}^{\ell}$ as the $(\ell+1)$-tuple $c(Q)=\left(c_{1}, \ldots, c_{\ell+1}\right)$ such that

$$
\begin{array}{cll}
c_{i}=w_{i} & (\bmod k) & \text { if } 1 \leq i \leq r \text { and } \tag{4}\\
c_{i}=w_{i} & \left(\bmod k^{\prime}\right) & \text { if } r+1 \leq i \leq \ell+1
\end{array}
$$

where $k=\lceil(d+1) /(\ell+1)\rceil$ and $k^{\prime}=\lfloor(d+1) /(\ell+1)\rfloor$. We show that this coloring is $d, \ell-$ polychromatic.

Let $C \in \mathcal{H}_{n}^{d}$, where star (C) consists of the coordinates $a_{1}<a_{2}<\cdots<a_{d}$. We choose a color $\left(c_{1}, \ldots, c_{\ell+1}\right)$ arbitrarily and show that C contains a copy of Q_{ℓ}, call it Q, with this color.

Since Q must be a subgraph of $C, \operatorname{zero}(C) \subset \operatorname{zero}(Q)$ and one $(C) \subset$ one (Q). We define $\operatorname{star}(Q)=\left\{s_{1}, \ldots, s_{\ell}\right\}$ such that

$$
s_{i}= \begin{cases}a_{i k} & \text { if } 1 \leq i \leq r \\ a_{r k+(i-r) k^{\prime}} & \text { if } r+1 \leq i \leq \ell\end{cases}
$$

We include the remaining $d-\ell$ positions of $\operatorname{star}(C)$ to one (Q) or zero (Q) such that $w(Q)=$ $\left(w_{1}, w_{2}, \ldots, w_{\ell+1}\right)$ satisfies (44). This is possible since by the definition of r, we have $d-\ell=$ $r(k-1)+(\ell+1-r)\left(k^{\prime}-1\right)$.

The upper bound:
Since $p c^{(\ell)}(n, d)$ is a non-increasing function of n, we provide an upper bound for this function when n is sufficiently large which is also an upper bound for $p_{d}^{(\ell)}$.

For a subset S of $[n]$, we define cube (S) as the subcube Q of Q_{n} such that $\operatorname{star}(Q)=S$ and $\operatorname{zero}(Q)=[n] \backslash S$. Let \mathcal{G} be a subfamily of \mathcal{H}_{n}^{d} such that $\mathcal{G}=\left\{\operatorname{cube}(S): S \in\binom{[n]}{d}\right\}$. We define a coloring of the members of \mathcal{G} as follows.

Consider a d, ℓ-polychromatic coloring of \mathcal{H}_{n}^{ℓ} using p colors, call this coloring P. Fix an arbitrary ordering of the copies of Q_{ℓ} 's in Q_{d}. We define a coloring of \mathcal{H}_{n}^{d} such that the color of a copy of Q_{d} is the list of colors of each Q_{ℓ} under P in this fixed order. By using this coloring on the members of \mathcal{G}, we obtain a coloring of \mathcal{G} using $p^{\binom{d}{\ell}^{d-\ell}}$ colors.

Now, consider the auxiliary d-uniform hypergraph \mathcal{G}^{\prime} whose vertex set is the set of coordinates $[n]$ and whose edge set is defined as the collection of $\operatorname{star}(E)$'s for each E in \mathcal{G}, i.e., \mathcal{G}^{\prime} is a complete d-uniform hypergraph on the vertex set $[n]$. Also we define a coloring of the edges of \mathcal{G}^{\prime} by using the colors on the corresponding members of \mathcal{G} as described above. Ramsey's theorem on hypergraphs implies that there is a sufficiently large value of n such that there exists a complete monochromatic subgraph on $d^{2}+d-1$ vertices in any edge coloring of \mathcal{G}^{\prime} with $p\left(\begin{array}{l}\binom{d}{\ell} 2^{d-\ell}\end{array}\right.$ colors. Let $K \subset[n]$ be the vertex set of a monochromatic complete subgraph of \mathcal{G}^{\prime} on $d^{2}+d-1$ vertices. We define S as the collection of $i d^{t h}$ coordinates in $K, 1 \leq i \leq d$, so that there are at least $d-1$ coordinates between elements of S.

Claim 6. If Q is a copy of Q_{ℓ} in cube (S), then the color of Q under P depends only on $w(Q)$.
Proof. Let E_{1} and E_{2} be two different copies of Q_{ℓ} in cube (S) such that $w\left(E_{1}\right)=w\left(E_{2}\right)$ according to Definition [5. There exists a subset $S^{\prime} \subset K$ with $\left|S^{\prime}\right|=d$ such that - (one $\left.\left(E_{2}\right) \cup \operatorname{star}\left(E_{2}\right)\right) \subset S^{\prime}$, i.e., E_{2} is contained in cube $\left(S^{\prime}\right)$ and - the restriction of E_{2} on S^{\prime} gives the same vector as the restriction of E_{1} on S.

Clearly, one can find S^{\prime} that satisfies the first condition. It is also possible that S^{\prime} fulfills the second condition, since we can remove or add up to $d-1$ coordinates from K between consecutive coordinates of ones and stars in E_{2} to define S^{\prime}. This implies that the colors of E_{1} and E_{2} are the same under P, since cube (S) and cube $\left(S^{\prime}\right)$ have the same colors.

Hence, the number of colors used in any d, ℓ-polychromatic coloring of \mathcal{H}_{n}^{ℓ} is at most the number of possible vectors $w(Q)$ for any $Q \in \mathcal{H}_{n}^{\ell}$. The number of possible $(\ell+1)$-tuples $w(Q)$ for any $Q \in \mathcal{G}$ is given by the number of partitions of at most $d-\ell$ ones into $\ell+1$ parts and therefore it is at most $\binom{d+1}{\ell+1}$.

3 The Covering Problem

Proof of Theorem 2, Note that a trivial lower bound on $f^{(\ell)}(n, d)$ is given by the ratio of $\left|\mathcal{H}_{n}^{d}\right|$ to the exact number of Q_{d} 's that a single Q_{ℓ} covers in Q_{n}. Thus, by (2), for all n,

$$
\begin{equation*}
c^{(\ell)}(n, d) \geq\left\lceil\frac{2^{n-d}\binom{n}{d}}{\binom{n-\ell}{n-d}}\right\rceil \cdot \frac{1}{2^{n-\ell}\binom{n}{\ell}} . \tag{5}
\end{equation*}
$$

By using the equality $\binom{n}{d}\binom{d}{d-\ell}=\binom{n}{\ell}\binom{n-\ell}{d-\ell}$, we are done.
The upper bound is implied together by (3) and Theorem 1 ,
We define a $(0,1)$-labelling of a set as an assignment of labels 0 or 1 to its elements.
Observation 7. Since any subcube $Q \subset Q_{n}$ is defined by zero (Q) and one (Q), a ($\left.d, \ell\right)$-covering set of Q_{n} can be defined as a collection of (0,1 -labellings of sets chosen from $\binom{[n]}{n-\ell}$ such that any $(0,1)$-labelling of sets in $\binom{[n]}{n-d}$ is contained in at least one of the labelled $(n-\ell)$-sets.

When providing constructions for the upper bounds in Theorems 3 and [we provide constructions for the equivalent covering problem in Observation 7.

Proof of Theorem 3.

We construct a (d, ℓ)-covering of Q_{n} by providing a construction for the equivalent problem as stated in Observation 7. In the following, we describe this construction in two steps. First, we choose the $(n-\ell)$-subsets of $[n]$ to label and then, we describe an efficient way to $(0,1)$-label these sets.

Step 1: We make use of the following well-known result on the general covering problem. An (n, k, t)-covering is defined as a collection of k-subsets of n elements such that every t-set is contained in at least one k-set. Let $C(n, k, t)$ be the minimum number of k-sets in an (n, k, t) covering. Rödl proved the following result by also settling a long-standing conjecture of Erdős and Hanani [9. For any fixed integers k and t with $2 \leq t<k<n$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{C(n, k, t)}{\binom{n}{t} /\binom{k}{t}}=1 \tag{6}
\end{equation*}
$$

By our assumption, $n-d$ and $n-\ell$ are fixed integers where $n-d<n-\ell$. By (6), there exists a $(n, n-\ell, n-d)$-covering \mathcal{F} for sufficiently large n such that $|\mathcal{F}|=(1+o(1))\binom{n}{n-d} /\binom{n-\ell}{n-d}$.

Step 2: We obtain a collection of (0,1)-labellings for each edge $e \in \mathcal{F}$ so that all $(0,1)$ labellings of $(n-d)$-subsets of e are covered. The union of these $(0,1)$-labellings is a covering set.

An r-cut of an r-uniform hypergraph is obtained by partitioning its vertex set into r parts and taking all edges that meet every part in exactly one vertex. An r-cut cover of a hypergraph is a collection of r-cuts such that each edge is in at least one of the cuts. An upper bound on the minimum size of an r-cut cover is shown by Cioabă, Kündgen, Timmons and Vysotsky in [5] using a probabilistic proof.

Theorem 8 ([5]). For every r, an r-uniform complete hypergraph on n vertices can be covered with $\lceil c \log n\rceil r$-cuts if

$$
c>\frac{-r}{\log \left(\frac{r^{r}-r^{!}!}{r^{r}}\right)} .
$$

For a fixed edge e of \mathcal{F}, let \mathcal{G}_{e} be the complete $(n-d)$-uniform hypergraph on the vertex set of e. Let $C=\lceil c \log (n-\ell)\rceil$ be the size of a minimum $(n-d)$-cut cover of \mathcal{G}_{e} as given by Theorem 8, We obtain a collection of (0,1)-labellings of e by labelling each cut in this cover such that the vertices in each part are labelled identically with 0 or 1 . Thus, the total number of (0,1)-labellings of e is $2^{n-d} C$. (If some labelling of an edge is used more than once, then we count this labelling only once.) Finally, we use similarly labellings for each edge of \mathcal{F} in the covering set. This yields that

$$
c^{(\ell)}(n, d) \leq \frac{1}{2^{n-\ell}\binom{n}{\ell}}\left(C(1+o(1)) 2^{n-d} \frac{\binom{n}{n-d}}{\binom{n-\ell}{n-d}}=C(1+o(1)) \frac{1}{2^{d-\ell}\binom{d}{l}},\right.
$$

where the last equality is obtained by using the relation $\binom{n}{d}\binom{d}{d-\ell}=\binom{n}{\ell}\binom{n-\ell}{d-\ell}$.

Proof of Theorem 4.

The lower bound follows from (5).
For the upper bound, we construct a collection of $(0,1)$-labellings of sets chosen from $\binom{[n]}{n-\ell}$, where singletons in $[n]$ have both 0 and 1 in some labelling. Let $k=\lceil n /(n-\ell)\rceil$. We choose a partition $[n]=\left(P_{1}, \ldots, P_{k}\right)$ such that $\left|P_{i}\right|=n-\ell$ for $i<k$. Let $P \in\binom{[n]}{n-\ell}$ such that $P_{k} \subset P$. In the covering set, we include two labellings of each of $P_{1}, \ldots, P_{k-1}, P$, where all labels are the same, either 0 or 1.

References

[1] N. Alon, A. Krech and T. Szabó. Turán's theorem in the hypercube. SIAM J. Discrete Math., 21: 66-72, 2007.
[2] B. Bollobás, I. Leader and C. Malvenuto. Daisies and other Turán Problems. Combin., Probab. and Comp., 20: 743-747, 2011.
[3] P. Brass , H. Harborth and H. Nienborg. On the Maximum number of edges in a C_{4}-free subgraph of Q_{n}. J. Graph Theory, 19: 17-23, 1995.
[4] F. Chung. Subgraphs of a hypercube containing no small even cycles. J. Graph Theory, 16: 273-286, 1992.
[5] S. M. Cioabă, A. Kündgen, C. M. Timmons and V. V. Vysotsky. Covering complete rgraphs with spanning complete r-partite r-graphs. Combin., Probab. and Comput., 20: 519-527, 2011.
[6] M. Conder. Hexagon-free subgraphs of hypercubes. J. Graph Theory, 17: 477-479, 1993.
[7] D. Conlon. An extremal theorem in the hypercube. Electron. J. Combin., 17: R111, 2010.
[8] P. Erdős. On some problems in graph theory combinatorial analysis and combinatorial number theory. Graph Theory and Combinatorics, 1-17, 1984.
[9] P. Erdős and H. Hanani. On a limit theorem in combinatorial analysis. Publ. Math. Debrecen, 10: 10-13, 1963.
[10] Z. Füredi, L. Özkahya. On even-cycle-free subgraphs of the hypercube. J. of Combin. Theo., Ser. A, 118: 1816-1819, 2011.
[11] Linyuan Lu. Hexagon-free subgraphs in hypercube Q_{n}. Private communication.
[12] D. Offner. Some Turán type results on the hypercube. Discrete Math., 102: 2905-2912, 2011.
[13] D. Offner. Polychromatic colorings of the hypercube. SIAM J. Discrete Math., 22: 450-454, 2008.
[14] N. Graham, F. Harary, M. Livingston and Q. Stout. Subcube fault tolerance in hypercubes. Inform. and Comput., 102: 280-314, 1993.
[15] V. Rödl. On a packing and covering problem. European J. Combin., 6: 69-78, 1985.
[16] A. Thomason and P. Wagner. Bounding the size of square-free subgraphs of the hypercube. Discrete Math., 309: 1730-1735, 2009.

