Edge Decompositions of Hypercubes by Paths and by Cycles

Michel Mollard*
Institut Fourier
100, rue des Maths
38402 St Martin d'Hères Cedex FRANCE
michel.mollard@ujf-grenoble.fr
and
Mark Ramras
Department of Mathematics
Northeastern University
Boston, MA 02115, USA
m.ramras@neu.edu

September 6, 2013

Abstract

If H is isomorphic to a subgraph of G, we say that H divides G if there exist embeddings $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ of H such that $$
\left\{\left\{E\left(\theta_{1}(H)\right), E\left(\theta_{2}(H)\right), \ldots, E\left(\theta_{k}(H)\right)\right\}\right.
$$ is a partition of $E(G)$. For purposes of simplification we will often omit the embeddings, saying that we have an edge decomposition by copies of $E(H)$.

Many authors have studied this notion for various subgraphs of hypercubes. We continue such a study in this paper.

[^0]
1 Introduction and Preliminary Results

Definition 1 If H is isomorphic to a subgraph of G, we say that H divides G if there exist embeddings $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ of H such that

$$
\left\{\left\{E\left(\theta_{1}(H)\right), E\left(\theta_{2}(H)\right), \ldots, E\left(\theta_{k}(H)\right)\right\}\right.
$$

is a partition of $E(G)$.
Ramras [8] has defined a more restrictive concept.
Definition 2 A fundamental set of edges of a graph G is a subset of $E(G)$ whose translates under some subgroup of the automorphism group of G partition $E(G)$.

Edge decompositions of graphs by subgraphs have a long history. For example, there is a Steiner triple system of order n if and only if the complete graph K_{n} has an edge-decomposition by K_{3}. In 1847 Kirkman [5] proved that for a Steiner triple system to exist it is necessary that $n \equiv 1(\bmod 6)$ or $n \equiv 3 \quad(\bmod 6)$. In 1850 he proved the converse holds also [6].

Theorem $1 A$ Steiner system of order $n \geq 3$ exists if and only if $n \equiv 1$ $(\bmod 6))$ or $n \equiv 3(\bmod 6)$.

In more modern times (1964) G. Ringel [11] stated the following conjecture, which is still open.

Conjecture 1 If T is a fixed tree with m edges then $K_{2 m+1}$ is edge-decomposable into $2 m+1$ copies of T.

By Q_{n} we mean the n-dimensional hypercube. We regard its vertex set, $V\left(Q_{n}\right)$, as $\mathcal{P}(\{1,2, \ldots, n\})$, the set of subsets of $\{1,2, \ldots, n\}$. Two vertices x and y are considered adjacent (so $\langle x, y\rangle \in E\left(Q_{n}\right)$) if $|x \Delta y|=1$, where Δ denotes the symmetric difference of the two subsets x and $y .\left(V\left(Q_{n}\right), \Delta\right)$ is isomorphic as a group to $\left(\mathbb{Z}_{2}^{n},+\right)$. Occasionally, when convenient, we shall use the vector notation for vertices; thus \vec{x} and \vec{y} are adjacent precisely when they differ in exactly one component. Note that for $k<n, \mathcal{P}(\{1,2, \ldots, k\}) \subset$ $\mathcal{P}(\{1,2, \ldots, n\})$ so that $V\left(Q_{k}\right) \subset V\left(Q_{n}\right)$. In fact, from the definition of adjacency, it follows that Q_{k} is an induced subgraph of Q_{n}.

Beginning in the early 1980's, interest in hypercubes (and similar hypercubelike networks such as "cube-connected cycles" and "butterfly" networks) increased dramatically with the construction of massively parallel-processing
computers, such as the "Connection Machine" whose architecture is that of the 16-dimensional hypercube, with $2^{16}=65,536$ processors as the vertices. Problems of routing message packets simultaneously along paths from one processor to another led to an interest in questions of edge decompositions of $E\left(Q_{n}\right)$ by paths. An encyclopedic discussion of this and much more can be found in [7].

In [8] we have shown that if \mathcal{G} is a subgroup of $\operatorname{Aut}\left(Q_{n}\right)$ and for all $g \in \mathcal{G}$, with $g \neq i d$ (where $i d$ denotes the identity element), $g(E(H)) \cap E(H)=\emptyset$, then there is a packing of these translates of $E(H)$ in Q_{n}, i.e. they are pairwise disjoint. If, in addition, $|E(H)| \cdot|\mathcal{G}|=n \cdot 2^{n-1}=\left|E\left(Q_{n}\right)\right|$, then the translates of $E(G)$ by the elements of \mathcal{G} yield an edge decomposition of Q_{n}. In [8] it is shown that every tree on n edges can be embedded in Q_{n} as a fundamental set. (This result for edge decompositions was obtained independently by Fink [3]). In [9] this is extended to certain trees and certain cycles on $2 n$ edges. Decompositions of Q_{n} by k-stars are proved for all $k \leq n$ in [2]. Recently, Wagner and Wild [12] have constructed, for each value of n, a tree on 2^{n-1} edges that is a fundamental set for Q_{n}. The structure of $\operatorname{Aut}\left(Q_{n}\right)$ is discussed in [8]. For each subset A of $\{1,2, \ldots, n\}$, the complementing automorphism σ_{A} is defined by $\sigma_{A}(x)=A \Delta\{x\}$. Another type of automorphism arises from the group of permutations \mathcal{S}_{n} of $\{1,2, \ldots, n\}$. For $x=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\} \subseteq\{1,2, \ldots, n\}$ and $\theta \in \mathcal{S}_{n}$ we denote by $\rho_{\theta(x)}$ the vertex $\left\{\theta\left(x_{1}\right), \theta\left(x_{2}\right), \ldots, \theta\left(x_{m}\right)\right\}$. The mapping $\rho_{\theta}: V\left(Q_{n}\right) \longrightarrow V\left(Q_{n}\right)$ defined in this way is easily seen to belong to $\operatorname{Aut}\left(Q_{n}\right)$. Every automorphism in $\operatorname{Aut}\left(Q_{n}\right)$ can be expressed uniquely in the form $\sigma_{A} \circ \rho_{\theta}$, where this notation means that we first apply ρ_{θ}. Note: $\rho_{\theta} \circ \sigma_{A}=\sigma_{\theta(A)} \circ \rho_{\theta}$.

To avoid ambiguity in what follows we make this definition:
Definition 3 By P_{k}, the " k-path", we mean the path with k edges.

Questions

(1) For which k dividing $n \cdot 2^{n-1}$ does P_{k} divide Q_{n} ?
(2) For which k dividing $n \cdot 2^{n-1}$ does C_{k}, the cycle on k edges, divide Q_{n} ?
(3) For those k for which the answer to either (1) or (2) is "yes", is the edge set used in the decomposition a fundamental set for Q_{n} ?

We begin this introductory section with some examples. In later sections we prove a variety of results relating to these questions, and in the final section we summarize our findings.

Example 1

Let T be the 2-star ($=$ the 2-path) contained in Q_{3} with center 000 , and leaves 100,010 . Then $\mathcal{G}=\left\{i d, \sigma_{123}, \sigma_{1} \rho_{(123)}, \sigma_{12} \rho_{(132)}, \sigma_{3} \rho_{(132)}, \sigma_{23} \rho_{(123)}\right\}$ is a (cyclic) subgroup of $\operatorname{Aut}\left(Q_{3}\right)$ of order 6 , and the 6 translates of T under \mathcal{G} yield an edge decomposition of Q_{3}.

Note, however, that \mathcal{G} does not work for the 2 -star T^{\prime}, whose center is 000 and whose leaves are 100 and 001 . The subgroup which works for this 2 -star is $\mathcal{G}^{\prime}=\left\{i d, \sigma_{123}, \sigma_{1} \rho_{(132)}, \sigma_{13} \rho_{(123)}, \sigma_{2} \rho_{(123)}, \sigma_{23} \rho_{(132)}\right\}$.

Example 2

P_{6} does not divide Q_{3}. For since Q_{3} has 12 edges, if P_{6} did divide Q_{3} then Q_{3} would have an edge-decomposition consisting of 2 copies of P_{6}. The degree sequence (in decreasing order) of each P_{6} is $2,2,2,2,2,1,1,0$, whereas Q_{3}, of course, is 3 -regular. Thus the vertex of degree 0 in one P_{6} would require a degree of 3 in the other, which is impossible.

Example 3

P_{4} does not divide Q_{3}. Since P_{4} has 4 edges, we would need 3 copies of P_{4} for an edge-decomposition of Q_{3}. Call the three copies of $P_{4} P^{(1)}, P^{(2)}$, and $P^{(3)}$. At each vertex v of $Q_{3}, \sum_{1 \leq i \leq 3} \operatorname{deg}_{P^{(i)}}(v)=3$. Label the vertices of Q_{3} $\left(v_{1}\right)$ to $\left(v_{8}\right)$ such that the degree sequence of $P^{(1)}$, is decreasing. Consider the 3×8 array $\operatorname{deg}_{P(i)}\left(v_{j}\right)$. The first row is thus 22211000 . In the second and third rows, in order for the column sums to be 3 , there must be exactly 31 's (and 30 's) in the first 3 columns. Similarly, in the last 3 columns there must be exactly 3 1's (and 30 's). Thus in the second and third rows we have at least 61 's, and so at least one of these rows must have at least 31 's. But each row is a permutation of the first, which has only 21 's. Contradiction. Hence P_{4} does not divide Q_{3}.

Example 4

Since Q_{3} is 3 -regular, the 4 -star is not a subgraph. The other tree on 4 edges does divide Q_{3}. Let T be the 3 -star centered at 000 union the edge $\langle 001,101\rangle$. Let $\left.\mathcal{G}=<\sigma_{23} \rho_{(123)}\right\rangle$, which is a cyclic subgroup of $\operatorname{Aut}\left(Q_{3}\right)$ of order 3. A straight-forward calculation shows that the translates of T under \mathcal{G} form an edge decomposition of Q_{3}.

Proposition 1 For $k \geq 3, P_{2^{k}}$ does not divide $Q_{2 k+1}$.
Proof. Suppose that $k \geq 3$, and suppose that $P_{2^{k}}$ divides $Q_{2 k+1}$. The matrix $\left(a_{i v}\right)$ formed by the degree sequences of copies of $P_{2^{k}}$ has $2^{2 k+1}$ columns, and

$$
(2 k+1) \cdot 2^{2 k} / 2^{k}=(2 k+1) 2^{k}
$$

rows. Then since each row has exactly two 1's, the entire matrix has $(2 k+1) 2^{k+1} 1$'s. But since each vertex of $Q_{2 k+1}$ has degree $2 k+1$, each column sum is $2 k+1$, and thus each column has at least one 1 . Thus there must be at least $2^{2 k+1} 1$'s in the matrix. Therefore, $(2 k+1) 2^{k+1} \geq 2^{2 k+1}$. This is equivalent to $2 k+1 \geq 2^{k}$. But for $k \geq 3$ this is clearly false. Thus for $k \geq 3, P_{2^{k}}$ does not divide $Q_{2 k+1}$.

We will prove in Section 3 that for $k=2, P_{2^{k}}$ does divide $Q_{2 k+1}$.
The next result is Proposition 8 of [9].
Proposition 2 Let n be odd, and suppose that P_{k} divides Q_{n}. Then $k \leq n$.
Lemma 1 "Divisibility" is transitive, i.e. if G_{1} divides G_{2} and G_{2} divides G_{3}, then G_{1} divides G_{3}.

Proof. This follow immediately from the definition of "divides".
Corollary 1 If k divides n then P_{k} divides Q_{n}.
Proof. By [8], Theorem 2.3, T divides Q_{n} for every tree T on n edges. In particular, then, P_{n} divides Q_{n}. Clearly, if k divides n then P_{k} divides P_{n}. Hence, by Lemma 1, P_{k} divides Q_{n}.

We have the following partial converse.
Proposition 3 If P_{k} divides Q_{n} and k is odd, then k divides n.
Proof. Since P_{k} divides Q_{n}, k divides $n \cdot 2^{n-1}$. But since k is odd, this means that k divides n.

Definition 4 If G_{1} and G_{2} are graphs then by $G_{1} \square G_{2}$ we mean the graph that is the Cartesian product of G_{1} and G_{2}.

Lemma 2 If H divides G_{1} and H divides G_{2} then H divides $G_{1} \square G_{2}$.
Proof. This is obvious because $E\left(G_{1} \square G_{2}\right)$ consists of $\left|V\left(G_{1}\right)\right|$ copies of $E\left(G_{2}\right)$ and $\left|V\left(G_{2}\right)\right|$ copies of $E\left(G_{1}\right)$.

Proposition 4 If k divides n then Q_{k} divides Q_{n}.
Proof. Let $n=m k$. We argue by induction on m. The statement is obvious for $m=1$. Now let $m>1$ and assume the statement is true for $m-1$. The desired result follows from Lemma 2 and the fact that $Q_{(m-1) k} \square Q_{k} \simeq$ $Q_{(m-1) k+k}=Q_{m k}$.

The converse to Proposition 4 follows easily from the next lemma.
Lemma 3 Suppose that the subgraph H of G edge-divides G. If G is n regular and H is k-regular, then k divides n.

Proof. Since the copies of $E(H)$ form an edge-partition of $E(G)$, each vertex v of H must belong to exactly n / k copies of H and so k divides n.

Corollary 2 If Q_{k} divides Q_{n} then k divides n.
Proof. Since Q_{k} is k-regular and Q_{n} is n-regular, this follows immediately from Lemma 3 .

Combining Proposition 4 and Corollary 2 we obtain
Proposition $5 Q_{k}$ divides Q_{n} if and only if k divides n.
As an immediate consequence of Lemma 1 and Proposition 4 we have
Corollary 3 If k divides n and if P_{j} divides Q_{k} then P_{j} divides Q_{n}.
We have a more general consequence.
Corollary 4 If k divides n and T is any tree on k edges, then there is an embedding of T which divides Q_{n}.

Proof. By [8], Theorem 2.3, by mapping any given vertex of T to \emptyset and assigning distinct labels $1,2, \ldots, k$ to the edges of T we get a subtree of Q_{k} isomorphic to T that divides Q_{k}. Hence by Lemma 1 and Proposition 4, T divides Q_{n}.

Proposition 6 If n is even, and $j<n$ then $P_{2^{j}}$ divides Q_{n}.
Proof. It is proved in [1] that the cycle $C_{2^{n}}$ divides Q_{n}. The Hamiltonian cycle $C_{2^{n}}$ is divisible by any path P_{q}, as long as q divides 2^{n} and $q<2^{n}$. Thus $C_{2^{n}}$ is divisible by $P_{2^{j}}$ provided $j<n$. The result now follows from Lemma 1

Proposition 7 If n is even, and C is the $2 n$-cycle with initial vertex \emptyset, and edge direction sequence $(1,2, \ldots, n)^{2} \stackrel{\text { def }}{=}(1,2, \ldots, n, 1,2, \ldots, n)$, then Q_{n} is edge-decomposed by the copies of C under the action of $\mathcal{G}=\left\{\sigma_{A} \mid A \subset\right.$ $\{1,2, \ldots, n-1\},|A|$ even $\}$. So $E(C)$ is fundamental for Q_{n}.

Proof. C consists of the path P, followed by $\sigma_{\{1,2, \ldots, n\}}(P)$, where P is the path with initial vertex \emptyset and edge direction sequence $1,2, \ldots, n$. Note that for any $B \subseteq\{1,2, \ldots, n\}$, for any edge $e, \sigma_{B}(e)=e$ implies that $B=\emptyset$ or $|B|=1$. Now we shall show that for every subset $A \subset\{1,2, \ldots, n-1\}$ with $|A|$ even, $\sigma_{A}(C) \cap C=\emptyset$. It should be noted that these A 's form a subgroup of $\operatorname{Aut}\left(Q_{n}\right)$ of order 2^{n-2}. So suppose that $e=\langle x, y\rangle \in C \cap \sigma_{A}(C)$. Let the direction of e be i. Then the direction of $\sigma_{A}(e)$ is i. If $A \neq \emptyset$, then since $|A|$ is even, $\sigma_{A}(e) \neq e$. The only other edge in C with direction i is $\sigma_{\{1,2, \ldots, n\}}(e)$. So if $\sigma_{A}(e) \in C$, then $\sigma_{A}(e)=\sigma_{\{1,2, \ldots, n\}}(e)$. Therefore $\sigma_{A} \cdot \sigma_{\{1,2, \ldots, n\}}(e)=e$, i.e. $\sigma_{A \Delta\{1,2, \ldots, n\}}(e)=e$. Since A and $\{1,2, \ldots, n\}$ are even, so is $A \Delta\{1,2, \ldots, n\}=\bar{A}$. Hence $A \Delta\{1,2, \ldots, n\}=\emptyset$, i.e. $A=$ $\{1,2, \ldots, n\}$. But $n \notin A$, so we have a contradiction.

Thus we have a group \mathcal{G} of automorphisms of C of order 2^{n-2}, such that for $g \in \mathcal{G}, g \neq i d, g(E(C)) \cap E(C)=\emptyset$. Furthermore, since $|E(C)|=2 n$, it follows that $|\mathcal{G}| \cdot|E(C)|=\left|E\left(Q_{n}\right)\right|$. Hence by [8, Lemma 1.1, the translates of $E(C)$ via the elements of \mathcal{G} form an edge decomposition of Q_{n}.

Corollary 5 If n is even, $k<n$ and k divides n, then $P_{2 k}$ divides Q_{n}.
Proof. Since k divides $n, 2 k$ divides $2 n$, and thus since $2 k<2 n, P_{2 k}$ divides the $2 n$-cycle C of Proposition 7. Hence by Proposition 7, $P_{2 k}$ divides Q_{n}.

Corollary 6 If n and k are both even and k divides n, and C is the $2 k$-cycle with initial vertex \emptyset, and edge direction sequence $(1,2, \ldots, k)^{2}$, then C divides Q_{n}.

Proof. By the proposition, C divides Q_{k}, and by Proposition 4, Q_{k} divides Q_{n}. The result now follows from Lemma 1 .

$2 \quad P_{4}$ divides Q_{5}

If k is odd then by Proposition 3 and Lemma $1 P_{k}$ divides Q_{n} and only if k divides n. Thus the smallest value of k for which Question (1) remains open is $k=4$. Corollary 5 settles the matter in the affirmative when n is even and thus we now only need to consider the case of n odd. Example 3 shows that P_{4} does not divide Q_{3}.

In the next two sections we show that for all odd n with $n \geq 5, P_{4}$ divides Q_{n}. We first, in this section, prove the result for $n=5$. The strategy is to find a subgraph G of Q_{5}, show that G divides Q_{5}, and then show that P_{4} divides G. In the next section we deduce the general case.

Figure 1: Q_{5} and the subgraph G

We define G as follows (see figure (1). First, some notation. For $b, c \in$ $\{0,1\}, Q_{5}^{(* * * b c)}$ denotes the 3 -cube induced by the vertices $x_{1} x_{2} x_{3} x_{4} x_{5}$ with $x_{4}=b$ and $x_{5}=c$. If $a \in\{0,1\} Q_{5}^{(* * a b c)}$ is the 2 -cube induced by the vertices with $x_{3}=a, x_{4}=b$, and $x_{5}=c$. We take G to be the union of (1): $Q_{5}^{(* * * 00)}$, with the edges of $Q_{5}^{(* 0 * 00)}$ deleted; (2): $Q_{5}^{(* * * 10)}$ with all edges deleted except for $\langle 01010,01110\rangle$ and $\langle 11010,11110\rangle ;(3): Q_{5}^{(* * * 01)}$ with all edges deleted except for $\langle 01101,11101\rangle$ and $\langle 01001,11001\rangle ;(4)$: the 4 matching
edges between $Q_{5}^{(* 1 * 00)}$ and $Q_{5}^{(* 1 * 10)}$; and (5) the 4 matching edges between $Q_{5}^{(* 1 * 00)}$ and $Q_{5}^{(* 1 * 01)}$. Thus $|E(G)|=20$. Since $\left|E\left(Q_{5}\right)\right|=5 \cdot 2^{4}=80$, we must exhibit $80 / 20=4$ copies of $E(G)$ that partition $E\left(Q_{5}\right)$.

Lemma $4 G$ divides Q_{5}. In fact, $E(G)$ is a fundamental set for Q_{5}.
Proof. By direct inspection of figure 2the group of translations $\mathcal{G}=\left\{i d, \sigma_{24}, \sigma_{25}, \sigma_{45}\right\}$, applied to $E(G)$, partitions $E\left(Q_{5}\right)$.

Figure 2: $E(G)$ is a fundamental set for Q_{5}

Lemma $5 P_{4}$ divides G.
Proof. It is easiest to describe the paths by their starting points and direction sequences (see figure 3).

Figure 3: P_{4} divides G

Path	Starting Point	Direction Seque
A	00000	$2,5,1,5$
B	10100	$2,5,1,5$
C	10000	$2,3,1,3$
D	01000	$1,4,3,4$
E	00100	$2,4,3,4$

Corollary $7 P_{4}$ divides Q_{5}.
Proof. This follows immediately from the previous two lemmas.

$3 \quad P_{4}$ divides Q_{n}, for n odd, $n \geq 5$

Let us write Q_{5} as $Q_{5}=Q_{3} \square Q_{2}=Q_{3} \square C_{4}$. Let $G_{0}=Q_{5}^{(* * * 00)}$, $G_{1}=$ $Q_{5}^{(* * * 10)}, G_{2}=Q_{5}^{(* * * 11)}, G_{3}=Q_{5}^{(* * * 01)}$. For $i \in\{0,1,2,3\}$ let π_{i} be the canonical mapping from G_{i} to Q_{3}.

* From the decomposition of Q_{5} by P_{4} we have a coloring $c: Q_{5} \longrightarrow$ $\{1,2, \ldots, 20\}$ of the edges of Q_{5} such that for any $i \in\{1,2, \ldots, 20\}$ the set of edges of Q_{5} colored i induces a P_{4}.
* Consider now $Q_{3} \square C_{4 k}$ for some $k \geq 1$. Let $G_{0}^{\prime}, \ldots, G_{4 k-1}^{\prime} \simeq Q_{3}$. Let π_{i}^{\prime}, be the canonical mapping from $G_{i^{\prime}}^{\prime} \longrightarrow Q_{3}$ for $i^{\prime} \in\{0,1, \ldots, 4 k-1\}$.
The edges of $Q_{3} \square C_{4 k}$ are
Case A: the edges of $G_{i^{\prime}}^{\prime}$, for any $i^{\prime} \in\{0,1, \ldots, 4 k-1\}$.
Case B: for any $i^{\prime} \in\{0,1, \ldots, 4 k-1\}$ the edges $\left\langle x^{\prime}, y^{\prime}\right\rangle$ for $x^{\prime} \in G_{i^{\prime}}^{\prime}$, $y^{\prime} \in G_{j^{\prime}}^{\prime}$, where $\left|j^{\prime}-i^{\prime}\right| \equiv 1 \quad(\bmod 4 k)$ and $\pi_{i^{\prime}}\left(x^{\prime}\right)=\pi_{j^{\prime}}\left(y^{\prime}\right)$.
* Let θ be the mapping from $Q_{3} \square C_{4 k} \longrightarrow Q_{5}$ defined by: for any $x^{\prime} \in$ $G_{i^{\prime}}^{\prime}, \theta\left(x^{\prime}\right)=x$ where x is the element of G_{i}, with $i \equiv i^{\prime}(\bmod 4)$ such that $\pi_{i}(x)=\pi_{i^{\prime}}\left(x^{\prime}\right)$. (Note that θ is not a one-to-one mapping.)

Proposition 8 If $\left\langle x^{\prime}, y^{\prime}\right\rangle$ is an edge of $Q_{3} \square C_{4 k}$ then $\left\langle\theta\left(x^{\prime}\right), \theta\left(y^{\prime}\right)\right\rangle$ is an edge of Q_{5}.

Proof.

> Case A
$\left\langle x^{\prime}, y^{\prime}\right\rangle \in G_{i^{\prime}}^{\prime}$ for some i^{\prime}. Then let $i \equiv i^{\prime}(\bmod 4)$. By the definition of $\theta, \theta\left(x^{\prime}\right) \in G_{i}, \theta\left(y^{\prime}\right) \in G_{i}$. This implies that $\theta\left(x^{\prime}\right)$ and $\theta\left(y^{\prime}\right)$ are adjacent.

Case B

Assume $x^{\prime} \in G_{i^{\prime}}^{\prime}, y^{\prime} \in G_{j^{\prime}}^{\prime}$, with $\left|j^{\prime}-i^{\prime}\right| \equiv 1 \quad(\bmod 4 k)$. We have $\pi_{i^{\prime}}^{\prime}\left(x^{\prime}\right)=\pi_{j^{\prime}}^{\prime}\left(y^{\prime}\right)$. Then $\theta\left(x^{\prime}\right) \in G_{i}$ and $\theta\left(y^{\prime}\right) \in G_{j}$ where $|j-i| \equiv 1 \quad(\bmod 4)$ since $\left|j^{\prime}-i^{\prime}\right| \equiv 1 \quad(\bmod 4)$ implies that $|j-i| \equiv 1 \quad(\bmod 4)$. Furthermore

$$
\pi_{i}\left(\theta\left(x^{\prime}\right)\right) \stackrel{\text { def of } \theta}{=} \pi_{i}^{\prime}\left(x^{\prime}\right) \stackrel{\text { edge }}{=} \pi_{j}^{\prime}\left(y^{\prime}\right) \stackrel{\text { def of } \theta}{=} \pi_{j}\left(\theta\left(y^{\prime}\right)\right)
$$

Thus there exists an edge between $\theta\left(x^{\prime}\right)$ and $\theta\left(y^{\prime}\right)$

Definition 5 Consider the coloring $E\left(Q_{3} \square C_{4 k}\right) \xrightarrow{c^{\prime}}\{1,2, \ldots, 20\}$ of the edges of $Q_{3} \square C_{4 k}$ defined by $c^{\prime}\left(\left\langle x^{\prime}, y^{\prime}\right\rangle\right)=c\left(\left\langle\theta\left(x^{\prime}\right), \theta\left(y^{\prime}\right)\right\rangle\right)$.

Lemma 6 For any $i \in\{1,2, \ldots, 20\}$ the set of edges of $Q_{3} \square C_{4 k}$ such that $c^{\prime}\left(x^{\prime}, y^{\prime}\right)=i$ is a set of disjoint paths of length 4. Therefore P_{4} divides $Q_{3} \square C_{4 m}$ for all $m \geq 1$.

Proof. By definition of c^{\prime}, for any vertex x^{\prime} of $Q_{3} \square C_{4 k}$ the number of edges incident to x^{\prime} colored i by c^{\prime} is the number of edges incident to $\theta\left(x^{\prime}\right)$ colored i by c. Therefore this number is ≤ 2. Furthermore, there is no cycle colored

Figure 4: Decomposition of $Q_{2 k+1}$
i in $Q_{3} \square C_{4 k}$ because the image by θ of this cycle would be a cycle of Q_{5} colored i with c. Therefore the set of edges colored i by c^{\prime} is a forest and more precisely, because of the degree, a set of disjoint paths.
Notice that the image by θ of a path colored i is a path of Q_{5} of the same length (because of the degree of the endpoints of the paths). Therefore all the paths are of length 4.

Theorem 2 For $n \geq 4, P_{4}$ divides Q_{n}.
Proof. If n is even, the result is true by Corollary 5. If $n=5$ then we are done by Corollary 7. Consider $Q_{2 k+3}$, for $k \geq 2 . Q_{2 k+3}=Q_{2 k+1} \square Q_{2} . E\left(Q_{2 k}\right)$ can be decomposed into k cycles of length $2^{2 k}$ (Hamiltonian cycles) by Aubert and Schneider [1]. Let D be one of these cycles. The edges of $Q_{2 k+1}$ are the edges of the two copies of $Q_{2 k}$ and a matching. But every vertex of $Q_{2 k}$ appears exactly once in D so $E\left(Q_{2 k+1}\right)$ can be decomposed into $2(k-1)$ cycles of length $2^{2 k}$ and $D \square Q_{1} \simeq C_{2^{2 k}} \square Q_{1}$ (see figure (4).

Every vertex of $Q_{2 k+1}$ appears once in $D \square Q_{1}$, thus, for the same reason, $E\left(Q_{2 k+3}\right)$ can be decomposed into $8(k-1)$ cycles of length $2^{2 k}$ and $D \square Q_{1} \square Q_{2} \simeq C_{2^{2 k}} \square Q_{1} \square Q_{2} \simeq C_{2^{2 k}} \square Q_{3}$ (see figure 5).

Figure 5: Decomposition of $Q_{2 k+3}$

Since $k \geq 2, \frac{2^{2 k}}{4}$ is an integer strictly greater than 1 so the cycles of length $2^{2 k}$ are divisible by P_{4}. By Lemma 6, P_{4} divides $C_{2^{2 k}} \square Q_{3}$, and P_{4} divides $E\left(Q_{n}\right)$ for any odd $n \geq 5$.

$4 \quad Q_{2^{k}}$ has a fundamental Hamiltonian cycle.

We shall describe walks in the hypercube by specifying the starting vertex (generally \emptyset) and the sequence of edge directions.

It is well-known that the n-dimensional hypercube Q_{n} is Hamiltonian, and in fact has many Hamiltonian cycles. Aubert and Schneider [1] proved that for n even, Q_{n} has an edge decomposition into Hamiltonian cycles. However, their construction is technical. In contrast, in this last section we shall prove that for $n=2^{k}$, there is a single Hamiltonian cycle C such that $E(C)$ is a fundamental set for Q_{n}.

By $G_{1} \square G_{2}$ we denote the Cartesian product of the graphs G_{1} and G_{2}. We will start with two easy results about Cartesian product of graphs.

Lemma 7 Assume that $\left\{C^{1}, C^{2}, \ldots, C^{p}\right\}$ is an edge decomposition in Hamiltonian cycles of a graph G. Then $\left\{C^{1} \square C^{1}, C^{2} \square C^{2}, \ldots, C^{p} \square C^{p}\right\}$ is an edge decomposition of $G \square G$.

Proof. Let $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ be adjacent in $G \square G$. Then either x_{1} and
y_{1} are adjacent in G and $x_{2}=y_{2}$ or $x_{1}=y_{1}$ and x_{2} and y_{2} are adjacent in G. By symmetry, it is sufficient to consider the first case. Let i be such that $\left\langle x_{1}, y_{1}\right\rangle \in E\left(C^{i}\right)$. Then since C^{i} is Hamiltonian $x_{2}=y_{2} \in V\left(C^{i}\right)$; thus $\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle \in E\left(C^{i} \square C^{i}\right)$. Conversely $\left\langle\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right\rangle \in E\left(C^{j} \square C^{j}\right)$ implies $\left\langle x_{1}, y_{1}\right\rangle \in E\left(C^{j}\right)$ since $x_{2}=y_{2}$; thus $j=i$. Therefore the $C^{j} \square C^{j}$'s are disjoint and the conclusion follows.

Lemma 8 Let G_{1} and G_{2} be any two graphs, and for $i=1,2$ let $\phi_{i} \in$ Aut $\left(G_{i}\right)$. Define $\left(\phi_{1}, \phi_{2}\right): G_{1} \square G_{2} \longrightarrow G_{1} \square G_{2}$ by $\left(\phi_{1}, \phi_{2}\right)((x, y))=\left(\phi_{1}(x), \phi_{2}(y)\right)$. Then $\left(\phi_{1}, \phi_{2}\right) \in \operatorname{Aut}\left(G_{1} \square G_{2}\right)$.

Proof. Let $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ be adjacent in $G_{1} \square G_{2}$. Then either (1) x_{1} and y_{1} are adjacent in G_{1} and $x_{2}=y_{2}$ or (2) $x_{1}=y_{1}$ and x_{2} and y_{2} are adjacent in G_{2}. We must show that $\left(\phi_{1}, \phi_{2}\right)\left(x_{1}, x_{2}\right)$ and $\left(\phi_{1}, \phi_{2}\right)\left(y_{1}, y_{2}\right)$ are adjacent in $G_{1} \square G_{2}$. By symmetry, it is sufficient to prove this for case (1). But then since $\phi_{1} \in \operatorname{Aut}\left(G_{1}\right), \phi_{1}\left(x_{1}\right)$ and $\phi_{1}\left(y_{1}\right)$ are adjacent in G_{1}, and since $x_{2}=y_{2}, \phi_{2}\left(x_{2}\right)=\phi_{2}\left(y_{2}\right)$. Therefore $\left(\phi_{1}, \phi_{2}\right)\left(x_{1}, x_{2}\right)$ and $\left(\phi_{1}, \phi_{2}\right)\left(y_{1}, y_{2}\right)$ are adjacent in $G_{1} \square G_{2}$. Conversely if $\left(\phi_{1}, \phi_{2}\right)\left(x_{1}, x_{2}\right)=\left(\phi_{1}\left(x_{1}\right), \phi_{2}\left(x_{2}\right)\right)$ and $\left(\phi_{1}, \phi_{2}\right)\left(y_{1}, y_{2}\right)=\left(\phi_{1}\left(y_{1}\right), \phi_{2}\left(y_{2}\right)\right)$ are adjacent in $G_{1} \square G_{2}$ then $\phi_{1}\left(x_{1}\right)=\phi_{1}\left(y_{1}\right)$ or $\phi_{2}\left(x_{2}\right)=\phi_{2}\left(y_{2}\right)$. We can assume the first case by symmetry then $x_{1}=y_{1}$ and x_{2} is adjacent to y_{2} in G_{2}. Thus $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ are adjacent in $G_{1} \square G_{2}$ and $\left(\phi_{1}, \phi_{2}\right) \in \operatorname{Aut}\left(G_{1} \square G_{2}\right)$.
The starting point of the theorem of Aubert and Schneider is an earlier result of G. Ringel [10] who proved that for $n=2^{k}, Q_{n}$ has an edge decomposition into Hamiltonian cycles. His proof is by induction on k. Let us recall the induction step. Let $m=2^{n}$. Let θ be the mapping from $\{1, \ldots, n\}$ to $\{n+1, \ldots, 2 n\}$ defined by $\theta(i)=i+n$. Let C be a Hamiltonian cycle of Q_{n} then we can construct $\Phi(C)$ and $\Gamma(C)$ two disjoint Hamiltonian cycles of $Q_{2 n}=Q_{n} \square Q_{n}$ such that $E(C \square C)=E(\Phi(C)) \cup E(\Gamma(C))$. Indeed fix an arbitrary vertex (say 0) and represent C by the sequence of directions $C=\left(c_{1}, \ldots, c_{m}\right)$ then consider

$$
\Phi(C)=\left(\begin{array}{ll}
c_{1}, \ldots & \ldots, c_{m-1}, c_{\theta\left(c_{1}\right)}, \\
c_{m}, c_{1}, \ldots & \ldots, c_{m-2}, c_{\theta\left(c_{2}\right)}, \\
c_{m-1}, c_{m}, c_{1}, \ldots & \ldots, c_{m-3}, c_{\theta\left(c_{3}\right)}, \\
\ldots \ldots & \ldots \\
c_{2}, \ldots & \ldots, c_{m}, c_{\theta\left(c_{m}\right)},
\end{array}\right)
$$

and

$$
\Gamma(C)=\left(\begin{array}{ll}
c_{\theta(1)}, \ldots & \ldots, c_{\theta(m-1)}, c_{1}, \\
c_{\theta(m)}, c_{\theta(1)}, \ldots & \ldots, c_{\theta(m-2)}, c_{2} \\
c_{\theta(m-1)}, c_{\theta(m)}, c_{\theta(1)}, \ldots & \ldots, c_{\theta(m-3)}, c_{3} \\
\ldots \ldots & \ldots . . \\
c_{\theta(2)}, \ldots & \ldots, c_{\theta(m)}, c_{m},
\end{array}\right)
$$

Figure 6: Construction of $\Phi(C)$ and $\Gamma(C)$ from C

It is immediate to check (see figure 6) that $\Phi(C)$ and $\Gamma(C)$ are disjoint and define a partition of the edges of $C \square C$. For n even let $p=n / 2$ and assume that $\left\{C^{1}, C^{2}, \ldots, C^{p}\right\}$ is an edge decomposition of Q_{n} in Hamiltonian cycles then as a consequence of Lemma 7. $\left\{\Phi\left(C^{1}\right), \Phi\left(C^{2}\right), \ldots, \Phi\left(C^{p}\right)\right\} \cup$ $\left\{\Gamma\left(C^{1}\right), \Gamma\left(C^{2}\right), \ldots, \Gamma\left(C^{p}\right)\right\}$ is an edge decomposition of $Q_{2 n}$ in Hamiltonian cycles.

Theorem 3 For any $k \geq 1, Q_{2^{k}}$ has a Hamiltonian cycle that is a fundamental set.

Proof. This is trivial for $k=1$ since $Q_{2}=C_{4}$. The desired result follows by induction from Ringel's construction. Indeed let $n=2^{k}, k \geq 1$ and assume that there exists an edge decomposition $\left\{C^{1}, C^{2}, \ldots, C^{p}\right\}$ of Q_{n} obtained as the translate of an Hamiltonian cycle C^{1} under some subgroup \mathcal{E} of Aut $\left(Q_{n}\right)$. For any automorphism $\phi \in \operatorname{Aut}\left(Q_{n}\right),(\phi, \phi) \in \operatorname{Aut}\left(Q_{2 n}\right)$ by Lemma 8. Furthermore if $\phi\left(C^{1}\right)=C^{i}$ then $(\phi, \phi)\left(\Phi\left(C^{1}\right)\right)=\Phi\left(C^{i}\right)$ and $(\phi, \phi)\left(\Gamma\left(C^{1}\right)\right)=\Gamma\left(C^{i}\right)$. If we consider now the permutation θ on $\{1, \ldots, 2 n\}$ defined by $\theta(i)=i+n \bmod 2 n$ then $\rho_{\theta}\left(\Phi\left(C^{i}\right)\right)=\Gamma\left(C^{i}\right)$. The conclusion follows since the subgroup of Aut $\left(Q_{2 n}\right)$, isomorphic to $\mathcal{E} \times S_{2}$, defined by $\mathcal{H}=$ $\{(\phi, \phi) ; \phi \in \mathcal{E}\} \cup\left\{\rho_{\theta} \circ(\phi, \phi) ; \phi \in \mathcal{E}\right\}$ is such that $\left\{\Phi\left(C^{1}\right), \Phi\left(C^{2}\right), \ldots, \Phi\left(C^{p}\right)\right\} \cup$ $\left\{\Gamma\left(C^{1}\right), \Gamma\left(C^{2}\right), \ldots, \Gamma\left(C^{p}\right)\right\}$ are the translates of $\Phi\left(C^{1}\right)$ under \mathcal{H}.

Corollary 8 For n and m each a power of 2 , with $m \leq n$, there is an m-cycle that divides Q_{n}.

Proof. Let $m=2^{p}$. By Theorem 3 Q_{m} has a fundamental 2^{p}-cycle, which therefore divides $Q_{m}=Q_{2^{p}}$. Since m and n are each powers of two, m divides n. Hence by Proposition 4 and Lemma [1, this cycle divides Q_{n}.

5 Summary of Results

1. For k odd, if P_{k} is a path on k edges that divides Q_{n}, then k divides n. (Proposition 3)
2. If k divides n, any tree on k edges divides Q_{n}. (Corollary 4)
3. If k divides n and $k<n$ then $P_{2 k}$ divides Q_{n}. (Corollary (5)
4. If n is even and $j<n$ then $P_{2^{j}}$ divides Q_{n}. (Proposition 6)

5 . For $k=2 n$ there is a k-cycle which is a fundamental set for Q_{n} when n is even. (Proposition 7)
6. For $n=$ a power of 2 , there is a Hamiltonian cycle which is a fundamental set for Q_{n}. (Theorem 3)
7. For $n=$ a power of 2 and $m=$ a power of 2 , with $m \leq n$, there is an m-cycle that divides Q_{n}. (Corollary 8)
8. For $n \geq 4, P_{4}$ divides Q_{n}. (Theorem 2)
9. Q_{k} is a fundamental set for Q_{n} if and only if k divides n. (Proposition 5) 10. For $k \geq 3, P_{2^{j}}$ does not divide $Q_{2 k+1}$. (Proposition (1)

References

[1] Aubert and Schneider, Décomposition de la somme Cartésienne d'un cycle et de l'union de deux cycles Hamiltoniens en cycles Hamiltoniens, Disc. Math. 38, (1982), 7 - 16.
[2] Darryn E. Bryant, Saad El-Zanati, Charles Vanden Eynden, and Dean G. Hoffman, Star decompositions of cubes, Graphs and Comb. 17, (2001), no.1, 55-59.
[3] J.F. Fink, On the decomposition of n-cubes into isomorphic trees, J. Graph Theory 14, (1990), 405-411.
[4] E. Gilbert, Gray codes and paths on the n-cube, Bell System Tech. J. 37, (1958) 815-826.
[5] T. Kirkman, On a Problem in Combinatorics", The Cambridge and Dublin Math. J. 2, (1847), 191-204.
[6] T. Kirkman, Note on an unanswered prize question", The Cambridge and Dublin Math. J. 5, (1850), 258-262.
[7] F. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, M. Kaufmann Publishers, San Mateo, California, 1992.
[8] M. Ramras, Symmetric edge-decompositions of hypercubes, Graphs and Comb. 7, (1991), 65-87.
[9] M. Ramras, Fundamental Subsets of Edges of Hypercubes, Ars Combinatoria 46 (1997), 3-24.
[10] G. Ringel, Über drei kombinatorische Probleme am n-dimensionalen Würfel und Würfelgitter, Abh. Math. Sem. Univ. Hamburg 20 (1955), $10-15$.
[11] G. Ringel, Problem 25, Theory of Graphs and its Applications, Nakl. C SAN, Praha, (1964), p. 162.
[12] S. Wagner; M. Wild, Decomposing the hypercube Q_{n} into n isomorphic edge-disjoint trees, Discrete Mathematics (2012), doi: 10.1016/j.disc.2012.01.033

[^0]: * CNRS Université Joseph Fourier

